KIT | KIT-Bibliothek | Impressum | Datenschutz

Review on Road Traffic Noise Modeling: Embarking on a Machine Learning Odyssey

Lin, Min-Bin ORCID iD icon 1; Lazarova-Molnar, Sanja ORCID iD icon 1; Vinel, Alexey 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Road traffic noise (RTN) is a substantial environmental pollutant, implicated in various detrimental effects on public health. Regulatory initiatives have emerged to address RTN, aiming to integrate noise mitigation measures into vehicle design and road infrastructure. A precise and robust noise estimation is significant, serving as basis for effective and reliable assessment towards different environmental scenarios. This paper reviews recent research findings on road traffic noise modeling (RTNM), encompassing common linear regression approaches, emerging machine learning (ML) applications, as well as basic concepts for RTN. It specifically highlights the statistical challenges and modeling considerations such as uncertainties and multivariate analysis.


Originalveröffentlichung
DOI: 10.1109/ITSC58415.2024.10920057
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 24.09.2024
Sprache Englisch
Identifikator ISBN: 979-8-3315-0592-9
ISSN: 2153-0009
KITopen-ID: 1000181708
Erschienen in IEEE 27th International Conference on Intelligent Transportation Systems (ITSC); Edmonton, Kanada, 24.-27.09.2024
Veranstaltung 27th International Conference on Intelligent Transportation Systems (ITSC 2024), Edmonton, Kanada, 24.09.2024 – 27.09.2024
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten S. 2510 – 2517
Nachgewiesen in Scopus
OpenAlex
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und Wohlergehen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page