KIT | KIT-Bibliothek | Impressum | Datenschutz

GOOSE: Goal-Conditioned Reinforcement Learning for Safety-Critical Scenario Generation

Ransiek, Joshua 1; Plaum, Johannes; Langner, Jacob; Sax, Eric 1
1 Institut für Technik der Informationsverarbeitung (ITIV), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Scenario-based testing is considered state-of-the-art for verifying and validating Advanced Driver Assistance Systems (ADASs) and Automated Driving Systems (ADSs). However, the practical application of scenario-based testing requires an efficient method to generate or collect the scenarios that are needed for the safety assessment. In this paper, we propose Goal-conditioned Scenario Generation (GOOSE), a goal-conditioned reinforcement learning (RL) approach that automatically generates safety-critical scenarios to challenge ADASs or ADSs (Fig. 1). In order to simultaneously set up and optimize scenarios, we propose to control vehicle trajectories at the scenario level. Each step in the RL framework corresponds to a scenario simulation. We use Non-Uniform Rational B-Splines (NURBS) for trajectory modeling. To guide the goal-conditioned agent, we formulate test-specific, constraint-based goals inspired by the OpenScenario Domain Specific Language (DSL). Through experiments conducted on multiple pre-crash scenarios derived from UN Regulation No. 157 for Active Lane Keeping Systems (ALKS), we demonstrate the effectiveness of GOOSE in generating scenarios that lead to safety -critical events.


Originalveröffentlichung
DOI: 10.1109/ITSC58415.2024.10919498
Scopus
Zitationen: 2
Dimensions
Zitationen: 4
Zugehörige Institution(en) am KIT Institut für Technik der Informationsverarbeitung (ITIV)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 24.09.2024
Sprache Englisch
Identifikator ISBN: 979-8-3315-0592-9
ISSN: 2153-0009
KITopen-ID: 1000181705
Erschienen in 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC); Edmonton, Kanada, 24.-27.09.2024
Veranstaltung 27th IEEE International Conference on Intelligent Transportation Systems (ITSC 2024), Edmonton, Kanada, 24.09.2024 – 27.09.2024
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten S. 2651 – 2658
Serie IEEE Conference on Intelligent Transportation Systems
Nachgewiesen in Scopus
OpenAlex
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 13 – Maßnahmen zum Klimaschutz
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page