KIT | KIT-Bibliothek | Impressum | Datenschutz

Scenario-Based Thermal Management Parametrization Through Deep Reinforcement Learning

Rudolf, Thomas 1; Muhl, Philip; Hohmann, Sören 1; Eckstein, Lutz
1 Institut für Regelungs- und Steuerungssysteme (IRS), Karlsruher Institut für Technologie (KIT)

Abstract:

The thermal system of battery electric vehicles demands advanced control. Its thermal management needs to effectively control active components across varying operating conditions. While robust control function parametrization is required, current methodologies show significant drawbacks. They consume considerable time, human effort, and extensive real-world testing. Consequently, there is a need for innovative and intelligent solutions that are capable of autonomously parametrizing embedded controllers. Addressing this issue, our paper introduces a learning-based tuning approach. We propose a methodology that benefits from automated scenario generation for increased robustness across vehicle usage scenarios. Our deep reinforcement learning agent processes the tuning task context and incorporates an image-based interpretation of embedded parameter sets. We demonstrate its applicability to a valve controller parametrization task and verify it in real-world vehicle testing. The results highlight the competitive performance to baseline methods. This novel approach contributes to the shift towards virtual development of thermal management functions, with promising potential of large-scale parameter tuning in the automotive industry.


Originalveröffentlichung
DOI: 10.1109/ITSC58415.2024.10919908
Dimensions
Zitationen: 3
Zugehörige Institution(en) am KIT Institut für Regelungs- und Steuerungssysteme (IRS)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 24.09.2024
Sprache Englisch
Identifikator ISBN: 979-8-3315-0593-6
ISSN: 2153-0009
KITopen-ID: 1000181721
Erschienen in IEEE 27th International Conference on Intelligent Transportation Systems (ITSC), Edmonton, AB, Canada, 24-27 September 2024
Veranstaltung 27th Internationla Conference on Intelligent Transportation Systems (ITSC 2024), Edmonton, Kanada, 24.09.2024 – 27.09.2024
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 2088 – 2095
Schlagwörter Industry, Automotive, System dynamics, Embedded control, Control theory, Thermal management, Deep reinforcement learning, Robustness, Scenario generation, Tuning, Testing
Nachgewiesen in Dimensions
Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page