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Zusammenfassung

Durch das Ende des Mooreschen Gesetzes besteht die Notwendigkeit Transis-
toren effizienter zu nutzen um die Kosten zu senken. Mit dem jüngst erfolgten
Wegfall von Dennard’s Scaling ist es zusätzlich notwendig geworden mehrere
effizientere Prozessor-Kerne anstelle eines einzelnen Kerns zu verwenden. Mit
dem Wachstum der Anzahl vorhandener Prozessorkerne wurden die traditionell
genutzten Kommunikationsinfrastrukturen basierend auf Bussen zum limitieren-
den Faktor für die insgesamte Leistungsfähigkeit. Network-on-Chips wurden
hierzu als skalierbare Kommunikationsinfrastruktur vorgeschlagen, die modu-
lar und flexibel ist. Gleichzeitig stellen Echtzeitanwendungen die Mehrheit der
im Bereich der eingebetteten Systeme zum Einsatz kommender Anwendungen
dar. In solchen Systemen sind strikte Fristen üblich wodurch zusätzliche An-
forderungen an die On-Chip-Kommunikation gestellt werden. Zu den Heraus-
forderungen, mit denen mixed criticality NoCs konfrontiert sind, gehören die
Unterstützung von echtzeitkritischen Anwendungen, die Ermöglichung einer ef-
fizienten gemeinsamenNutzung von Ressourcen und die Unterstützung vonmixed
criticality Datenverkehr bei gleichzeitiger Erfüllung der nicht-funktionaler An-
forderungen. Echtzeit-MPSoCs sind unterschiedlichen anwendungsspezifischen
Anforderungen und unterschiedlichenArbeitsprofilen zur Laufzeit ausgesetzt, was
den Bedarf der Entwicklung adaptiver NoCsmotiviert. Um diese Herausforderun-
gen zu bewältigen, wird in dieser Arbeit die inhärente verteilte Natur eines NoCs
genutzt um dessen Anpassungsfähigkeit und Flexibilität zu erhöhen.

DieseArbeit präsentiert ein neuartigesDREAMNoC:ADistributedReinforcement
learning Enabled Adaptive Mixed-Critical Network-on-Chip und ein unter-
stützendes DREAM-Framework. Das vorgeschlagene Routing-Schema ist topolo-
gieunabhängig und findet bessere Routen zur Laufzeit der Anwendung auf der
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Zusammenfassung

Grundlage von Schwankungen des Datenverkehrs. Die Routen werden auf der
Grundlage einer Kombination aus kurz- und langfristigen Informationen über den
Netzwerkzustand berechnet, wobei interne Routing-Tabellen im Laufe der Zeit
auf verteilte Weise im NoC aktualisiert werden. Diese Arbeit stellt vor wie das
DREAMNoC verwendet werden kann um den Datenverkehr innerhalb von Parti-
tionen zu isolieren, undwie dasDREAM-Framework zurUnterstützung einer flex-
iblen räumlichen Isolierung eingesetzt wird. Das Framework sieht eine Lernzeit
vor, um Routen in Regionen zu entdecken, deren Topologien zur Entwurfszeit un-
bekannt sein können. Zusätzlich wird ein NoCs mit mehreren Ebenen zusammen
mit unterstützenden adaptiven, überlastungsbewussten Routing-Mechanismen,
die auf mixed criticality Datenverkehr abzielen vorgeschlagen und präsentiert.
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Abstract

Due to the ending of Moore’s Law there is a need to efficiently use transistors
to reduce cost overhead. The recent ending of Dennard scaling has additionally
motivated the need to use multiple more efficient cores instead of a single core.
With the increase in the number of cores, traditional bus-based communication
was becoming a limiting factor for performance. Network-on-Chips was proposed
as a scalable communication infrastructure solution that is modular and flexible.

Real-time applications occupy a majority in the embedded systems field and addi-
tionally impose constraints on such on-chip communication to meet certain strin-
gent deadlines. Challenges which mixed criticality NoCs face include supporting
real-time critical applications, enabling efficient resource sharing, and support-
ing mixed critical traffic while meeting non-functional requirements. Real-time
MPSoCs are subjected to varying application specific demands and varying work-
loads at runtime, motivating the need to design adaptive NoCs. To address these
challenges, in this work, the aim is to utilize the inherent distributed nature of a
NoC, and propose increasing its adaptivity and flexibility.

This work presents a novel DREAM NoC: A Distributed Reinforcement learn-
ing Enabled AdaptiveMixed-Critical Network-on-Chip and supporting DREAM
framework. The proposed routing scheme is topology agnostic and discovers
better routes during application runtime based on traffic fluctuations. Routes
are computed based on a combination of short and long-term information of
the network state, and routing tables are updated in a distributed manner over
time across the NoC. This work presents how the DREAM NoC can be used to
isolate traffic within partitions, and using the DREAM framework to aid in flexi-
ble spatial isolation. The framework allocates a learning time period to discover

v



Abstract

routes in regions whose topologies can be unknown at design time. Additionally, a
multi-layered NoC and supporting adaptive congestion aware routing mechanisms
targeting mixed criticality traffic is also proposed.
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1 Introduction

"Survival of the Fittest" is a phrase made famous by naturalist Charles Darwin
in his book "On the Origin of Species"[1]. Here, the term fittest, does not
indicate strongest but it implies organisms that are better adapted to their local
environment. Organisms that are the most adaptable to their local environment
are more successful in surviving.

Advancements in technology are not dissimilar. Technological trends rise and fall,
and it is prudent to be aware, investigate new techniques, and adapt accordingly.
Recently, the trend of transistor count on a chip doubling every 18 to 24 months,
more popularly known as Moore’s law, ended, as illustrated in Figure. 1.1 [2].
Another observation is the ending of Dennard scaling, leading to the advent of
multiple more energy efficient processors on a chip and limitations of parallel
processing described by Amdahl’s Law. Dennard scaling is a trend where the
power density is constant for a given area of silicon even with the increase in
transistor count due to the smaller dimensions of each transistor. The speed of the
transistors increased while consuming less power. This trend ended around 2004.
This impacted the microprocessor industry, leading to one processor being re-
placed with multiple more efficient processors. Resulting in an industry roadmap
based on multi-processor-on-a-chip rather than a faster uni-processor. An in-
dustry example is Intel, in 2004 cancelled projects based on high-performance
uni-processors [2].These trends have had an impact on the processor performance
and have caused it to slow down. The improvement in processor performance is
now doubling every 20 years instead of every 1.5 years, as seen between 1986 and
2003 and illustrated in Figure. 1.2 [2].
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1 Introduction

Figure 1.1: End of Moore’s Law [2][3]

Figure 1.2: Growth in processor performance over 40 years [2]
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1 Introduction

The ever increasing demand for computational services, in parallel with the de-
crease in transistor scaling, has motivated the development of complex systems
with improved performance. The increase in integration density in digital cir-
cuits has resulted in growing complex systems on a single chip. Multi-Processor
Systems-on-Chip (MPSoCs) have evolved to contain 100s of processing cores.
The number of cores in a single processor chip is continuously increasing. A
latest example is AmpereOne [4] from Ampere, a 64 bit multi-core processor
comprising of upto 192 cores. Future MPSoCs are expected to contain thousands
of processing cores [5] as estimated by the International Technology Roadmap for
Semiconductors (ITRS).

In recent years, System-on-Chip (SoC) designs comprising of "chiplets" have
been gaining popularity [6]. Such SoCs comprise of multiple smaller, higher-
yield and cost-effective chiplets which are assembled using advanced packaging
technologies. Package level integration using multi-chip-module (MCM) is a
promising approach to building large-scale systems by combiningmultiple smaller
building blocks known as chiplets into a larger system. Instead of a conventional
monolithic SoC, such architectures contain chiplets that are smaller, cheaper to
develop and easier to reuse across multiple products. Chiplet based technology is
being investigated in industry and academia[7].

Focusing on the communication on such systems, more than a decade ago, re-
searchers identified that traditional bus-based communication on SoC was be-
coming a limiting factor for performance [8]. The global communication pattern
was moving towards being fully distributed with minimal global coordination
[8]. Researchers postulated that utilizing the layered design of reconfigurable mi-
cronetworks can achieve better performance on SoCs leading to the development
of Networks-on-Chips(NoC) [8]. NoCs have been proposed as a scalable solution
for the increasingly complicated communication requirements of MPSoCs.

NoCs are a modular, scalable and flexible communication infrastructure. They
are increasingly popular in heterogeneous MPSoC architectures, interconnecting
processing elements, DSPs, IP cores and memory units for example. A simple
illustration is shown in Figure 1.3, where 16 heterogeneous tiles are connected
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Router
IP Core/PE/Mem/I/O Unit
Network Interface/Network Adapter

Figure 1.3: A 4x4 Mesh topology NoC

using a 4x4 mesh topology. Such platforms are commonly used in real-time mul-
timedia processing applications. Real-time applications (RTAs) form a majority
of applications in the embedded systems field [9]. This imposes constraints on
the systems as real-time computation and communication need to meet certain
stringent deadlines[9]. An important trend when designing real-time embedded
systems is integrating components of different criticality on the same computing
platform [10] to reduce overall cost. Criticality is "a designation of the level
of assurance needed against failure for a system component", as described by
authors in [10] . And when a system comprises of components adhering to mul-
tiple distinct criticality levels, they are referred to as Mixed Criticality Systems
(MCS).Many systems in automotive and avionic domains are moving towards
MCS to meet stringent non-functional requirements[10]. These requirements can
include overall cost, space occupied, weight, heat generation, and power con-
sumption.

With the increase in the number of cores in computing platforms and the increase
in applications sharing such a heterogeneous platform, the on-chip communication
is becoming a critically shared resource. With the usage of NoCs in industry, a
wide range of new challenges are introduced due to application demands along
with cost constraints. Challenges that NoCs face include supporting real-time
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critical applications, enabling efficient resource sharing and supporting mixed-
critical traffic while meeting non-functional requirements. Performance of NoCs
is especially vital for time-critical applications whereWorst-Case Execution Time
(WCET) requirements have to be met. Over the years, numerous techniques,
methodologies and architectures across different computational layers of the on-
chip interconnect have been proposed to address the numerous challenges.

Real-time MPSoCs are subjected to varying application specific demands and
varying workloads at runtime, motivating the need to design adaptive NoCs. In
mixed criticality systems where multiple applications that have varying require-
ments and criticality are sharing an interconnect, there is potential to make the
NoC more adaptable to improve overall performance. Mixed critical applications
can gain from runtime adaptivity.An ongoing research area is developing runtime
adaptive NoCs while maintaining hard real-time guarantees [9].

The thesis takes a look at the inherent distributed nature of a NoC and propose
increasing its adaptivity and flexibility at different levels. At the routing level, a
reinforcement learning based algorithm which is topology agnostic is developed
where optimal paths are discovered over time, resulting in a self-learning net-
work. How such an algorithm can be used to aid in spatial isolation for MCS
is illustrated by proposing a framework. The thesis refers to this contribution as
DREAM NoC: A Distributed Reinforcement learning Enabled Adaptive Mixed-
Critical Network-on-Chip. A supporting DREAM framework is proposed that
uses such a self-learning NoC to aid in spatial isolation in MCS. The thesis
also takes a look at improving the adaptivity and increasing scalability of multi-
cast communication protocols by proposing a Block-Based multicast technique.
Adaptivity and flexibility at the topology level are also investigated by proposing
a multilayered NoC for MCS. A supporting congestion aware adaptive routing
algorithms with criticality aware traffic distribution is proposed.The proposed
features, techniques and framework focus on introducing adaptivity in NoCs in
MCS to improve overall performance while ensuring application requirements are
met.
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Figure 1.4: Timing analysis of a system [12]

1.1 Motivation

With the increase inmultiple applications of varying requirements, constraints and
criticality sharing computing and communication resources, the environments in
which these applications are running are no longer static throughout their runtime
but dynamic. For example, dynamic environments are seen in Fog computing
platforms running Internet of Things (IoT) services [11]. Such fog nodes should
support flexible provisioning of resources to applications and also services need
to be strongly isolated from each other due to security concerns. Hard and
soft-real-time applications sharing the same platform give rise to new sets of
challenges. A fundamental research question in MCS is how to accommodate
the conflicting requirements of partitioning for safety assurance and sharing for
efficient resource usage [10].Traditional techniques include allocating dedicated
resources to critical applications and isolating them spatially and temporally from
the rest of the system. Computing and communication resources can be shared
across applications with different criticality and spatial and temporal partitioning
of resources are applied over time to avoid inter-application influence. Care must
be taken because isolation is conservative and can result in wastage of resources.

Consider Figure 1.4, which shows basic timing analysis of real-time tasks [12].
A task usually has variations in execution times depending on the input data
or environment behaviour. The set of all execution times is a large state space
and the shortest and longest time is referred to as Best-Case Execution Time
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Figure 1.5: Illustrating runtime traffic isolation over time [13]

(BCET) and Worst-Case Execution Time (WCET). Since this state space can be
large, in industry [12], a common method to compute execution time bounds is to
measure for a subset of the possible executions—test cases resulting in minimal
observed and maximal observed execution times. Since such methods in general,
overestimate the BCET and underestimate the WCET, they are considered not
safe for hard real-time systems [12]. This method is usually called dynamic
timing analysis. Execution time bounds like WCET and BCET of a certain
task can be computed by methodologies that take into consideration all possible
execution times of the task. WCET bounds depict the worst-case guarantees
computed by the methodology/tool. Typically, these methods use abstractions
to make timing analysis feasible. Abstraction can result in loss of information
and thus overestimating WCET. The degree of information loss depends on the
methodologies, characteristic of software and hardware architecture.

A challenge in mixed criticality systems is integration vs isolation. Techniques
like runtime resource consumption and management are proposed for effective
resource utilization over time. This improves flexibility, adaptability to dynamic
environments in mixed criticality systems. Success for an application here de-
pends on its criticality. Real-time critical applications need to meet their hard
deadlines while other less critical applications have softer deadlines. This results
in a dynamic mixed criticality system. Communication support like the NoCs
is an integral component for the efficient functioning of such a system. Hard
guarantees are expected from the NoC by such real-time critical applications. A
mixed critical NoC should be able to support both kinds of traffic.
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A NoC comprises of routers interconnected by links and information is injected
via a Network Adapter/Network Interface into the network and transmitted across
a path computed by the routers. A simple NoC is shown in Figure 1.3. To
illustrate dynamic environments using a simple example let us consider multiple
applications of varying criticality sharing such a NoC as shown in Figure 1.5.
In this example, four applications of varying criticality are sharing the network
resources over time on a 4x4mesh topology. Each router in the Figure is connected
to a processing tile. In this illustration, only the routers are shown for simplicity.
The performance of the NoCs depends on various factors, including choice of
routing algorithms, topology, arbitration, flow control, switching techniques etc. A
NoC that can support and adapt to a dynamicmixed critical environment andmake
changes at runtime to improve overall performance is beneficial. There is a benefit
when utilizing runtime adaptations, but supporting this and in parallel maintaining
guarantees is an open research problem as mentioned in [9]. Exploiting the
inherent distributed nature of a NoC, proposing techniques and methodologies to
make the network more adaptable and flexible while meeting varying application
constraints is the focus of the thesis.

1.2 Contribution

Managing diverse applications on a shared heterogeneous system comprising of
hundreds of cores can get unpredictable andfixing all parameters at design time can
be conservative resulting in wastage of resources. Such a system can benefit from a
runtime adaptive on-chip interconnect. Here the focus is on developing techniques
that improve the adaptability of the NoC and utilize its inherent distributed nature
in the context of mixed criticality systems. A NoC which is able to adapt at
runtime to varying application requirements while meeting real-time constraints
for critical applications. The aim is to guarantee QoS for critical applications
while improving the overall performance of critical and non-critical applications.

Adaptive techniques exist at different levels of NoC in literature [9]. In this work,
the focus is on exploiting the inherent distributed nature of the NoCs, and propose
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increasing its adaptivity at different levels while ensuring QoS guarantees for
critical applications. QoS is the overall performance comprising of latency and
throughput achieved by the NoC. Guaranteeing the QoS is especially important
for applications that have real-time, safety or security requirements. If multiple
applications having varying criticality levels share the NoC resource, it can get
challenging to meet underlying requirements. Performance on such systems can
be improved if the NoC is flexible and supports provisioning and isolation of
resources. An overview of the contributions is provided below.

DREAM NoC: In this work, the potential of using reinforcement learning based
routing techniques to improve flexibility and performance especially targeting
mixed criticality systems is investigated. A DREAM NoC: A Distributed
Reinforcement learning Enabled Adaptive Mixed-Critical Network-on-Chip is
presented. DREAM is a distributed and self-learning NoC that uses a topol-
ogy agnostic reinforcement learning enabled routing algorithm based on the Ant
Colony Optimization (ACO) metaheuristic. It comprises of runtime discovery of
paths and selection of optimal routes over time based on traffic fluctuations. A
hardware friendly router architecture of the reinforcement learning based routing
using ACO is presented and evaluated.

DREAM Framework for spatial isolation in MCS: An approach when implement-
ing high criticality applications traditionally is to have dedicated resources allo-
cated, to avoid the influence of non-critical applications. Techniques like temporal
and spatial partitioning of resources are commonly used in such mixed criticality
systems to ensure real-time requirements are met. Here the work utilizes ACO
based reinforcement learning, which is a topology agnostic self-learning NoC in
aiding in the spatial isolation of NoC resources. These concepts are integrated
and tested using the developed DREAM NoC, by defining specific learning and
application phases. A learning phase is dedicated to building preliminary rout-
ing tables to be utilized in the subsequent application phase. This supporting
DREAM framework is presented to efficiently partition NoC resources and aid
flexible spatial isolation of resources.
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Multi-Layered NoCs for MCS: The work also includes investigating isolation
techniques using multi-layered NoCs. In this method, critical traffic and non-
critical traffic are de-coupled to reduce influence over each other and maintain
guarantees for critical applications. Here a hierarchical and multi-layered NoC
targeting mixed critical traffic is proposed. Supporting adaptive, criticality and
congestion aware routing for multi-layered topologies is presented.

Adaptive multicast techniques: Increasingly trafficwith single source andmultiple
destinations are popular. This is commonly seenwhenmemory coherency regions
are established and supporting memory based packets are injected. The work also
investigates improving traditional multicast routing by making it more scalable,
adaptive and flexible by developing a Block-Based multicast routing technique.

1.3 Outline

The work is organised as follows. An overview of fundamentals relevant to the
work is presented in Chapter 2. In this Chapter, basic NoC components and
their functionality, an overview of routing, switching and flow control techniques
are described, along with an overview of reinforcement learning concept. An
introduction to the InvasIC computing platform, where the supporting iNoC is
used as a basis for the architecture in this work is described here. Related work
is discussed in Chapter 3. An overview of the selected state of the art NoCs
in industry is presented along with an overview of adaptive routing techniques.
Topology agnostic routing algorithms and the evolution of reinforcement learning
based routing using the ACO are presented. At the end of this chapter, limitations
in existing work, with a focus on the NoCs and routing techniques targeting mixed
critical systems are discussed.

The proposed adaptive techniques at different levels of the NoC is shown in Chap-
ter 4. Broadly, adaptivity is introduced at the routing and topology level. At
the routing level, reinforcement learning based routing techniques is investigated,
adaptive congestion and critical aware routing formulti-layeredNoCs and adaptive
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multicast routing are proposed. The concept of DREAM NoC, which is a self-
learning NoC, is introduced . Reinforcement learning based routing techniques
based on ACO is described and the potential of such a topology agnostic routing
to aid in spatial isolation is highlighted. Adaptations in multi-layered NoCs are
described next. Investigations done to decouple critical and non-critical applica-
tions to reduce inter-application influence is presented. Supporting congestion and
criticality-aware routing is described. Concepts of Block-Based multicast routing
which is adaptive and scalable to improve upon existing traditional multicast tech-
niques are described. Chapter 5 presents the concept of the DREAM framework,
which describes how the DREAM NoC can be used to aid in spatial isolation in
MCS. Scalability analysis is discussed compared to traditional approaches. How
the QoS guarantees are supported for critical applications is discussed.

The NoC architecture, implementing the proposed DREAM NoC and framework
is presented in Chapter 6. Along with the architecture required for multicast
routing, multi-layered topology and supporting algorithms. It starts with the
design constraints and then the router architecture is discussed. Mathematical
complexity of the reinforcement learning based algorithm and modifications done
to make it hardware friendly is discussed. How deadlock and livelock avoidance
are implemented is also presented. Evaluations and analysis of results are done
in Chapter 7. An overview of the HDL test environment is described. Proposed
topology agnostic routing using reinforcement learning is compared against state-
of-the-art techniques. The novelty of the DREAM framework is highlighted
here. Evaluations of congestion and criticality aware routing for layered NoCs are
presented and compared. Block-Based multicast is compared against traditional
techniques and the advantages in scalability, latency and throughput are discussed.
Communication task graphs of test application cases are presented. Reinforcement
learning enabled routing based on ACO is also extended to multi-layered NoCs
and results are compared and analysed against congestion-aware adaptive routing
techniques. The work is summarized in Chapter 8, with an outlook on future
work.
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2 Fundamentals

This chapter presents an overview of relevant fundamentals of a Network-on-Chip
(NoC), of its evolution over the years and its role in mixed criticality systems.

2.1 System-on-Chip

With the trend in Moore’s Law, the integration density steadily increased, which
enabled complete systems to be implemented on a single piece of silicon and
were referred to as a System-on-Chip (SoC). SoCs are widely used in domains
like automotive sectors, telecommunications, and consumer electronics to name
a few. The functional and performance requirements of an application were typi-
cally addressed by combining a custom hardware solution together with software
running on a standardized embedded processor core. Where the standard cores
were designed to interface with special-purpose hardware [2].

The ending of Dennard scaling in 2004 led to the integration of multiple efficient
cores instead of one inefficient core. The number of processing cores on the
chip increased, leading to the development of Multi-Processor System-on-Chip
(MPSoC). MPSoCs comprising of mainly processing cores are also referred to
as multi-core architectures.This led to switching from solely Instruction Level
Parallelism (ILP) to Data-Level Parallelism(DLP) and Thread-Level Parallelism
(TLP) and later also Request-Level Parallelism (RLP). The improvement in per-
formance due to multiple processing cores depends on the degree of parallelism of
the software. Amdahl’s Law describes limits to the number of useful processing
cores. If, for example, 10% of the task is serial and 90% is the portion that can
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be parallelized, then the maximum benefit in performance (speedup) using paral-
lelism is 10, even if one is increasing the number of cores. The overall speedup
representation can be provided by equation 2.1.

Speedupover al l = E xecuti onT i meol d
E xecuti onT i menew

= 1

(1−F r acti onenchanced )+ F r acti onenchanced
Speedupenhanced

(2.1)

The Speedup S(p,n) due to parallel execution on n number of cores when com-
pared against sequential execution of a program can be given by equation 2.2.
Where p represents the fraction of the program that can be parallelized.

S(p,n) = 1

(1−p)+ p
n

(2.2)

With the increase in the number of SoC components, communication also grew,
leading to the development of complex on-chip communication architectures.

2.2 On-Chip Communication

Digital electronics are becoming communication limited. The factor that is lim-
iting cost, performance, power, and size is not arithmetic or control logic but
the movement of data [14]. Traditional bus-based communication was unable to
keep up and became a performance bottleneck with the increase in the number
of processing cores. Busses have dedicated physical communication channels
shared by multiple cores, and bandwidth is limited by bus line. With the growing
number of cores, bandwidth is constant, leading to bad scalability. An illustration
of a commonly used shared-medium backplane bus is shown in Figure 2.1 [15].
It is an interconnection structure for a small number of bus masters and a large
number of bus slaves. The information on the bus belongs to data, address, and
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Figure 2.1: An illustration of a shared-medium backplane bus [15]

control classes. Bus arbitration is required to deal with multiple concurrent re-
quests. An example of a bus standard widely used is (Advanced Microcontroller
Bus Architecture) AMBA by ARM [16].

Conventional bus-based communication is convenient for systems with less than
5 processors and usually not more than 10 bus masters [15]. Bus-based systems
are usually not scalable, and this becomes a performance bottleneck when the
processors are increased. Another critical limitation when the number of pro-
cessors increases is energy waste caused by functional congestion [15]. Energy
considerations limit the usage of buses in large-scale systems. Other challenges
which SoCs faced include synchronization of future chips with one single clock
source with negligible skew. A potential solution is using multiple clocks and uti-
lizing Globally Asynchronous and Locally Synchronous (GALS) concept. SoCs
then become more distributed even on a single silicon substrate due to the ab-
sence of a single timing reference. Global control can get challenging as tracking
each component state becomes necessary. In such cases, each component will
tend to initiate data transfer autonomously, depending on necessity. This has
led to a more fully distributed communication pattern with little to no global
co-ordination. Based on these challenges, researchers postulated that the layered
design of reconfigurable micro-networks can achieve efficient on-chip communi-
cation with higher bandwidth and scalability communication on SoCs [17]. Such
micro-networks were inspired by the methods and tools used for general networks.
Over a decade ago, NoC was proposed by several researchers. Examples include
L. Benini and G. De Micheli [17], W. J. Dally [ [18] and A. Jantsch [19] to name
a few.
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Figure 2.2: OSI Model on the left and the micronetwork stack paradigm from [17] on the right

2.3 Networks-on-Chip

With the limitations of traditional bus-based architectures, on-chip communi-
cation solutions are moving towards networks. Interconnection networks offer
modular, scalable, high-bandwidth, low-latency communication between compo-
nents. NoCs were developed by researchers by borrowing models and techniques
from the network field and applying them to SoC designs [17]. NoCs were viewed
as a micronetwork of components. Authors in [17] discussed the application of
the protocol stack to interconnects, resulting in a micronetwork stack paradigm.
The protocol stack/ Open Systems Interconnection (OSI) model layer and the mi-
cronetwork stack paradigm are shown in Figure 2.2. The network would support
communication between such components and meet Quality-of-Service (QoS)
requirements like reliability, latency, throughput, and energy bounds, for exam-
ple. While keeping in mind the limitations due to intrinsically unreliable signal
transmissions and delays on wires [17].

A general overview of a simple NoC interconnecting 16 nodes in a mesh topology
is shown in Figure 1.3. The nodes are often referred to as tiles. Basic NoC
components usually are routers, links and Network Interface (NI) / Network
Adapter (NA).
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Figure 2.3: Basic structure of a Network Adapter/Network Interface [20]

2.3.1 Network Interface

Network interfaces are used to attach system components to the rest of the net-
work. Some examples of their functionalities include packetization of data, error
handling, protocol conversion and flow control. The basic structure of an NA is
illustrated in Figure 2.3. An NA typically has two interfaces: Tile Interface and
NoC interface. The tile interface connects the NA to the Tile, whereas the NoC
interface connects the NA to the network.

2.3.2 Routers

Routers forward the data from the source to its destination node. Routers deter-
mine paths of the packet across the network based on certain routing principles and
flow control. Router architectures are varied; they can be simple and lightweight
to reduce resource overhead or complex depending on the application require-
ments. An example of a router architecture used in [20] is shown in Figure 2.4.
This is also the base router used in this work to conduct investigations.

The example router architecture here is a packet switched router, which uses input
buffers, routing control units and a crossbar. Input buffers store whole packets
or parts of them before they are ready to be processed and transmitted across
the router. When a router receives an incoming packet, it is assigned to an input
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Figure 2.4: Base Router Architecture [21]

buffer. In this example, four input buffers are assigned per port. An arbiter based
on Round Robin arbitration selects a buffer to read the packet out of for further
processing. A routing algorithm like XY routing is implemented in the routing
units. Once an output port is selected, the reservation table reserves the path
in the crossbar, and transmission control handles the transfer of packets across
the crossbar. The crossbar comprises of multiplexers that connect the input to
the output port. Packets are forwarded to the downstream router once there are
enough free spaces in the downstream router.

Certain routers can be buffer less to reduce resource overhead and reduce energy
consumption [22]. Suitable routing algorithms need to be implemented then,
like deflection/hot potato, since packets are not stored in the router. Packets in
bufferless routing are forwarded continuously. The router always forwards packets
from its input port to an output port regardless of whether the output port results
in the lowest hop count. The reduction in resource overhead can be beneficial
as input buffers can occupy a major portion of the router resources, but tradeoff
needs to be taken into account, and simpler routing has to be implemented.
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2.3.3 Links

Links are the physical connection between two nodes/routers/switches and can
be realized by wires. Physical wires are a cheap commodity for networks due
to the relatively small wire pitch in silicon technologies and the availability of
wiring in several layers [15] [22]. Consequently, control and data are physically
separated, typically resulting in a cleaner design. Due to low overhead for wiring,
the links are usually implemented in a bidirectional manner with separate wires.
The disadvantages are signal delay and dispersion of on-chip wires. As delay
grows quadratically with wire length due to the combination of resistive and
capacitive effects. Alternate link technologies are being investigated since perfor-
mance bottlenecks have emerged due to bandwidth demands for multicasting and
broadcasting as described in [23]. New interconnect technologies include optical
interconnect and Radio Frequency (RF) based interconnects such as wireless NoC
(WiNoC). In wireless NoCs, miniaturized on-chip antennas are implemented to
communicate between routers/nodes.

In this thesis, the focus is on wired NoCs. Data is transferred on links and usually
has a fixed bit width in such NoCs. Data is typically measured in bits, and a unit
of data transferred in a single clock cycle on a link is called the phit (physical
unit) [15]. When two routers synchronize each data transfer (to ensure buffers do
not overflow, for example), link-level flow control is used (which can be based on
handshaking). The unit of synchronization is called a flit (flow control unit). A
flit is at least as large as a phit. An overview of the packet structure is shown in
Figure 2.5.

2.3.4 Topologies

Nodes are connected via links to form different topologies. The choice of topolo-
gies impacts performance, implementation cost and floor planning. A measure of
the bandwidth of a network is bisection bandwidth. It is the sum of the bandwidth
of the minimum number of channels that need to be cut to partition a network
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Figure 2.5: Overview of packet structure

almost in half [14]. Bisection bandwidth is the bandwidth between two parts of
the network which has been cut into approximately equal parts [2].

A few examples of common network topologies are shown in Figure 2.6. Mesh
is the most popular due to its uniformity and regularity. Torus has the same edge
connectivity for all nodes, and it is relatively regular except for links connecting
the border nodes, which are longer. Edge connectivity is the minimum number
of edges to cut to disconnect a node from the rest of the network. Some systems
use ring topologies, but with the increase in number of connecting nodes, the
topology does not scale well. As the bisection bandwidth of the ring does not
increase with the addition of more nodes. Many of these topologies are regular
topologies. Examples of irregular topologies are shown in Figure 2.7. These
topologies can be present in systems due to various reasons. It can be by design,
due to resource constraints, result due to spatial partitioning, or can be caused at
runtime due to failure in links or routers, to name a few examples. Therefore, it
can be beneficial to investigate routing techniques that can support both regular
and irregular topologies as well.

There has been growing interest in developing 3D topologies [24]. Examples
of 3D mesh topologies are shown in Figure 2.8. When such topologies are
implemented on a Printed Circuit Board (PCB), silicon layers are stacked on top
of each other and the connections between layers can be using Through Silicon
Via (TSV). They can be advantageous as many nodes can be compacted together
with shorter hop distances between them.
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Figure 2.6: Examples of topologies

Figure 2.7: Examples of irregular topologies

2.4 Circuit and Packet Switching

Routing determines which path a packet takes in the network from a source to its
destination. Switching determines how the data is transmitted. Switching can be
circuit switching or packet switching.

2.4.1 Circuit Switching

In circuit switching, messages are sent in their entirety from the source node to
its destination node. An end-to-end connection is established before the data can
be transmitted, usually by a head flit. The head flit is injected by the source and
reserves links and routers along the path to the destination. During this setup
phase, relevant connections and multiplexers are configured within the routers.
If the header flit arrives at the destination successfully, an acknowledgement
is sent back to the source. If links are not successfully reserved, a negative

21



2 Fundamentals

Figure 2.8: A 3D node and examples of 3D mesh topologies where (x,y,z) are 2x2x2 and 3x2x3
respectively

acknowledgement is sent. Data is then transferred by the source node when
the path is reserved in an uninterrupted manner. The connection behaves as a
circuit between the two nodes. Then, body flits follow the head flit along the
reserved path. After data transfer, a tail flit releases the path to be used for other
communication. Initial setup can have high initial latency due to routing and
transmission of acknowledgement [20]. Once the setup is completed, the data
transmission is efficient due to high bandwidth and low latency. Latency is kept
low due to the absence of arbitration and no buffers.

Due to the reservation of path for the sole transfer of data, guarantees in latency
and throughput can be determined at design time. Therefore, circuit switching can
be used for real-time communication. The trade-off is that the circuit switching
technique is not scalable and are limited in its flexibility. Paths are blocked
for other communication during data transfer. The number of parallel circuit
switched communication paths are limited by the number of available links.
Circuit switching is suitable when communication between node pairs is fixed
for long periods of time and when guarantees in latency and throughput are
required. An early NoC example that used circuit switching is SOCBus [25] for
hard real-time embedded systems. Æthereal NoC [26] uses a combination of
circuit switching and packet switching, which offers best-effort communication.
In the InvasIC NoC (iNoC) [20], hybrid routers are implemented, which support
both packet and circuit switching, offering both Best Effort(BE) and Guaranteed
Service(GS) communication.
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2.4.2 Packet Switching

In packet switching, data is divided into packets and transmitted from source to
destination. Setup of links between nodes is not required, and the packets are
directly injected into the network. Packets of the same data can take different
routes to reach the destination and with uneven latency. The reordering of packets
needs to be handled as packets need not arrive in the same sequence at the
destination as they are injected at the source node. Reordering can be handled at
the router level or at the destination side. Unique packet IDs are usually assigned
to aid in reordering.

Due to the absence of a setup, the communication mechanism is more flexible.
Frequently changing communication node pairs can benefit from such a mech-
anism which does not have a setup period. Best-effort communication, when
enabled by packet switching supports communication between multiple pairs in
parallel without taking resource reservations into consideration. When multiple
communication want to access same link/router resources, arbitration is required
to ensure contentions are resolved. When contention occurs, an arbiter grants
access to a certain packet and other packets need to be stored in buffers inside
routers for example, before they can be granted access. Buffers are storage units
implemented using registers or memory to support the temporary storing of pack-
ets. The implementation cost increases due to buffers when compared against
circuit switching mechanism. Packet switching is relatively more flexible when
compared to circuit switching. Links are occupied only for the duration of the
packet. Links are utilized more efficiently and flexibly which can result in higher
overall throughput.

Paths in the network can be used in a time multiplexed manner by multiple
communication processes occurring in parallel between other nodes in the network
[20]. This avoids blocking of a path by one communication. However ensuring
latency and throughput guarantees at design time can get challenging due to the
influence of other data packets sharing the same paths. Therefore, in general,
packet switching does not support QoS of latency or throughput. When multiple
packets arrive at the same router, input buffers are usually used to temporarily
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store incoming packets or parts of packets before they are ready to be processed.
This is to avoid dropping of packets. For buffer less routers, routing algorithms
like deflection/hot potato routing need to be implemented. The method in which
packets are forwarded from one router to the next can vary. An example is Store
and Forward (SAF) flow control or switching method which supports a packet
switching implementation.

2.4.3 Flow Control

As packets are forwarded in the network, flow control mechanisms manage re-
source allocation like links and buffers to packets. In SAF flow control, a packet
is forwarded to the next router only if the entire packet can be stored in its buffers.
The advantage is that during inter router packet transfer, transmission is not stalled
after initiation as the entire packet is accepted by the receiver. A disadvantage is
that a packet is not forwarded by a router until the entire packet is received, which
increases the delay. Another disadvantage is the requirement of large buffers to
store entire packets. Buffers in NoCs are a critical resource due to their imple-
mentation cost and power consumption [27]. Due to these disadvantages, SAF is
not commonly used in NoCs. An example where they are used is Nostrum NoC
[28], where the packets are one flit size to reduce the effect of the disadvantages.

A flow control mechanism that aims to reduce the latency disadvantage in SAF is
Virtual Cut Through (VCT) switching. In this flow control, a router forwards the
first flit of a packet to the next router as soon as there is space avaliable to store
the entire packet. The router does not wait for the entire packet to be received
before it starts forwarding to the next router. If there is not enough space in the
next router, the entire packet is stored within its router.

The wormhole flow control scheme further reduced the buffer requirements by
reducing it to one flit. In wormhole switching, a router forwards a flit of a packet
as soon as it receives it. It does not wait for the reception of the entire packet
and the downstream router need not have buffer space to store entire packet. This
decreases the delay and buffer requirements when compared to SAF and VCT. The
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disadvantage is that links across multiple routers can be blocked due to packets
strung over them, potentially causing contention. A way to ease this is by using
Virtual Channels, which enable processing and forwarding of multiple packets in
parallel. Due to the advantages of Wormhole switching, it is a popularly used flow
control in many packet switched NoCs [15]. Some examples include Hermes[29],
Æthereal[26], MANGO and iNoC[20].

2.4.4 Virtual Channels

Dally in [30] introduced the Virtual Channel (VC) concept to decouple buffer
resources from transmission resources. This allows active messages to overtake
blockedmessages using bandwidth thatwould have been otherwise idle. Typically,
a predefined number of virtual channels are built per port and the virtual channels
share the physical link according to a certain scheduling strategy. The virtual
channel concept can be applied to both packet and circuit switching strategy to
effectively use the available bandwidth. Cost includes the complexity of the
crossbars and depending on the switching scheme, buffers for each VC need to be
implemented. The complexity of an N port router is N · (N −1). The complexity
of an N port router with a V number of Virtual channels is N · (V · (N −1)).

2.5 Routing Algorithms

Path of a packet in a network is determined by a routing algorithm. One of
the goals of routing algorithms is forwarding packets on paths with the shortest
latency. Other beneficial features include efficient load distribution, prevention of
deadlocks and livelocks. Deadlocks are situations where there is mutual blocking
of links resulting in packets getting blocked and not reaching the destination.
Livelocks are scenarios where packets are being forwarded in the network without
reaching its destination node. Routing algorithms can be classified based on
several different features like place of routing decision, minimality and adaptivity
for example [31].
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Figure 2.9: Static XY routing and partially adaptive routing

2.5.1 Path Adaptivity

There are different implementations of adaptivity. Here, we look at the degree of
adaptivity in choosing a path from a range of possible options. In the simplest case,
there is no adaptivity and all packets travelling from a source to a destination do
so on the same static path as shown in Figure 2.9a. Static XY routing is a popular
routing algorithm due to its simplicity of implementation and is applied only on
mesh based networks. Here, the packets travel first in the X direction towards the
destination and then in the Y direction towards its destination. Implementation is
simple with low cost overhead. Because of their simplicity, static and determin-
istic routing algorithms like XY are popularly implemented in NoCs including
iNoC[20]. An important advantage of such static algorithms is path predictability
which enables ensuring guarantees in latency and throughput. Metrics like worst
case latency and throughput can be computed at design time. This information
is vital for critical applications to determine if real-time requirements can be met
by the network. On the other hand, such static routing can suffer from hot-spots,
congestion and low fault tolerance. Hot-spots occurs when a router receives a
higher than average amount of traffic and can get overloaded. Certain links can be
more heavily used than others leading to uneven load distribution in the network.
Since links are shared by multiple packets this can have a detrimental influence
on latency and throughput. If a router or link stops functioning due to a fault for
example, static routing cannot route around faulty components. Thus failing to
deliver packets successfully resulting in having low fault tolerance.
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If a routing algorithm chooses a path among a subset of possible paths, the rout-
ing algorithm is typically called partially adaptive. Paths are usually excluded
in order to guarantee deadlock freedom by restricting specific turns. A popular
example of a deadlock-free partially adaptive routing algorithms is odd-even rout-
ing. Figure 2.9b shows the possible paths under the odd-even turn model. Note
the bottleneck were all paths involve a single link west of the destination node.
Lifting these restrictions leads to a fully adaptive routing algorithm, which allows
all paths like in Figure 2.10. This flexibility comes at the cost of increasing
routing complexity and the challenges of dealing with deadlocks.

2.5.2 Minimality

Routing algorithms can also be classified further based on their minimality. A
minimal routing algorithm allows only the shortest paths between two nodes,
while non-minimal ones do not have these restrictions. Applying the condition of
minimality in routing algorithms ensures that packets reach their destination after a
fixed number of hops. This prevents packets from travelling in the networkwithout
reaching the destination which can cause livelocks. Advantage of non-minimal
routing algorithms include efficient routing of packets across non-minimal paths
when minimal links are unusable either due to link failures or congestion. For
example, if the nodes on minimal paths in Figure 2.10a were blocked, a minimal
routing algorithm could not route packets. Alternate paths in this scenario is
possible with non-minimal routing as illustrated in Figure 2.10b.

2.5.3 Place of Routing Decision

The place of routing decision is an important factor for determining complexity of
routing algorithms. In source routing, all routing decisions are made at the source
node in advance and are stored in the packet. The entire path is computed and
stored in the packet before the injection of the packet into the network. Interme-
diary routers follow the path information in the packet and forward accordingly.
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Figure 2.10: Fully adaptive routing comprising of minimal and non-minimal paths

However, only information available to the source node is considered in com-
puting paths and the path length is limited by the avaliable packet header size,
which restricts scalability. An alternate routing method is distributed routing,
where each intermediate router is responsible for its local decision. This brings
less protocol overhead and enables access to local information, but can make the
router architecture more complex as routing decisions need to be made at each
router.

2.6 Deadlocks and Livelocks

Deadlocks are caused when packets have cyclic dependencies. There is mutual
blocking of network links causing the packet to get blocked and not able to be
forwarded. This results in blocking of paths for other packets and thus having
detrimental effect on performance. There are techniques which can be imple-
mented in routing algorithms to avoid deadlocks. An example is XY algorithm
which restricts certain turns to avoid cyclic dependency. Deadlocks can be avoided
by restricting one of the turns in a turn model [14]. In the turn model, all possible
ways a packet can turn in a topology are defined. An illustration of a turn model
for a 2-Dmesh is shown in Figure 2.11. NoCs, that employ virtual channels (VCs)
like the iNoC, can maintain deadlock freedom by restricting turns for certain VCs
[32].Livelocks are scenarios where packets travel in the network without reaching
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(a) Clockwise (b) Anti-Clockwise

Figure 2.11: Turn Model for a 2D Mesh network

its destination. Such scenarios can be avoided by implementing a hop counter
and dropping packets once a certain number of hop count is reached.

2.6.1 Deadlock Avoidance vs Deadlock Recovery

Deadlock avoidancemethods include ensuring packets do not involve in deadlocks.
This is done by using deadlock free routing algorithms like XY, where certain
turns are restricted. Or by using bufferless routers and routing algorithms like hot
potato where packets are not stored but forwarded continuously or dropped. These
techniques can be restrictive and conservative which can inhibit performance.

The possibility of deadlocks occurring depends on various factors, including
traffic and the type of routing mechanism. If the possibility is low, the effort
into restricting turns or ensuring deadlock free routing can inhibit performance.
In such cases it can be beneficial to accept the possibility of deadlock and not
inhibiting the flexibility of the routing but having deadlock recovery mechanisms.
Employing deadlock avoidance in routing algorithms can restrict its flexibility. In
situations where probability of deadlocks are low, it is more efficient to employ
deadlock recovery techniques. Here, once a deadlock occurs in a network, it is
detected and resolved using different techniques. An example is [33], where a
SWAPmechanism is proposed intended to break deadlocks by swapping a blocked
packet with a buffered packet in the next hop.
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2.7 NoCs in Real-Time Systems

Real-time applications form a significant portion of embedded applications. Com-
plex constraints are imposed by real-time applications on NoCs. Successful real-
time communication is based on correct logical results and the completion of
the computations within certain time bounds. A packet arriving at the destina-
tion too late results in failure and even causes catastrophic consequences. So,
it is vital that computation and communication meet certain deadlines. In Hard
Real-Time Systems (HRTSs), a missed deadline is not allowed even in a worst-
case communication scenario as it would cause catastrophic consequences [9].
Soft Real-Time Systems (SRTSs) have more tolerance, and allow few missed
deadlines. Therefore transmission delays between nodes needs to be predictable
to guarantee latency. But predictability is challenging especially for a medium
which is shared by different applications running in parallel and congestions can
occur. NoCs supporting real-time applications need to provide guaranteed service
performance with respect to latency and throughput. Real-time applications also
impose cost and energy efficiency requirements. Real-timeMPSoCs are subjected
to varying application specific demands during runtime and varying workloads at
runtime, motivating the need to design adaptive NoCs.

2.7.1 NoCs in Mixed Criticality Systems

When components of different distinct criticality levels are integrated into the
same system, they are referred to as Mixed Criticality Systems (MCS). The
criticality level is the level of assurance needed against failure. Examples of
criticality include safety-critical, mission-critical and non-critical [10]. This trend
of mixed criticality systems is increasing when designing real-time embedded
systems. These platforms can be complex single-core or multi/many-core. Many
complex embedded platforms in automotive and avionics sectors are moving
towards mixed-critical systems to meet stringent non-functional requirements.
These non-functional requirements include cost, space, weight, heat generation
and power consumption [10]. An example of a mixed criticality system is an
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unmanned aerial vehicle [10]. The safety-critical flight control software in it must
be certified by a civil aviation authority to be able to operate in a civilian airspace.
Mission-critical software responsible for capturing and processing images need to
be "fit for purpose". Software for route planning for example is desirable, improves
QoS but is less critical. The criticality status of a system component determines
the degree of rigour applied in the design and analysis to determine functional
correctness and resource usage. Resource usage includes process execution time
and communication bandwidth for example.

In complex mixed criticality MPSoC platforms, NoCs are popularly used and
the networks can interconnect components of difference criticality levels. NoC’s
communication resources like links and routers have to be shared by applications
of different criticality level. Packets belonging to varying criticality can travel
on the same channels. So a fundamental challenge is how to ensure behaviour
of low criticality applications does not impact the behaviour of higher criticality
applications. A fundamental research question in mixed criticality systems men-
tioned in [10] is, how "to reconcile the conflicting requirements of partitioning
for safety assurance and sharing for efficient resource usage". An approach when
implementing critical applications traditionally is to have dedicated resources.
However, isolation can be conservative and can result in the wastage of resources.

2.7.2 Adaptive NoCs in Mixed Criticality Systems

Real-time MPSoCs are subjected to varying application specific demands during
runtime and varying workloads at runtime, motivating the need to design adaptive
NoCs. With the increase of applications in mixed critical systems, care must be
taken between integration to save resources and isolation to ensure deadlines are
met. The focus of this thesis is on investigating and developing effective adaptive
NoCs formixed criticality systems. Performance on such systems can be improved
if the NoC is adaptive and supports provisioning and isolation of resources at
runtime. An aim is to ensure QoS for critical applications is guaranteed while
improving the overall performance of critical and non-critical applications.
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Adaptive schemes enable the NoC to support real-time applications in a flexible
manner that have varying demands at runtime. Characteristics of the NoC are
dynamically changed to meet application requirements while efficiently utilizing
resources. Adaptations in NoCs can be at different areas of the communication
architecture like switching techniques, resource allocation or routing schemes to
name a few. An example is a re-routing technique described in [34], here the
NoC reacts to changing network load conditions and reallocates established paths
if alternate paths are available. In this thesis, we investigate and propose multiple
adaptive techniques at the routing and topology levels. On the routing level,
we investigate reinforcement learning based routing to develop topology agnostic
routing mechanisms for mixed-critical NoCs. An overview of the reinforcement
learning concept is described next.

2.8 Reinforcement Learning

One of the basic ways to acquire knowledge is through interacting with the envi-
ronment. Over the years, researchers have investigated computational approaches
to learning from interaction. Reinforcement Learning (RL) is one such approach,
it is more goal-directed learning from interaction compared to other approaches
to machine learning, as explained in [35]. Reinforcement learning problems in-
volve learning what actions to take to maximize a certain reward signal. They
are closed-loop problems because the actions of the learning system influence its
later inputs. The learner is not informed which actions to choose but instead must
discover which actions yield the most reward by trying them out. In challeng-
ing cases, actions may affect not only the immediate reward but also subsequent
rewards. The three important distinguishing features of reinforcement learning
problems as mentioned in [35] are as follows: being closed-loop, not having direct
instructions as to the type of action to take and consequences of actions occuring
over an extended period of time.

Authors in [35] consider reinforcement learning to be a third machine learning
paradigm, alongside supervised learning, unsupervised learning, and perhaps
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other paradigms as well. One of the challenges in reinforcement learning, which
is different from other forms of learning, is the trade-off between exploration and
exploitation as mentioned in [35], and is briefly explained next.

2.8.1 Exploration vs Exploitation

To increase reward, a reinforcement learning agent must prefer choosing actions
that it has attempted in the past and had discovered that the action had resulted in
producing a reward. However, to discover such actions, new actions that have not
been attempted before must be tried. Therefore, in order to obtain rewards, the
agent has to exploit the information it already knows, but it also has to explore
new actions to become aware of better actions for the future. The agent then faces
a conundrum, exploration or exploitation? And neither can be pursued solely
without failure. The agent must attempt a variety of actions and, over time prefer
actions that appear to be the best.

2.8.2 Reinforcement Learning System

Apart from agents and environment, the other elements of a reinforcement learning
system are policy, a reward signal, a value function, and amodel of the environment
(optional) [35]. The policy defines the behaviour of an agent at a given time, and
it can be a simple function or a look-up table, for example. A goal is defined by
a certain reward signal.At every time step, the environment transmits to the agent
a reward (a single number, for example). The agent’s target is to maximize the
total reward it obtains over a long period of time. The reward sent to the agent at
any time depends on the agent’s current action and the current state of the agent’s
environment. A reward signal indicates what is good in an immediate sense, and
a value function specifies what is good in the long run.
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2.9 Ant Colony Optimization metaheuristic
(ACO)

Ant Colony Optimization metaheuristic (ACO) is a multi-agent framework for
combinatorial optimization [36]. Here, the set of components includes a set
of ant-like agents, use of memory and stochastic decisions, and collective and
distributed learning strategies. ACO is strictly related to other frameworks like
dynamic programming, Markov and non-Markov decision processes, and rein-
forcement learning. In this work, the implementation of reinforcement learning
concepts based on ACO in NoC routing mechanisms is presented. Preliminary
investigations into the potential of developing NoC routing techniques based on
ACO were done as part of student’s work [37].

2.9.1 ACO: Inspiration From Nature

Insects like ants evolved to find the shortest paths through difficult environments
[38] Ant Colony Optimization(ACO) is inspired by the path-finding capabilities
of such insects. Ants live in colonies and the number in a colony can range
from hundreds to even millions. Ants communicate with each other directly via
touch and indirectly through chemicals called as pheromones. All activities are
controlled de-centrally through these direct and indirect communication. Self-
organized finding of food and its transportation by ants is a well studied case of
path-finding [39].

Ants responsible for foraging, search the colony’s territory in an essentially ran-
dom fashion. Along the way, they memorize their path by tracking the sun and
measuring the distance with a biological pedometer [39]. Upon discovering a
piece of food and feeding on it, the successful ant returns to its nest remembering
the navigational information from before. The path back to the nest is marked
with a pheromone. At the nest, the food item is advertised to other foraging ants.
Attracted to the corresponding pheromone trail, some of them find the food and
deposit the pheromone on their return path thereby repeating the process. Other
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Nest Food Nest Food

Figure 2.12: Simple example of path finding by ants travelling between Nest and Food

explorers and foragers deviating from the marked trail can create additional paths.
Some paths can be sub-optimal. Ants taking a shorter path return faster, and
consequently, more ants are attracted to such a path, which makes the trail even
stronger with positive feedback. Because of this strong feedback loop, the colony
tends to strongly favour one particular path. A simple illustration is shown in
Figure 2.12. Pheromones are volatile and have a limited persistence. Hence, if a
trail gets blocked or the food source runs out, no ants will be attracted anymore
[38].

Ant societies feature, among other things, the autonomy of the individual, fully
distributed control, fault-tolerance, direct and environment-mediated communi-
cation. There is an emergence of complex behaviour with respect to the repertoire
of the single ant, collective and cooperative strategies, and self-organization. A
popular research direction in ant algorithms is dedicated to the application of com-
binatorial optimization problems like the ACO. The shortest path behaviour of
foraging ant colonies is at the very root of ACO’s design. This form of distributed
control based on indirect communication among agents that locally modify the
environment and react to these modifications is called stigmergy [40]. The short-
est path behaviour of ant colonies can be immediately recognized as an instance
of a convergent behaviour. One of the advantages of ACO based routing is it
multipath routing. Multipath routing strategies can aid in optimized utilization
of network resources, and automatic load balancing, provide increased robust-
ness to failures, and aid in congestion recovery. These advantages result in better
throughput and end-to-end delay under heavy traffic loads. Amajor application of
ACO is adaptive routing in telecommunication networks, as presented by Di Caro
et al. with AntNet [41] [36]. The design, implementation, and testing of ACO for
the problems of adaptive routing in telecommunication networks is presented by
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Figure 2.13: An illustration of a section of iNoC

Di Caro in [36]. ACO based routing algorithms for NoC descend from AntNet,
which forms the theoretical basis.

2.10 Invasive Computing (InvasIC)

The work presented in this thesis was developed with the motivation to provide
solutions for challenges in general mixed criticality NoCs. It was also intended
to provide solutions for the communication infrastructure in the research area
of Invasive Computing paradigm which investigates the design and resource-
aware programming of parallel computing systems. Invasive Computing (InvasIC)
is researched in a Transregional Collaborative Research Center funded by the
Deutsche Forschungsgemeinschaft (DFG) [42]. In this section, we provide a brief
overview of the concept and the supporting communication architecture which is
experimented with in this thesis.

Since the number of processors is continuously increasing, programming on such
platforms can be challenging. The main idea of Invasive Computing is to in-
troduce resource-aware programming. A certain program receives the ability to
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Figure 2.14: An illustration of 4x4 iNoC interconnecting 16 Tiles in a mesh topology.

explore and dynamically distribute its computations to its neighbouring proces-
sors while taking hardware status into account. Invasive computing [43] provided
explicit handles to the programmer to specify its desired resource requirements
in different phases of execution. The phases of execution are defined as invade,
infect, and retreat. In the invade phase, the operating system allocates processor,
memory and communication resources to be claimed by an application. In the
infect phase, the parallel workload is spread across the claimed resources and
executed. In the retreat phase, resources are freed from the claim if the degree of
parallelism is lower or if the program terminates. Now, the program may resume
execution in reduced parallelism or sequential processing commences. To support
this paradigm, new programming concepts, languages, compilers and operating
systems were developed along with novel MPSoC architectures. The architecture
includes dynamic processors, a supporting NoC and memory hierarchy.
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2.10.1 Invasive Network on Chip: iNoC

The invasive NoC (iNoC) connects the tiles in the InvasIC architecture. An
overview of a section of the iNoC interconnecting the tiles is shown in Figure 2.13.
Processor Tiles can comprise of 4-5 LEON3 processor cores, local caches and
Tile Local Memory (TLM) that are connected via a shared bus. Memory tiles can
be dedicated to only memory components eg. global off-chip memory.

The iNoC comprises of hybrid routers that support Guaranteed Service commu-
nication to support critical traffic and Best-Effort communication for non-critical
traffic. An overview of the router architecture is described in Section 2.3.2 The
iNoC supports predictable execution by enabling reservation of bandwidth. Time
Division Multiplexed (TDM) timeslots on the physical link can be reserved using
special Service Level (SL) bits in the packet header to reserve bandwidth. This
guarantees throughput and latency on this connection.

The InvasIC architecture was prototyped on a system by ProDesign called proF-
PGA which consisted of four Virtex-7 2000T FPGAs. For demonstration pur-
poses, 16 tiles were implemented across the 4 FPGAs interconnected by the iNoC
in a mesh topology. An illustration of the layout of iNoC routers and links across
the 4 FPGAs is shown in Figure 2.14. In this work, the iNoC architecture was
used as a base to develop routing and topology-level adaptations. Due to the NoC
size on the prototyped platform, routing level adaptations proposed in this work
has been tested using a 4x4 NoC as a proof of concept.

2.11 Summary

In this chapter, an overview of NoC fundamentals relevant to the work presented in
this thesis was discussed. Functioning and architecture of basic NoC components
were presented along with different routing, switching and flow control schemes.
An overview of the reinforcement learning concept and ACO used to develop
adaptive routing mechanisms for mixed criticality NoCs was discussed. The NoC
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architecture used as a basis in this work, on which routing level and topology level
adaptations have been proposed and integrated, was presented.
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An overview of examples of adaptive NoCs concepts, commercial NoCs, and
real-time NoCs in literature are discussed in this chapter.

3.1 State of the Art NoCs: An Overview

3.1.1 TILE64

TILE64 architecture [44] from Tilera, introduced in 2007, is the first commercial
NoC-based many-core architecture that was available on silicon. Traditional bus-
based systems do not scale well with the increase in the number of processors.
To move away from bus-based communication, authors in [44] presented a Tile
Processor architecture and a supporting on-chip interconnect network named
iMesh. The Tile Processor was a tiled multicore architecture developed by Tilera
and was inspired byMIT’s Raw processor [45]. The tiled multicore architecture is
a Multiple-Instruction, Multiple-Data (MIMD) machine comprising of a 2D grid
of homogeneous, general-purpose computing elements, called cores or tiles. The
coreswere connected using five, 2Dmesh networks called as iMesh. Each network
layer in the iMesh was designed for a specialized use. The first implementation
of the Tile Processor Architecture is TILE64 and is shown in Figure. 3.1. It is
a 64-core processor implemented in 90-nm technology and clocks at speeds up
to 1 GHz. The iMesh comprised of 4 dynamic networks and one static network.
The dynamic networks were the User Dynamic Network (UDN), I/O Dynamic
Network (IDN), Memory Dynamic Network (MDN) and Tile Dynamic Network
(TDN). The static network was named STN. Each network element connected
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north, south, east, west, and to the processor and each link consisted of two 32-
bit-wide unidirectional links. This enabled traffic to flow in both directions at
once.

Figure 3.1: Block diagram of TILE64 processor [44]

The dynamic networks provided a packetedfire-and-forget interface, and dimension-
ordered wormhole-routed. The static network was not designed to support a pack-
etized format but supported static routing configurations at each switch. This was
designed to enable streaming of data between tiles by establishing a route between
them using STN network layer. The network supported circuit switched commu-
nication, having low-latency and high-bandwidth, thus suitable for streaming data.
The UDN network layer was designed to serve user processes or threads. Thus
enabling them to communicate flexibly and dynamically, and with low latency.
The architecture uses the IDN network layer to directly communicate with the I/O
devices and support system-level communications . I/O devices connected to the
networks similar to the tiles. MDN network layer is used by the caches in each tile
to communicate with off-chip DRAM. TDN network layer works jointly with the
MDN. The architecture supports direct tile-to-tile cache transfers. The request is
transmitted via the TDN and responses are transmitted via the MDN. To prevent
deadlock in the memory protocol, tile-to-tile requests do not go travel in the
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MDN. The design choice to have 5 independent network layers was due to the low
costs of network wiring between tiles. Multilayer fabrication processes provided
a plethora of wiring as long as that wiring is nearest-neighbour and stayed on chip
TILE64 was followed by TILE-Gx and a version of the architecture TILE-Gx100
[46] comprised of 100 tiles arranged in a 10x10 array. The network uses a mesh
topology and static dimension-order routing. Investigations into adaptive routing
techniques is not conducted here.

3.1.2 Xilinx Versal ACAP and NoC

In recent years, Xilinx in 2019 introduced Versal, the first Adaptive Compute
Acceleration Platform (ACAP) [47] [3]. Due to the impact of changing techno-
logical trends which resulted in slowing of processor performance as illustrated in
Figure. 1.1, computing elements are increasingly becoming parallel [3]. Semicon-
ductor industry started to exploring alternate domain-specific architectures which
include vector based processing (DSPs, GPUs) and fully parallel programmable
hardware (FPGAs). The Versal ACAP [3], is a software-programmable, hetero-
geneous compute platform which combines Scalar Engines, Adaptable Engines,
and Intelligent Engines. An overview of the architecture is shown in Figure. 3.2a
Scalar processing elements include CPUs which are efficient at implementing
complex algorithms but are limited in performance scaling. Vector processing
elements include DSPs, GPUs which are effecient in executing parallelizable
compute functions. But can experience latency and efficiency penalties caused
due to inflexible memory hierarchy. Programmable logic like the FPGAs can be
customized precisely to execute a certain compute function, thus making them
suitable at latency critical real-time applications. Disadvantage of such platforms
include changes can take many hours to compile The Versal ACAP aimed to ex-
ploit the benefit of all three platforms, by combining the advantages of all three.
The vector and scalar processing elements are tightly coupled to Programmable
Logic (PL) and all connected using a high-bandwidth NoC. The Versal NoC [48]
provides memory-mapped access to the three various processing elements.
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An overview of the block diagram of Versal NoC [49] is shown in Figure. 3.2b.
The Versal adaptive SoC programmable NoC is an AXI-interconnecting network.
The NoC can be logically configured to complex topologies using a series of hor-
izontal and vertical paths and customizable architectural components. The NoC
comprises of a series of interconnected horizontal (HNoC) and vertical (VNoC)
paths as shown in the Figure. These paths are supported by customizable hard-
ware components which can be configured to meet requirements of design timing,
speed and logic utilization. HNoC and VNoC are dedicated paths connecting in-
tegrated blocks between processor system and PL and provides high bandwidths.
The Versal NoC provides QoS to manage different transactions effectively and to
support latency and bandwidth requirements of different traffic streams.

As shown in Figure. 3.2b, the NoC is an interconnection of NoC master units
(NMUs), NoC slave units (NSUs), andNoCpacket switches (NPSs). Each of these
instances is controlled and programmed from aNoCprogramming interface (NPI).
The information in the NoC is statically routed, and these paths are determined at
the design time by AMD Vivado software. The assignment of NoC ingress and
egress points to specific NMUs and NSU and the routing paths between ingress
and egress are computed at design time by the NoC compiler which is part of
the AMD Vivado Design Suite. The NoC compiler considers connectivity of
the design and the QoS constraints of the designer to provide a globally optimal
solution.

3.1.3 Æthereal

Authors in [26] presented theÆthereal NoC, which focused on providing Guaran-
teed Service (GS) communication. The NoC was developed in Philips Research
Laboratories and included the hardware, a supporting programming model, and
a design flow. The NoC comprises of routers having combined GS-BE router
model, provided both GS service for critical applications, and BE service for
non-critical communication. GS services are provided by using the concept of
contention-free routing or Time-Division-Multiplexed (TDM) circuit switching.
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(a) (b)

Figure 3.2: Versal ACAP (left)[47] and overview of Versal NoC (right)[49]

In the contention-free routing concept, all routers are occupying the same time slot
of fixed duration. BE communication uses wormhole routing and input buffers
to transmit packets. BE service uses source routing where packet header con-
tains the entire path from source to destination. Both BE and GS flits travel on
same links and BE flits can use the links only if there is no GS blocking it. The
GS-BE routers are programmable with slot allocations which are generated for
applications specified at design time. Two programming models are presented:
centralized and distributed. Global network knowledge is required for efficient
time slot allocation for all circuit-switched connections, and this is possible in the
centralized scheme. However this limits scalability when allocating connection
to time slots at runtime and limits flexibility when done at design time [31].

3.2 Interconnects in Chiplet based SoCs

In recent years, due to slowing transistor scaling combined with the need for
high computational throughput hardware, package level integration using multi-
chip-module (MCM) integration to build large scale systems are increasing in
popularity. MCM is a promising approach to build large-scale system by com-
bining multiple smaller building blocks known as chiplets into a larger system.
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This approach when compared to a large monolithic die, reduces fabrication and
design costs. With the increase in popularity of chiplet based SoC design, the
NoC on such system can face design challenges. One such challenge include
deadlocks, expecially when each chiplet is designed in isolation. Authors in [7]
propose a modular routing design for chiplet-based SoCs. Here the chiplets and
interposers can design its own network topology and routing in isolation and the
proposed methodology restrictions on traffic flowing in and out of the chiplet to
avoid deadlocks.

Authors in [6] investigated benefits and costs of using MCM with fine-grained
chiplets for a deep learning inference application which requires large compu-
tational and on-chip storage requirements. Deep Learning Neural Networks
(DNNs) are increasingly being used in a wide range of applications and the
high compute and storage requirements motivate researchers to investigate large
scale computation capable hardware. To address this, researchers in NVIDIA
and Stanford in [6] present Simba , a scalable deep-learning inference accelerator
using multi-chip-module-based integration. Investigations into latency variability
across chiplets caused due to non-uniform latency and bandwidth for on-chip
and on-package communication is conducted. To address these issues, authors
propose non-uniform work partitioning to balance compute with communication
latency, communication aware data placement to reduce inter-chiplet traffic and
cross-layer pipelining to improve resource utilization. A prototype of Simba was
fabricated, it comprised of 36 chiplets connected in a mesh network in an MCM.
An overview of the architecture is shown in Figure. 3.3

Simba implements a hierarchical interconnect to connect the Processing Elements
(PE) effeciently. The hierarchical NoC comprises of a NoC interconnecting PEs
within a chiplet and a Network-on-Package (NoP) which connects chiplets on the
same package. Both the network layers NoC and NoP uses a mesh topology and
a hybrid wormhole/cut-through flow control. The system comprises of regular
PEs and Global PEs which act as second-level storage for activation data to be
processed by the PEs. Global PEs can transmit unicast data to one PE or multicast
packets to multiple PEs local or across chiplet boundaries. A regular PE does does

46



3.3 Adaptive Routing Algorithms

Figure 3.3: Simba architecture (Left to Right) : Simba package, Simba chiplet and Simba Processing
Element [6]

not have multicast support as its computation in the system requires only point-
to-point communication. Unicast communication is via wormhole flow control
for large packet size and multicast communication is via cut-through to avoid
wormhole deadlocks. The routing tables in NoC and NoP forward packets using
dimension-ordered X-Y routing for all inter-chiplet communication. Investigating
flexibility and run-time adaptivity in routing algorithms are not investigated here.

3.3 Adaptive Routing Algorithms

In this section, we focus on adaptive routing algorithms in NoCs. An overview of
different concepts and approach to NoC routing in literature is presented here. If
multiple paths to reach a destination node from a certain source node are available,
adaptive routing algorithms potentially can choose a path among them based on
network information. Quality of decision can depend on the information gathered.
Some commonly used information to indicate traffic status are link utilizations
and router buffer levels. For example, the iNoC router [31] uses Virtual Channels
and link utilization for its adaptive odd-even routing mechanism. Other works like
[50] and [51] use link bandwidth and distance [50]. Authors use fuzzy logic in
[52] to balance traffic and power consumption. When traffic patterns are predicted
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by utilizing past observations, routing decisions can be less susceptible to varying
conditions in the network as demonstrated in [53] [54] .

When routers are making decisions based on only its local information, decisions
made by routers far away may not be considered in the decision making and can
cause issues like congestion. If routers have access to network information from a
larger area, potentially better routing decisions can be made. Away to achieve this
is by identifying and distributing relevant regional network information. Authors
in [55] proposes an approach which introduces connections to all nodes two
hops away. A control network is proposed by authors in [56], which aggregates
information over longer paths. In [57] and [58] the traffic conditions of all nodes
is collected in a central unit.

Implementing a dedicated network for information distribution can be useful for
the routing algorithms to rely on to make suitable decisions. It is beneficial if such
networks are lighter and consume lesser resources than the main network, but this
can limit the network’s capabilities. Otherwise if the complexity of such networks
increases, it is better to utilize the existing main network to transport relevant
network information.An example is shown in FreeRider [59] which presents non-
local adaptive routing techniques. in this work, congestion information of distant
links are transmitted in the header of existing packets, for the routers tomake better
routing decisions. The work in [60] utilizes the wormhole switching scheme in
a unique way to gather local network information. A router sends its header
flit to all of its neighbours in parallel.The neighbouring routers responds with a
packet describing network status from its perspective The information is utilized
to determine a suitable direction and rest of the packet flits are transmitted to the
router accordingly.

3.3.1 Reinforcement Learning

Authors in [61] use reinforcement learning for data packet path evaluation. They
combine local information with long-term experience about the network condi-
tions . Routers receiving the data packets reply with a learning packet to reinforce
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good decisions made at the upstream router [61, 62]. This approach is improved
further in [62] by distributing the learning information in the downstream direc-
tion as well. Authors use a clustered approach to improve scalability in [63]. In
[64], this strategy is further extended to non-minimal and fully adaptive routing.
There are numerous heuristic optimization strategies that take inspiration from
processes in nature. An example is the routing algorithm for a mixed criticality
NoC in [65] which takes inspiration from the formation of synapses in the brain.
In this model, connections are not just established and maintained but new ones
are found in case of failure. There are similarities between ACO based routing
and the strategies mentioned in this section but also have important distinctions.
In ACO, dedicated packets probe and explore the network, and data packets use
this information to make good decisions. This allows for exploration of paths that
may be considered futile but can become viable in the future due to the change
in traffic conditions. While many other routing algorithms tend to always chose
the best option, AntNet distributes data packets randomly across all good routes.
Causing the data traffic to spread out, aiding in congestion prevention.

3.3.2 Multi-Cast Routing

Multicast routing (one-to-many communication) support in NoCs is beneficial for
a wide range of applications. This includes coherency protocols in distributed
shared-memory systems, neural network implementations and fault-tolerant ap-
plications which uses redundant hardware components to name a few. In this
section, we present a brief overview of existing multicast techniques and highlight
differences to the proposed dynamic and scalable multicast technique described
in Chapter 4.

Multicast communication can be implemented by using multiple unicast messages
to reach all destinations individually. Other multicast methods can be broadly cat-
egorized into path based and tree based techniques [66]. In path based, a packet
travels from one destination to another in a sequence using a single path [67].
In tree based routing, a packet follows a common path as far as possible [68]
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[69] [70]. Authors in [70] describe Virtual Circuit Tree Multicasting. In this
technique, a virtual tree is constructed incrementally using multiple unicast pack-
ets. Routing information is stored in Virtual Circuit Tables at each router. This
technique reduces overhead of encoding multiple destinations in a multicast mes-
sage. Disadvantages of this technique include virtual tree construction overhead
which involves sending unicast packets using Dimension Order Routing (DoR)
and presence of storage units in each router. Every time the source node changes,
a new tree has to be built.

The proposed Block-Based multicast technique described in Chapter 4, has the
advantage of scalable address encoding and is flexiblewhen the positions of source
and destination nodes change at runtime. Authors in [71] describe bLBDR (Logic
Based Distributed Routing) which addresses routing for irregular topologies. It
defines regions in the NoC using Connectivity bits and restricts the traffic to these
regions. These regions are predefined based on a set of applications. Bits have to
be configured and it is an overhead. Dynamically changing these regions is not
discussed in the paper. Authors in [72] discuss a load-aware broadcast scheme.
Tasks are mapped onto rectangular regions to constrain broadcast traffic within a
region. Isolation between regions is similar to bLBDR. At most 16 regions are
present and a 16 bit register is present at each output port. Two routing algorithms
are used depending on the traffic load. Dynamically changing the regions is not
discussed in the paper. Also the source must reside in the destination region. In
our proposed solution, the source can be inside or outside the region. In [68]
authors present a multicast scheme which switches between tree based and path
based multicast technique. Address encoding used is a bit vector whose size is the
total number of nodes in the network. Registers of the same size are present at the
output port of each router. Authors in [73] present a way to decrease overall link
utilization by recursively partitioning the network and then computing paths to the
destination nodes. Bit string is used for destination address encoding, and whose
length is the total number of nodes in the network. In [74], authors discuss a tree
based routing scheme with bit string encoding for a reachable network limited to
16 nodes. Our proposed solution scales better as the bit vector is restricted to a
block of nodes and is more flexible as bit vector length can change dynamically
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at runtime. In [75] a data collection mechanism is introduced for region based
data collection. Size of the regions are dynamically changed. The difference to
our proposed technique is that in our solution, the source node can be within the
region or outside and offers support when only some of the nodes in the region
are destinations.

3.4 Topology Level Adaptations

In this section, we focus on multi-layer hierarchical topologies in literature.
Though multi-layered topologies have been in existence for NoCs, we focus on
NoCs which address improving access at runtime between frequently communi-
cating tiles using links with reduced hop count. A hierarchical NoC is presented
in [76] which aims to improve access between communication centric tiles like
memory and IO tiles. To achieve this, the authors proposed a hierarchical net-
work built from different types of subnetworks. The topologies here were chosen
according to the applications requirements at design time and routing was done
using look-up tables in the routers and the performance was compared against
2D mesh. The location of communication centric tiles here should be known at
design time in order to choose a suitable topology. In [77], authors presented a
Skip-Links architecture which dynamically alters the NoC topology at runtime
to reduce logical distance between frequently communicating nodes. The aim
here was to bypass routers to reduce the logical distance. The performance was
compared against mesh demonstrating hop count and energy reductions. Certain
restrictions are present on the placement of such Skip-Link to decrease complexity
in routing.

Some of the NoCs addressing challenges in mixed criticality systems by pro-
viding isolation between different criticality packets are as follows. A runtime
configurable NoC design enabling throughput guarantees with reduced impact on
latency for Best Effort (BE) traffic is presented in [78]. Here the BE traffic is
prioritized over the guaranteed throughput (GT) traffic in NoC routers and only
switch priorities when required providing sufficient performance isolation among
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different criticality levels. Authors in [79] present time-triggered communication
that offers safety by establishing temporal and spatial segregation of the commu-
nication channels. The injection time of the messages are adapted based on the
real execution time of computational tasks. In [80], authors propose a QoSinNoC
framework, a set of QoS-aware NoC architectures. It allows non-critical commu-
nication to pass through the critical region, provided they do not utilize common
router resources. Authors in [81] proposed a NoC router to support mixed criti-
cality systems based on an accurate WCCT analysis for high-critical flows. The
proposed router jointly uses Wormhole and Store And Forward switching modes
for low- and high-critical flows, respectively. The assumption here is that small
packets compose the high-critical traffic and the Store And Forward switching
mode is used for high-critical flows.

3.5 Topology Agnostic Routing

A commonly used NoC topology is mesh due to its ease of implementation and
regularity. When concurrent applications are running on a mixed criticality sys-
tem, commonly used techniques like spatial partitioning to avoid inter-application
influence can result in regions of irregular topologies. In addition, as described in
the previous section multi-layered hierarchical topologies are increasingly being
utilized. NoC topologies can be regular or irregular and can require minimal or
minimal paths to route packets. Therefore it is desirable to investigate topology
agnostic routing mechanisms. There exist numerous topology agnostic routing
algorithms as surveyed by the authors in [82]. They include Up*/Down* (UD)
and Segment-based (SR) Routing among others. As mentioned by the authors,
most of them are deterministic and some optionally permit distributed adaptive
routing. An overview of selected topology agnostic routing algorithms in litera-
ture is described here. Preliminary investigations into topology agnostic routing
mechanisms were done as part of student’s work [83].
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Figure 3.4: UD Restriction [83]

3.5.1 Table Based Topology Agnostic Routing

Up*/Down* Routing (UD) routing algorithm is a table-based and deadlock-free
routing algorithm and was used in Network ofWorkstations (NOWs) interconnec-
tions like Autonet [84], Myrinet [85], Servernet [86]. The tables are computed for
each specific topology. The procedure includes adding directions, adding routing
restrictions and building the routing table. As the name implies, the direction "up"
or "down" is added to every link in the network. There are two methodologies to
add directions: Breadth First Search (BFS) spanning tree as described in Autonet
[84] and Depth First Search (DFS) spanning tree as described in [87]. The first
step is choosing a root node. For example, in Myrinet [85], the node with the
lowest average distance to the rest of the nodes is selected as the root and rest of the
nodes are considered leaves . Starting from the root, the assignment of direction
to links is performed using BFS strategy. The second method to assign directions
is the DFS spanning tree, which computes directions based on the former BFS
spanning tree. It is suitable for complex topologies. In our work, we investigate
mostly on mesh based topologies. Due to this it is simpler to utilize the BFS
spanning tree for comparison purposes against the proposed schemes.

A brief overview on how deadlocks can be prevented in such schemes is presented
next. After adding directions at every link ("up" or "down"), packets can poten-
tially travel in cycles in the network causing deadlocks. To prevent this, routing
restrictions are applied. An Up*/Down* rule, in which a certain routing path is
strictly forbidden is illustrated in Figure 3.4 [84]. This guarantees that there is no
loop to be formed in the network.
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3.5.2 Non-Table Based Topology Agnostic Routing

An approach which is scalable, does not use routing tables and thus consuming
less resource was presented by authors in [88] using Logic Based Distributed
Routing (LBDR). Special bits called as connectivity bits and routing bits are used
to define regions in the NoC and provide routing path information within this
region. Packets are forwarded within the region using routing bits defined by a
pre-selected topology agnostic routing algorithm. The tradeoff here is that only
30% coverage of irregular topologies is supported [89]. Non-minimal topologies
are not supported by LBDR. To provide support for isolation, adaptive resource
allocation for IOT applications, authors in [11] proposed pLBDR. The authors
investigated utilizing LBDR for Space Division Multiplexing (SDM) NoC. A
global routing algorithm is used and selective masking of routing restrictions is
implemented to maintain intra-partition routing. The limitations on the partition
shapes to restrict non-minimal routing exist in pLBDR as well. The coverage here
is 40% of irregular topologies.

3.6 Reinforcement Learning in Routing
Algorithms

3.6.1 Routing based on Ant Colony Optimization
Metaheuristic

ACO based routing for NoC was presented in [90]. The routing decisions were
restricted to a minimal, partially adaptive subset and guaranteed freedom from
deadlocks. The results show improved latency and more consistent power con-
sumption under synthetic transpose traffic in a mesh network when compared
against other static and partially adaptive routing algorithms using a NoC simu-
lator. The quantization of pheromone values was set to 2 bits. Authors in [91]
address the scalability issues arising due to the presence of routing tables at every
router and proposed modifications to the ACO approach. To avoid the growing
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size of routing tables with the size of the network, an observation window is
introduced. Only nodes within this window area have a space in the routing table
and are explored with ant packets. The simulation results show that a small win-
dow of two or three hops has little performance degradation. This is for a mesh
network with transpose traffic. Additionally, pheromone quantization is examined
via simulations and authors present that 4 bits are sufficient as higher precision
results in diminishing returns. A general overview of several modified versions is
presented in [92]. In [93], authors present an extension to fully adaptive routing.
Instead of incorporating deadlock avoidance, deadlock recovery is more focused.
Deadlocks are resolved by routing deadlocked packets on a different path.Due
to the pheromone based nature of routing, future deadlock possibility is now re-
duced with the usage of a repellent pheromone. In [94], network faults are treated
similarly, where new paths are found dynamically. Details of simplifications of
AntNet is not mentioned in the publications. For example, there exists distinction
between "training phase" and "normal phase" in [91] and [92]. This may suggest
that ant packets are not concurrently handeled or it could also be a limitation of
the simulator. Additionally, there is not much information on the reinforcement
strategies used. In [90], hints at adaptive reinforcement is present, but it is unclear
how the reinforcement factor is calculated. Several publications do not specify
their reinforcement strategy.

To investigate how QoS can be guaranteed for ATM networks, when using the
AnNet algorithm researchers presented AntNet+SELA [36]. The work focused
on providing QoS in ATM networks for generic variable bit rate (VBR) traffic.
Here virtual circuits can be established such that physical reservation of resources
is possible, thus providing statistically guaranteed QoS. AntNet+SELA was never
been fully tested, it was a model and not a real implementation.

3.6.2 Q-Learning

Q-learning is a popular reinforcement learning algorithm for solvingMarkov deci-
sion process without using an environment model. Q-Routing algorithm based on
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Q-learning is proposed in [95]. In this routing mechanism, each router computes
paths for the packets based on the information of the neighbouring routers. At
each node, a table of Q-values are stored which depicts quality of available paths.
The tables are updated every time packets are sent to its neighbouring nodes.
This allows to obtain global estimate of congestion using local information. Au-
thors in [96] use Q-Routing as a base and propose a Bi-directional low-weight
clustering-based Q-routing (Bi-LCQ) for NoCs. In this mechanism, the network
is split intomultiple clusters and each cluster maintains a Q-table. Authors discuss
that this approach leads to reducing area overhead and provides a faster way to
collect and use local and global congestion information. With the aim of improv-
ing Q-routing approaches further, authors in [97] present Q-RASP, a Q-learning
based NoC routing framework. Q-RASP stands for Q-routing for NoCs with
region-awareness and shared path experience. Here the authors propose a cost
function for choosing contention-free paths in congestion-free regions and present
new update mechanism to share learning experience between packet targeting
different destination but occupy same paths. An extended and revised version of
Q-Routing was proposed in [98] to deal with traffic variability. In situation where
links have temporary congestion, "recovery rate" model was introduced. Such that
the touting algorithms give chance to paths which have recovered from temporary
congestion. Both Q-R and P-QR algorithms were among the many which were
compared against AntNet in [99].The authors demonstrated that AntNet showed
different characteristics as it used a richer repertoire of information. For example
AntNet used adaptive probabilistic models for distance estimates to determine
relative goodness of each local choice, a simpler model to capture instantaneous
state of link queues and stochastic decision matrix for both data and ants routing.
Each node is learning on the basis of a balance between long and short-term esti-
mates. This is done to cope with the intrinsic variability of input traffic. AntNets
algorithms rely on the use of stochastic policy to route data packets which result
in a better distribution of the traffic load over the network when compared against
deterministic routing policy.
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3.7 Overview of Limitations in Existing Work

In MCS, applications of different criticality share computation resources like
multi-processors and communication resources like the NoC. A challenge is how
to ensure the behaviour of lower criticality components does not adversely impact
the behaviour of higher criticality components. Authors in [10] composed a
survey paper on mixed criticality systems. The authors highlighted a fundamental
question in MCS which is how to reconcile the two conflicting needs: The need
to separate for safety and the need to share for efficient resource usage. The
authors state that integration of these two areas is challenging and not easily done.
To illustrate further: to incorporate flexible scheduling, dynamic partitioning is
required but certified systems require at least static partitioning. According to the
authors in [10] there is a need to address this mismatch.

Authors in [9], discuss challenges faced by NoCs in real-time systems. Data
belonging to a real-time communication have strict deadlines andmissed deadlines
are as faulty as lost packets. In HRTSs, deadlines are not to be missed or it would
have catastrophic consequence. Whereas SRTSs are able to tolerate a degree of
missed deadlines. Therefore latency and throughput need to be predictable to
ensure guarantees for real-time NoCs. This is challenging as NoCs are shard by
multiple applications running concurrently. This can cause congestion and hot
spots especially at high input traffic . Real-time applications are also restricted
by requirements like cost and energy efficiency. Real-time MPSoCs are subjected
to varying workloads and application-specific demands during its runtime [9].
Such a dynamic environment justifies investigating adaptive techniques in NoCs
to improve overall performance.

A motivation for adaptive schemes is to provide flexible support to a wide variety
of real-time application which have different demands during runtime [9]. Char-
acteristics of a system can be dynamically changed at runtime to meet application
requirements and in parallel have efficient resource utilization. The surveyed
work in [9] showed that HRT-NoC solutions need to involve design-time phase
with static characterization. And that there was a lack of adaptivity or flexibility
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during runtime in real-time NoCs. Integrating runtime flexibility and adaptivity
can benefit real-time NoCs

In this chapter, we have presented several existing NoCs and adaptive NoC features
from topology to routing level. Mixed criticality applications can benefit from
such adaptive features but the challenge is how to also ensure real-time guarantees
are met. These are some of the ongoing research questions the thesis is trying to
address. Some of the questions being investigated include: How can one increase
runtime adaptivity and flexibility in mixed criticality NoCs? How the inherent
distributed nature of the network can be used to increase adaptivity? How can
adaptivity be implemented in mixed critical context while ensuring requirements
are met? How can reinforcement learning based routing be utilized to benefit
mixed critical systems? We address these questions by proposing adaptive and
runtime features at different levels of theNoC and are presented in the next chapter.
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In this chapter, techniques developed at different levels of the NoC with the aim
of increasing adaptability and flexibility are presented. Investigations are broadly
divided into two levels: Routing and Topology level. An overview of the features
developed at routing and topology level is shown in Figure. 4.1.

On the routing level, a reinforcement learning based routing using the ACO meta-
heuristic [36] is proposed. ACO based routing is fully adaptive, topology agnostic
and uses reinforcement learning to discover better paths over time. Such an algo-
rithm discovers multiple paths towards its destination over time and depending on
the network state, selects the path with the shortest latency. The algorithm routes
packets along alternate routes when there is congestion thus reducing hotspots,
and improving traffic load balance. The algorithm distributes data traffic ran-
domly across all good routes and in this manner, traffic is spread out to prevent
congestion.

Figure 4.1: Overview of features proposed at routing and topology level
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They also aid in increasing robustness to node/link failures for example by routing
data around such regions. Thus aiding in better network resource utilization and
improving overall throughput and latency. The potential of utilizing such a fully
adaptive routing in aiding spatial isolation for mixed criticality systems is also
investigated. Due to its topology agnostic feature and continuous discovery of
better paths, the algorithm can discover paths at runtime within partitions and
isolate traffic within them. This also aids in reducing inter-application traffic
influence. Another adaptive feature introduced at the routing level, is to improve
scalability of multicast routing by proposing a dynamic Block-Based multicast
routing [100]. On the topology level, we propose a multi-layered NoC targeting
mixed criticality systems. The aim in designing multiple layers is to decouple
traffic of different levels of criticality and route themon different layers. To achieve
this, runtime congestion aware adaptive routing algorithmwhich can route packets
based on its criticality is proposed. We also investigate how the reinforcement
learning based routing performs on such layered topologies.

4.1 Reinforcement Learning Based Routing

As mentioned in Section 2.8, reinforcement learning is a goal oriented learning
from interaction with the environment [35]. As explained in [35], the features
which make reinforcement learning different from other learning paradigms are
as follows:

• The actions to be taken are unknown at the start and are discovered by trying
out various actions and determining which action yields the most reward.

• Actions taken may not only effect the immediate reward but also subsequent
future rewards in the long term.

• They are also closed loop problems, as the learning system’s actions influ-
ences its later inputs.
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Among the challenges faced in NoCs and especially NoCs targetingmixed critical-
ity systems, we identify the potential of applying the above mentioned techniques
in designing efficient, adaptive and flexible NoCs. There is potential in utilizing
such features in designing adaptive and efficient routing mechanisms in mixed
criticality NoCs.

4.1.1 AntNet Model

Here, we aim to utilize aspects of the AntNet routing algorithm which is based
on ACO and apply to mixed criticality NoC routing. The focus is more on the
reinforcement learning aspect used in the algorithm. We identify that the fully
adaptive, topology agnostic ACO based routing which can discover better paths
over time has potential when designing flexible mixed critical NoC systems. We
start by providing an overview of the ACO based routing algorithm implemented
in our work which is based on the AntNet Algorithm [36]. The following is
based on the improved version AntNet-FA as described in [101]. Preliminary
investigations of implementing the AntNet based routing to NoCs was conducted
as part of the supervised student’s work [37] and an overview is provided in the
following sub-sections and in Section 4.2. Evaluations and results to present the
potential of the routing algorithm to aid in traffic isolation was published in [21].

4.1.2 Data structures

Consider a network comprising of N nodes and data structures are maintained at
each node k. Pheromones are organized in a matrix T k as shown in Figure 4.2.
When moving towards a particular destination d , the attractiveness of choosing a
neighbour n is represented by a pheromone value τnd . These pheromone values
are treated as measures of probability and are normalized for each destination:∑

n∈Nk

τnd = 1 (4.1)
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Destination
T D1 D2 . . .

N
od
e N1 τ11 τ12 . . .

N2 τ21 τ22 . . .
...

...
...

. . .

Figure 4.2: Pheromone table on the right. On the left is an example of neighbour nodes and proba-
bilities for a destination D1 for a node k

where Nk is the set of neighbours of node k.

This pheromonematrix is supplemented by a trafficmodelM k which represents a
local view of the global traffic. Statistical parameters like mean µ, varianceσ2 and
shortest travel timeW over the last w observations are stored here.Additionally the
algorithm also uses information of buffer levels at the output ports. To represent
this, qn describes the amount of bits waiting for transmission towards n, from
which the heuristic quantities quantities l and t are derived. The quantity l is
shown below and represents the attractiveness of less frequently used links.

ln = 1− qn∑
i∈Nk

qi
(4.2)

Quantity t estimates time it takes a data packet to travel across a connecting
link ( k to n) and is defined below, where bandwidth is represented by bn and
propagation delay by δn .

tk→n = δn + qn

bn
(4.3)

4.1.3 Routing Ant and Data Packets

In the context of AntNet routing schemes, ants are considered as special packets
that travel together with data packets but are routed according to a different policy.
An ant packet starts as forward ant at a source node s and is sent to a destination
node d . When the ant reaches this destination, it converts to a backward ant and
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src(s)

dst(d)

src(s)

dst(d)

Forward Ant Backward Ant

Figure 4.3: Forward and backward ant for s = (0,0) and d = (2,1)

retraces the path back to s. This is illustrated using a simple example in Figure
4.3.

Forward ants are periodically generated at every node and the respective desti-
nations are chosen randomly with more weight on paths which has more traffic.
Forward ants store the address of each visited node in a private memoryV . During
routing, a neighbour n ∈Nk is selected randomly with the probability pnd , which
is a combination of the corresponding pheromone value τnd and link attractive-
ness ln . Here, in our implementation we denote this by the input buffer levels of
downstream routers and this information is used as short-term view on the local
traffic.

pnd =


τnd +αln

1+α (|Nk |−1)
n ∈Nk \Vs→k

0 else.
(4.4)

The constant α determines the trade-off between exploration of new paths and
exploitation of the ones already discovered and according to [36] is α ∈ [0,1] .
Neighbouring nodes which were visited already by ant packets are excluded in
future exploration to avoid the formation of loops in the ant’s path. If there are no
options for neighbour nodes left, a random neighbour is chosen and the resulting
loop is removed from V .

When the forward ant arrives at the destination, it is converted to a backward ant
and using the path information in V retraces the path back to the source node.
Estimated time tk→ f it would take to cross a link (node f to k) in the forward
direction is stored in the ant’s memory. On the way back, the pheromone and
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traffic structures are updated as described in the next section.The backward ant is
discarded/dropped once it has returned to its source node,

Data packets are routed according to probabilities based on the pheromone table.
The probability of choosing the neighbour n when the destination is d is given
below. The constant ϵ> 1 represents how much emphasis is applied on the best
paths.

rnd = τϵnd ,

pnd = rnd∑
i∈Nk

ri d
.

(4.5)

4.1.4 Learning from Backward Ants

The pheromone table T k and traffic model M k are updated with the information
collected by a backward ant visiting node k. The backward ant packet stores
within itself time estimations for each link travelled on its forward path. These
are accumulated to get an estimate T . This represents the time a data packet would
take when travelling from nodes k to d :

T = tk→d = ∑
i∈V(k+1)→d

t(i−1)→i . (4.6)

Next, M k can be updated according to an exponential window:

µ′
d =µd +η(T −µd )

σ′2
d =σ2

d +η
(
(T −µd )2 −σ2

d

)
.

(4.7)

The constant η represents decaying influence of past observations. This can get
negligible after approximately 5/η new observations. The best recent travel time
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W is updated in the current window and it is reset to the mean at the start of the
next one:

w ′ = w +1 mod ŵ

W ′ =
min(W,T ) w > 0,

µ′
d w = 0.

(4.8)

This results in a non-sliding window of length ŵ , that is chosen as

ŵ = c · (5/η), c ∈ (0,1]. (4.9)

The pheromone value, which corresponds to the forward ant’s routing decision
is increased to reward the newly discovered path. In the AntNet algorithm, the
increment is based on an adaptive reinforcement factor r which reflects the quality
of the path. The new pheromone value is given by

τ′f d = τ f d + r · (1−τ f d ). (4.10)

To evaluate the discovered path’s quality, a confidence interval I = (Iinf, Isup) is
defined below with the confidence coefficient γ.

Iinf =W, Isup =µ+ σ√
(1+w)ů(1−γ)

, (4.11)

The precursor of the reinforcement factor is then obtained from the relation of T

as shown below.
r̃ = c1

Iinf

T
+ c2

Isup − Iinf

(Isup − Iinf)+ (T − Iinf)
(4.12)

The ratio between the recent best time estimate and the current observation is
shown by the first summand.The second one represents a correction rewarding
paths that are good when compared to past observations. The reinforcement factor
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Figure 4.4: Squash function for different number of neighbours and a = 5 [37]

gets squashed by the squash function for emphasis of good results as shown below
by the two equations.

r = sn(r̃ ) (4.13)

sn(r ) = 1+ea/n

1+ea/(r ·n)
(4.14)

Parameter n = |Nk | adjusts the behaviour of the squash function to obtain results
independent of the number of neighbours and is illustrated in Figure 4.4.

4.2 Adapting the AntNet for NoC

The AntNet algorithm was developed for telecommunication networks and is
complex. To achieve an effective NoC implementation, several modifications
are necessary. The previous section just highlighted certain aspects of the algo-
rithm chosen as a basis for our NoC routing mechanism. In our implementation,
we choose certain basic features of AntNet, which uses reinforcement learning
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Table 4.1: Overview of AntNet’s implementation parameters [37]

Parameter Useful Domain AntNet Notes
α [0.2,0.5] 0.2 exploration vs. exploitation
ϵ > 1 1.4 data exponent
η > 0 past influence: 5/η

ŵ c · 5/η c = 0.3 window length
γ [0.6,0.8] 0.65 confidence level
c1 1− c2 0.7 reinforcement factor

weightsc2 [0.15,0.35] 0.3

a > 0 5 squash factor

mechanism. Due to the complexity of the algorithm, several modifications and
simplifications have been made to make it hardware friendly. The aim is to
incorporate only certain aspects of the AntNet routing mechanism, especially fo-
cusing on the reinforcement learning aspect, to develop flexible routing algorithms
targeting MCS.

Pheromone quantization was examined using simulations by authors in [91]. and
the results suggested that 4 bit are sufficient and higher precision resulted in
diminishing returns. To decrease computational complexity, the pheromone bit
size here is also set to 4 bits. A number of parameters exists in the AntNet, which
influence the behaviour of the algorithm. The authors of AntNet provide a useful
domain for these parameters, as well as the values used for their experiments
[101] and is shown in Table 4.1. The values used in our design are obtained from
these suggestions by rounding them to the nearest power of two and are shown
in Table 6.3. This aids in developing a cheap hardware implementation with bit
shifts.
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Figure 4.5: Packet format of a Head or Tail flit

Packet Header ant bw pointer

dir0 addr0 dir1 addr1 dir2
. . .

Figure 4.6: Forward ant packet structure[37]

4.2.1 Ant Packets

The base NoC router utilized here is described in Section 2.3.2 [20]. Packets
comprise of a header, one or more body flits and a tail flit.The packet format of
a header or tail flit is illustrated in Figure 4.5. If a packet is of a single flit size,
then header, data and tail information is fit inside a single flit.

In our implementation, ant packets are packets of a single fit size and the structure
of forward and backward ant packets are shown in Figures 4.6 and 4.7 respectively.
The header flag ant distinguishes ants from regular data packets and flag bw
distinguishes forwards from backwards ants. Forward ant packet structure (figure
4.6) comprises of an array of the routing directions taken which is the private
memory V , as path information needs to be stored. It is sufficient to just store
either direction or address of node as they can be derived from each other. While
the addresses are required during the forward ant routing to avoid loops in the
paths, the directions are used for backward routing. To avoid any conversion step,
both information can also be stored.

Forward ant packets are converted to backward ant packets at the destination node
and inherit the memory V . Estimated link traversal time has to be stored for
each hop on the way back to the source. The node addresses stored during the
forward run are not required for backward routing and are therefore dropped to
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Packet Header ant bw pointer

dir0 time0 dir1 time1
. . . length

Figure 4.7: Backward ant packet structure[37]

make room for the time field in the array. This has an advantage, that the forward
and backward ant packet structures (as shown in Figure 4.7) are of approximately
equal length. When routing a forward ant packet, a list of all possible directions
is considered. The probabilities of the ports are calculated based equation 4.4
and a direction is selected randomly. The routing decision along with the address
is saved in the ant’s memory. Then, the selected output link is crossed and the
process repeats until the destination node is reached. When considering possible
directions, it implies directions with a physical link to a neighbouring node that
has not been visited yet. If there are no directions left, AntNet would choose a
random direction in this case. A dedicated circuit, which detects and removes the
resulting loop in the ant’s memory, would be needed just for this case. To save
resources, in our implementation when there are no directions left, the ant packet
is dropped.

The routing algorithm routes the forward ant packets and data packets by selecting
ports randomly with probabilities derived from the pheromone table. The random
numbers are generated using a pseudo random number generation. Due to the
pipelined design of the base router architecture, the routing decision is required to
be made in a single cycle. Due to this restriction, to reduce computation overhead,
the division is implemented using combinatorial logic only. A squash function
is used to change the reinforcement factor. As it is challenging for this function
to be translated directly to fast hardware due to the exponentials and divisions, a
linear approximation is incorporated to replace the original definition since it is
quantized to 4 bits.
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4.3 Characteristics of ACO based Routing for
NoC

Certain characteristics of the ACO based routing which can be beneficial for
routing in NoCs is highlighted here.

• Decentralised Control: Actions are controlled in a de-central manner,
through direct and indirect communication

• Network is explored in a random manner

• Due to the presence of a feedback loop, paths which have the shortest travel
time is used more often.

• Apart from already explored paths between source and destination, alternate
paths, which can be sub-optimal are also explored creating additional paths.

• Pheromone tables reflects long-term experiences of past ant packets explor-
ing the network.

• Additionally local observation by ant packets exists to take into account
changes in network state.

• Routing is topology agnostic, supports minimal and non-minimal paths.

4.3.1 Hotspot Awareness and Reliability

Howcan reinforcement learning concepts be applied toNoCs to improve flexibility
and adaptivity? What are the challenges the algorithm can potentially address?
Consider a simple example illustrated in Figure 4.8 comprising of a 4x4 NoC
where communication is planned between a pair of nodes as shown. When using
a static routing like XY which is minimal, the path the packets would take is
shown in the first Figure. Here the minimal hop count is 2. When traffic increases
in the nodes along the path, hot spots can occur which has a detrimental effect
on performance. Is there a way for a routing mechanism to discover better paths
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Figure 4.8: Example of paths with different hop counts between a pair of nodes in a 4x4mesh topology

around hot spots at runtime? An example for another possible path for a given
source destination pair is shown in Figure 4.8. Not just hot spots can motivate the
need to discover better paths, if a router or link fails, it is beneficial if the routing
algorithm can compute alternate paths at runtime. In the third Figure, the routing
mechanism learns that the network state is changed (a router has failed in this
example), and disables paths and discovers another feasible path.

To accomplish these, the network requires an adaptive routing scheme which
discover paths between source and destination nodes at runtime depending on the
network state. Is there a way for a routing mechanism to read the status of its
current network state and discover new paths at runtime accordingly ? Certain
situations like failure of a node or development of hot spots can be challenging
to predict at design time. It would be beneficial if the routing mechanism be
able to read the network state, take action to discover better shorter latency paths
at runtime. During discovery, certain paths can be better than others, and over
time, shorter latency paths need to be rewarded to improve overall performance.
Considering these challenges, the features of reinforcement learning fits well to
meet the challenges like hotspot awareness and improves reliability in cases of
node failure as illustrated here.

4.3.2 Topology Agnostic Feature

Next, investigations are conducted into exploiting the topology agnostic feature of
the algorithm. This is a useful feature especially if the aim is to make NoCs more
flexible and adaptable to changing environments at runtime. Spatial isolation is
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commonly used to reduce inter-application influence in mixed criticality systems.
A simple illustration of three applications occupying a 4x4 Mesh NoC is shown
in Figure 4.9a. Initially a non-critical application is occupying 7 nodes. The
nodes can utilize all links in the 4x4 region to communicate with each other.
Over time, two critical applications application arrive. With each arrival, the
partition allocated to the non-critical application is changing to avoid influence
on the critical applications. From the NoC perspective, the region allocated to
non-critical applications can vary over time since priority is given to critical
applications. If the NoC can adapt to the changing partition shape, compute new
routes within this varying region at runtime, spatial isolation can be achieved. The
challenges the NoC faces in such a scenario can include ensuring that all possible
partition shapes are routable. This can result in the need to discover minimal and
non-minimal routes in regular and irregular topologies. If an algorithm always
routes packets using minimal paths to the destination, it can result in certain
irregular topologies not supported. If using static routing, apart from reducing
the runtime flexibility of the routing algorithm, it may not be able to support
topologies which are not predictable at design time due to possible router failure.
An example of change in topology due to router and link failure is shown in Figure
4.9b.

So is there a way to design a routing algorithm which is topology agnostic, can
discover routes within unknown partitions at runtime and dynamically discover
better paths over time to improve overall performance? The reinforcement learning
enabled routing algorithm based on ACO is a possible way to achieve this.

(a) (b)

Figure 4.9: (a) An example illustrating spatial isolation overtime on a 4x4 NoC (b) Irregular topology
due to router and link failures
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4.3.3 Potential for Spatial Isolation

This section discusses the potential of utilizing such a routing algorithm to aid
in runtime spatial isolation of resources at runtime. The network is continuously
explored with probing packets and the collected information is distributed to the
routing tables. The routers make decisions based on a combination of long and
short-term information about the network state. This leads to a self-learning NoC,
which is topology agnostic, and optimizes for throughput and latency. Since the
proposed solution is at the hardware level, there is no software overhead compared
to traditional table based solutions. The algorithm does not require knowledge
of the shapes at design time and can discover non-minimal paths. It has a full
coverage of shapes and computes minimal and non-minimal routes.

As the algorithm is topology agnostic, it is suitable for scenarios where spatial
isolation is implemented for MCS with varying partition regions. In the ACO
based routing, the network is explored with special packets and the application
data packets are routed based on the information obtained. This separation allows
for exploration of paths that are considered futile but may have become viable
because of a change in traffic. This results in the exploration of seemingly sub-
optimal (non-minimal) paths as well. Thus the algorithm also supports minimal
and non-minimal paths within regular and irregular topologies.

4.3.4 Traffic Isolation

How can we use this reinforcement learning based topology agnostic routing to
aid in traffic isolation? When a certain region is occupied by a critical application
the border routers are informed to stop accepting any packets from outside this
region. For example, if an exploring ant packet attempts to enter the region it is
dropped. This results in the algorithm learning that the path is not feasible and
attempts another path towards its destination. Forward ants, when discovering
paths, randomly choose a direction at each node to reach the destination. Once
it reaches the destination, the timing and path information, which is collected is
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transferred to the returning backward ant, which distributes this information along
the path. If an ant fails to find a path, there is no backward ant being generated
and thus information of this failed path is not updated in the pheromone tables.
Which implies that the pheromone value in the direction of the failed path is not
increased. Data packets are then routed according to the probabilities derived
from the pheromone table.

The ACO based routing can be utilized by non-critical applications or applications
which do not require guarantees. The critical applications can utilize GS commu-
nication and deterministic routing algorithms like the XY to ensure guarantees.
For critical applications, usually the shape of the region they consume is known
at design time. When they start running on the system, edge of the region routers
are communicated so a boundary is established. Let us illustrate with a simple
example where an ant packet is traveling from (0,0) to (3,3) in a 4x4 design as
shown in Figure 4.10. Initially no other traffic is present. In the first case, all
links in the 4x4 region are allowed to be used to reach the target. An ant packet
was injected at node (0,0) periodically into the network. Over time, paths were
discovered and are highlighted in red. Most ant packets chose a path with minimal
hop count. The number adjacent to the link indicate number of ants travelled on it.
The algorithm over time optimizes for latency due to the traffic model integrated
in the algorithm. It reads short time information like local buffer information and
global information like travel times of ants.

In the second case, an application has arrived and is running on four nodes in the
centre of the network and does not allow packets entering the region. The ant
packets attempt to enter and are dropped and discover new paths to the destination
as shown. Two paths from (0,0) circumventing the 2x2 region are discovered and
since both had the same number of hop count, one of them was chosen randomly.
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Figure 4.10: Ant packets discovering paths from (0,0) to (3,3) [21]

4.4 Runtime Adaptive and Scalable Multicast
Routing

In this section, we describe the features proposed to improve adaptivity and scal-
ability of multicast routing schemes. Most NoCs focus on unicast traffic, where
communication is between a single source and a single destination. Multicast
traffic where communication is between one source and multiple destinations is
extensively used in large-scale multiprocessor systems. Authors in [102] show
that multicast based mesh networks provide high performance/cost ratio and are
most suitable when implementing configurable neural networks. Other exam-
ples are applications using data-parallel programming model and Single-Program
Multiple-Data (SPMD) programming model in which the same program is run
on multiple processors in parallel. Another motivation for a multicast feature
is to support coherency protocols for distributed shared-memory paradigm [70]
[74] [103]. Usage of multiple unicast packets in the above examples degrades the
performance and is an inefficient use of resources. These applications can greatly
benefit from efficient hardware multicast features in NoCs. Communication in
such systems is usually done in software using Message Passing Interface (MPI).
Significant overhead can be decreased using hardware techniques. Though few
hardware multicast techniques in NoCs exist [66], a NoC based multicast solution
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which is scalable, flexible and dynamic has not been shown yet. We focus on
these features and present a block-based multicast solution for mesh networks.

In this section, we discuss a multicast technique which is scalable, with lower
packet overhead and latency. This is an important feature considering that the
number of nodes in SoCs and complexity of applications using such systems is
continuously increasing. It is a hardware block-based multicast routing for mesh
NoCs which incorporate dynamic bit vector index mapping onto nodes. A block
of potential destination nodes is defined at runtime. Dimensions of the block
and the bit vector are stored in the packets. This technique is advantageous when
destinations are located close together. It provides runtime support for both unicast
and multicast routing with few changes and provides flexibility in the platform.

4.4.1 Block-Based Multicast Routing Concept

When a source nodes needs to send the same data to a group of destination nodes,
a block is identified which contains all the destination nodes. The block is defined
by two node addresses present diagonally opposite to each other. This is illustrated
in Fig. 4.11 using an example of a 4x4 Mesh. A source node needs to send a
message to 6 nodes highlighted by a rectangle region which we refer to as a block.
This block is defined by the source by using a Start Destination Node (DstS) and a
End Destination Node (DstE). A packet is built at the source and forwarded by the
routers according to Dimension-ordered (XY) routing to DstS. At DstS the packet
is duplicated and three possible directions are identified: Local (L), Branch (B)
and Tree (T). The Local direction forwards a packet to the local port and the Tree
direction is part of the path to DstE. The Branch direction branches away from
this Tree path. So at DstS, the packet is duplicated thrice and forwarded in each
of the L, B and T directions. Duplication occurs at each node in the block and the
number of duplications depends on the position of the node. Paths taken by the
packet within and outside the block is illustrated in the Fig. 4.11.

The Block-Based multicast packet header contains information of DstE and DstS
as shown in Figure. 4.12b. For comparison, a multicast packet header which uses
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Src : Source
DstS : Start Destination Node
DstE : End Destination Node

Figure 4.11: A 4x4 Mesh with 6 destinations in a block defined by DstS and DstE [100]

HInfo Src Dst1 Dst2 Dst3 . . . DstN

(a) Multicast Packet Header

HInfo Src M B DstS DstE Bit Vector

1 1 N

(b) Block Multicast Packet Header

Figure 4.12: Comparison of all destination encoding in multicast packet header and block-based
multicast packet header for N destinations [100]

all destination encoding, where all destination address are present is shown in
Figure. 4.12a. A Multicast bit (M) indicates if it is a unicast or a multicast packet.
A ’bit vector’ bit (B) informs the router if a bit vector field is present or not and
this field is followed by DstS, DstE and the Bit Vector (BV) field. If the B field is
set then it implies that not every node in the block is a destination and a BV field
is present to indicate which are the destination nodes. Number of bits in the BV
field is the number of nodes inside the block defined by DstS and DstE. Since the
block can be defined at runtime, the length of BV is dynamic.

This is explained using an example shown in Figure. 4.13. Addresses of nodes are
its X and Y co-ordinates, source node is (0,0) and destinations are (1,2),(2,2),(1,3)
and (3,3). A block is defined by DstS (1,2) and DstE (3,3) and there are 4
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Figure 4.13: A 4x4 Mesh with 4 destination nodes (0,2,4,5) in a block defined by DstS, DstE and a
BV [100]

destinations within this block identified by the BV. BV indices are mapped to the
nodes within the block as shown in Figure. 4.13.

The router at each node processes DstS, DstE and BV information in the packet
header and determines if a node is outside the block or inside the block. If
the current node is outside the block, DoR routing algorithm is chosen. This
occurs until packet reaches DstS. If a node is found to be inside the block, BV
is processed and the relevant BV index of the node is computed and read. Using
this information the packet is duplicated accordingly. For example at DstS, BV
index is computed to be 5 and its value is ’1’. The packet is then duplicated thrice
(one each for B,L,T). At node 3, the BV value is 0 so there is no duplication
and the packet is terminated. At node 1, the BV value is 0, so the packet is only
forwarded in T direction towards DstE. At node 2, the BV value is 1, so there are
two duplications done for L and T directions.
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In generic terms, the total number of nodes in a block is represented by ’N’. A
source sends to ’i’ destinations where 1 ≤ i ≤ N . When i = N , all nodes in the
block are destinations and it then becomes a region based broadcast. When i < N

only some nodes in the block are destinations and a BV field of length N is used
to identify which of the nodes in the block are destinations. BV index (BVi ) is
computed using addresses of DstS (Xs ,Ys), DstE (Xe ,Ye ) and current node (Xc ,Yc )
as shown in Eq (4.15).

BVi =| Xc −Xe | + | Yc −Ye | ∗(| Xs −Xe | +1) (4.15)

Address Overhead (AO) for a 2D mesh is shown in Equation (4.16) for one block
where all nodes in it are destination nodes. One bit each for M and B fields and
xb and yb are bits required for X and Y co-ordinates respectively. The AO in case
of using the BV field can be calculated according to Eq (4.17).

AO = 2+2∗ (xb + yb) (4.16)

AO = 2+2∗ (xb + yb)+ (| Xs −Xe | +1)∗ (| Ys −Ye | +1) (4.17)

An illustration of the BV index to node mapping when the orientation of source
and destination regions change is shown in Fig. 4.14. Source node is at the center
and quadrants are used to illustrate the mapping better. Nearest destination node
to the source node is selected to be DstS (in green) while the farthest as DstE (in
red). The BV size is 9 and paths of packets taken within the block is shown as
well.

Since regular packets using DoR are also travelling in the NoC along with the
multicast packets, deadlocks are a problem. This is because turns that are usually
not allowed are possible in the paths of multicast packets within the block. To
avoid this, multicast packets and regular packets use different virtual networks.
The multicast packets travel in a different virtual channel from regular packets.
Thus the turns are constrained in a different virtual network and loops are avoided.
Each packet is associated with a virtual channel ID and the router takes this into
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Figure 4.14: An example illustrating the mapping of BV index onto the nodes using quadrants for a
7x7 network and 9 destinations [100]

consideration when choosing the output virtual channel at each output port. The
Block-Based multicast routing work was published in [100].

4.5 Multi-Layered NoCs with Congestion
Aware Adaptive Routing

In this section, we take a look at the topology level improvements proposed
targeting mixed criticality systems. Mesh topology is commonly implemented in
a NoC due to its scalability, ease of implementation and uniform nature. A static
routing is usually preferred in the NoC for critical applications as they require
guarantees at design time. Therefore it is challenging to utilize adaptive routing in
mixed criticality NoCs. In this section, we present design and implementation of
a multi-layered NoC with an adaptive routing algorithm designed to be beneficial
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Figure 4.15:Multi-layered topology under test [106]

for mixed criticality systems. The congestion-aware, adaptive routing algorithms
was implemented and evaluated as part of a supervised students work [104] and
published in [105]. An overview is presented in this section.

The proposed topology is mesh based, multi-layered and hierarchical. An illus-
tration of the multi-layered topology is shown in Figure 4.15. The motivation for
mesh based topology is to maintain uniformity and ease of implementation. The
routing algorithm is adaptive, monitors the environment to identify paths with less
traffic to avoid congestion and routes packets accordingly based on the criticality
of the packets. The algorithm supports applications which require guarantees by
forwarding them on known paths. For packets which do not require guarantees,
paths are chosen depending on the availability. The concepts in this section are
summarized below:

• Design of a multi-layered Hierarchical NoC targeting mixed criticality sys-
tems.
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• A runtime congestion aware adaptive routing algorithmwhich routes packets
on different paths depending on its criticality on such a multi-layered NoC
to improve latency and throughput.

In MCS, critical and non-critical packets can share the same communication
resources like links and routers. It can be beneficial, if the paths of critical and
non-critical packets are decoupled. One option is to have dedicated links using
virtual channels. In such cases they still share router resources and the arbitration
policy on such routers can still have an impact on critical packets due to non-
critical packets. Another option is to have dedicated links and routers for the
critical packets. That requires a high amount of resources and can require the
knowledge of mapping at design time. We aim to combine these approaches by
implementing layers in a NoC and having parts of the layers occupied exclusively
by critical applications. We also take into account that topologies need to be
generic and uniform such that it can be used by a large set of applications and are
not customized to a small set of applications.

By using multiple network layers, using an adaptive routing algorithm, we utilize
the link and router resources to direct critical and non-critical paths along different
paths to reduce influence between critical and non-critical applications. We aim
to utilize the base mesh layer for non-critical packets and utilize upper layers
with lower hop counts for more critical packets. Some of the distinguishing
characteristics are summarized here

• Critical applications implemented on several nodes andwhich spread across
the SoC have higher priority and are assigned paths of lesser hop counts
across layers to communicate with each other. Non-critical packets share
resources when available or are directed on paths with longer hop counts.

• A non table based adaptive routing algorithm is proposed for amulti-layered
NoCs which is scalable and flexible.

• Memory and IO Tiles which are generally at fixed locations and are some-
times spread across the SoC can benefit from such a NoC by having heavy
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Figure 4.16: Variation in router count and potential of path diversity in a 5x5, three layer network
[106]

traffic to and from such nodes be restricted to certain paths to reduce con-
gestion.

Such amulti-layered NoC comes with the cost of increase in router resources, with
the increase in links in routers which connect the different layers. So a trade-off
between the resource consumption and benefit in performance is desired.

4.5.1 Multi-Layered Topology Concept

The topology we are using for our approach is a multi-layered mesh as shown in
Figure 4.16. The basis for communication is a base mesh layer connecting all
of the nodes. Alternating nodes on this layer are additionally connected using
another network with a mesh topology to create a second layer. And alternating
nodes on the second layer are connected to create the third and so on.

To demonstrate the advantages of such a topology and the supporting routing
algorithm we consider an example of a three layers, 5x5 variant as illustrated in
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the Figure 4.17. The network interconnects 25 tiles. Meanwhile the number of
ports of a router varies depending on its position in the network. The minimum
number is 4 (example at Tile 1, three in E, S, W direction and a local port) and
the maximum possible number of ports is 9 (example at Tile 12, 2 in each of the
cardinal direction, plus 1 local port).

Figure 4.17: A 5x5 3 layered NoC [105]

In the proposed NoC, priorities are assigned to the layers as shown below. For
dimensions of 5x5 and 3 layers, the priority of layers is provided below.

Layer1 > Layer2 > Layer3 (4.18)

For a general n-layered network, Layer_n is the base layer which connects all the
nodes and Layer_1 is the top most layer.

Layer1 > Layer2 > ..... > Layern (4.19)

In this example the nodes are classified into three classes according to their
location.
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• Class 1: Routers connected by the highest priority layer (here it is the 2x2
mesh). Highlighted in green.

• Class 2: Routers connected using the intermediate layer (here it is the 3x3
mesh) which do not belong to Class 1. Highlighted in orange.

• Class 3: Routers connected using the base layer (here it is the 5x5 mesh),
which do not belong to Class 1 and Class 2.

4.5.2 Adaptive Congestion Aware Routing Concept

We start by explaining the routing algorithm without a congestion avoidance
feature. The path with shortest hop count between a source and destination nodes
is selected across layers. Since the paths can be computed at design time, one way
to implement such an algorithm can be by using a table based routing scheme.
For this method the paths are computed at design time for a certain source and
destination pair. Routing tables are implemented at each router, which store the
output port to be chosen for a certain destination node. The values in the routing
tables are fixed. A disadvantage of such an implementation is that tables do
not scale well and are not flexible. For a 9x9 mesh, each router needs to store
a table containing the output port for the 80 potential destinations. To avoid
the implementation of routing tables and to have flexibility we present a routing
algorithm which computes the path at run time. This makes the implementation
of the algorithm lightweight, flexible and scalable.

The routing algorithm at every router forwards the packets on paths which use
the least number of hops. To achieve this, a Near Node (NN) function is defined.
That is carried out as follows. Consider a source (xs , ys ) and destination pair
(xd , yd ). For a node (x, y) the NN function computes the nearest node (xn , yn)

located between (xs , ys ) and (xd , yd ) which connects to the higher layers. The NN
function is used to compute nearest nodes for the source and destination nodes.
This results in (xsn , ysn) and (xdn , ydn) which are nearest nodes to source and
destination nodes respectively and satisfy equations 4.20 and 4.21 .
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Figure 4.18: Example when source is (0,0), destination is (4,3) and Nearest Node for destination is
computed to be (4,2)[105]

(xs < xsn < xd )or (xs > xsn > xd )and (ys < ysn < yd )or (ys > ysn > yd ) (4.20)

(xs < xdn < xd )or (xs > xdn > xd )and (ys < ydn < yd )or (ys > ydn > yd ) (4.21)

Now let us use a general example to show how a packet travels between a source
(xs , ys ) and destination node (xd , yd ) using this NN function. For reference, let
us consider the same for XY routing and only consider the base layer. A packet
first travels in the X direction towards the destination and then the Y direction.
It utilizes the links only in the base layer. The proposed routing algorithm now
seeks to utilize the links in the higher layers which have shorter hop counts. The
NN function determines the nearest node to the source (xsn , ysn) and nearest
node to the destination node (xdn , ydn). The entire path between the source and
destination node is now divided into three sub-paths due to these nodes. Now the
packets travel as shown in equation 4.22.
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(xs , ys ) → (xsn , ysn) → (xdn , ydn) → (xd , yd ) (4.22)

Within each of the sub-paths, theXY routing algorithm is utilized to travel between
nodes. For example, between (xs , ys ) and (xsn , ysn), multiple paths are possible,
but to achieve minimal routing between these nodes and to keep the algorithm
simple, XY routing is used. Similarly between (xsn , ysn) and (xdn , ydn), XY
routing is used to transport the packets.

Let us explain this by using an example. A packet is transported from (0,0) to
(4,3). The destination node is (4,3), its possible nearby nodes are (4,2) and (4,4).
This is illustrated in Figure 4.18. The NN function always selects a node, which
is located between the source and destination node. In this example, the near
node of (4,3) is (4,2). It is located on a higher layer and is located between source
and destination node, and thus will be chosen as near node of the destination
node. Since the source node already connects the highest layer, the nearest node
of the source node is the source node itself. Now the packet travels using the
path (0,0) → (4,0) → (4,2) → (4,3). Between (0,0) and (4,0) a layer 1 link is used.
Between (4,0) and (4,2) a layer 2 link is used. And between (4,2) and (4,3) the
layer 3 link is used.

In general, to summarize, the routing algorithm prioritizes higher layers to forward
the packet. The NN function is used to determine intermediate nodes and the
path is broken into sub-paths. The general rules the NN function follows are as
follows for the example of the 5x5 three layer network:

• Routers of Class 1 don’t use the NN function, because they are already on
the Layer with highest priority.

• The nearby node that is computed by the NN function for routers of Class 2
are members of Class 1, and the nearby node for routers of Class 3 belong
to Class 1 or 2.

The algorithm just described is a static algorithm, the packets are always routed on
the same paths for a certain pair of source and destination nodes. The paths do not
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change even if there is less or more traffic on those paths. In this algorithm, paths
with low hop count are desired by packets generated by all nodes. When there is
high traffic, there is a high possibility that the nodes connecting the higher layers
experience more traffic since all packets are attempting to travel on the paths with
the shortest hop count. The resulting delay increases with the increase in injection
rate of each node due to the increase in the waiting times within the router. To
solve this issue, a congestion awareness feature is integrated into the algorithm.
The algorithm reads the input buffer status of the downstream routers and makes a
decision among the possible output ports. In the results section we present latency
and throughput results of the algorithmwith and without the congestion avoidance
feature to present the difference in performance. The results show improvement
when the congestion avoidance feature is integrated in the algorithm. Next, the
congestion avoidance feature is elaborated. Let us take an example, consider a
packet from node (0,0) to (3,0) as shown in Figure 4.19. Here only a section of
the network is shown for ease of explaining. There are multiple paths possible
across the layers. The first path uses only the top layer (one hop), the second path
uses the intermediate layer and base layer (2 hops) and the third path uses only
the base layer (3 hops).

Figure 4.19: Possible paths from node 00 to 30[105]

At router (0,0), three output ports are possible to reach the destination. The
path with the shortest hop count is using the port connecting the top layer. The
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Figure 4.20: Virtual channel status [105]

next shortest path is using the port connecting layer 2 and the longest is the
port connecting the base layer. In the version without congestion avoidance, the
packets always chose the port connecting the top layer which results in the lowest
hop count. In the second version, with congestion avoidance, the router reads the
input buffer status of the downstream routers and makes a choice according to the
priority of the ports. The priority of the ports are as follows:

por tl ayer 1 > por tl ayer 2 > por tl ayer 3 (4.23)

When the input buffer in the downstream router via port por tl ayer 1 is full then
the port por tl ayer 2 is considered. If this input buffer is full as well then port
por tl ayer 3 is considered. When this is full as well the process repeats until space
is available in any of the downstream input buffers. This results in less congestion
around the routers connecting higher layers and also uses the base and lower layers
more efficiently. This aims to evenly distribute packets across layers. An example
to demonstrate the working of the congestion aware routing is presented in Figure
4.20 when the source node is (0,0) and destination is (4,0). There are two ports
possible to choose from at the source and depending on the virtual channel status
in the downstream route, an output port is chosen.

In version 1 of the algorithm, critical and non-critical packets are treated the same
by the routing algorithm. In version 2, critical packets are always routed on the
paths with the shortest hop counts and the non-critical packets can be routed on
paths with the shortest or longer hop counts. In high traffic scenarios, to avoid
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influence of non-critical packets on congestion of critical packets, non critical
packets are routed across higher hop count paths. A field in the header flit of the
packet is reserved to identify if a packet is critical or not, and the router processes
the packet and computed the output port accordingly.

4.6 Summary

In this chapter, an overview of the concepts is proposed to increase adaptivity at
routing and topology level. The working of the reinforcement learning enabled
routing algorithm based on ACO for NoCs was described. This included an
overview of the original AntNet algorithm which targeted telecommunication
networks. The algorithm was simplified, reinforcement learning concepts was
focused upon more and adapted to NoCs. Characteristics of this ACO based
routing algorithm was highlighted like topology agnostic feature, decentralised
control and ability to adapt based on network state and discover optimal routes
at runtime. The potential of exploiting such features to aid in flexible spatial
isolation was discussed. Other adaptive routing mechanism concepts presented
include adaptive Block-Based multicast routing. At the topology level, multi-
layered NoC with supporting congestion and criticality aware adaptive routing
algorithm which targeted mixed criticality traffic was discussed The aim here
was to decouple traffic and transmit non-critical packets on short or longer paths
across network layers based on local network congestion. In the next chapter,
the formalization of the concepts of the proposed reinforcement learning based
routing and how it is utilized in aiding in spatial isolation in mixed critical systems
is presented.
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In this chapter, we present a Distributed Reinforcement learning Enabled Adap-
tive Mixed-Critical (DREAM) NoC and supporting framework, which uses the
reinforcement learning enabled routing algorithm based on ACO introduced in
the previous chapter. The DREAM framework, utilizes the adaptive and dynamic
concepts of the routing algorithm to aid in runtime adaptive spatial isolation tar-
geting mixed-critical platforms. The aim for the framework is to aid in efficient
partitioning of NoC resources. We also present the formalization of the con-
cepts of the proposed reinforcement learning based routing. We later extend the
proposed reinforcement learning enabled routing to multi-layered NoCs.

5.1 Characteristics of Mixed Criticality
Systems

Performance on mixed criticality systems can be improved if the NoC is flexible
and support provisioning and isolation of resources [107]. An approach when
implementing high criticality applications traditionally is to have dedicated re-
sources allocated, to avoid influence of non-critical applications. Techniques like
temporal and spatial partitioning of resources are commonly used in MCS to en-
sure real-time requirements are met [108]. Partitioning is commonly employed to
reduce influence of non-critical applications over performance of critical applica-
tions. Examples include implementing time and space partitioning. In this work
we investigate how to aid in flexible spatial isolation at runtime. Efficient sharing
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Figure 5.1: Example of multiple applications sharingNoC resources over time andmaintaining spatial
isolation on a 4x4 NoC [109]

and partitioning of processing and communication resources on such platforms
running applications of different criticality levels can get challenging. Some of
the challenges of mixed criticality NoCs include ensuring QoS requirements like
throughput and latency of critical applications are met. It is desirable if the NoC
can support efficient and flexible spatial partitioning [108] while ensuring perfor-
mance guarantees. Traffic of varying criticality is travelling on the interconnect
and here the objective of the network is to adaptively aid in isolating traffic at
runtime to increase overall performance while ensuring guarantees.

A commonly used NoC topology is mesh due to its ease of implementation and
regularity. When concurrent applications are sharing this interconnect, spatial
partitioning can result in regions of irregular topologies. This is illustrated using
an example as shown in Figure 5.1. In this example, three applications of varying
criticality are sharing the network resources over time on a 4x4 mesh topology.
Each router in the figure is connected to a processing tile. In this illustration,
only the routers are shown for simplicity. Initially two applications are running as
shown on two partitions. A critical application is occupying 4 nodes and the traffic
is restricted within this region. A non-critical application is running on 5 nodes
and its traffic is restricted to the region highlighted in blue. Over time another
critical application arrives and the non-critical application region decreases to
make space for the higher priority critical application.
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From the NoC point of view, the region occupied by the non-critical application is
varying over time. If the NoC can adapt to the changing partition shape, support
communication within this region by determining routes within this new region
at runtime, traffic isolation can be achieved. The challenges for the NoC here
include discovering paths for new partitions which can be unknown at design
time and supporting routing for all possible partition shapes. This provides a
motivation to investigate efficient topology agnostic routing algorithms. Another
motivation for topology agnostic routing is to ensure reliability in case of faults.
For example, if faulty routers or wires occur, this results in a section of the network
being defective while the rest of the network being fully functional. This results
in irregular topologies which are not determined at design time. It is desirable
that the NoC can discover new paths around the faulty sections of the network at
runtime to communicate between rest of the network. To meet these challenges,
we presentDistributedReinforcement learning EnabledAdaptiveMixed-Critical
(DREAM) NoC and supporting framework. The network utilizes the proposed
topology agnostic, reinforcement learning enabled routing algorithm based on
ACO presented in Chapter 4. An aim of the routing algorithm to aid in traffic
isolation within partitions and improve overall performance. The concept and
evaluation of DREAM NoC and supporting framework was published in [13].

5.2 Overview of DREAM NoC and Framework

The DREAM NoC comprises of routers running the reinforcement learning en-
abled routing based on ACO, hereafter referred to as DREAM routing for simplic-
ity purpose. The base router used is the iNoC router described in Section 2.3.2
[20] and the ACO based routing was integrated into it. The routing algorithm
based on ACO [101] chooses paths based on a combination of long and short-term
information about the network state resulting in a self-learning routing algorithm.
It is topology agnostic and optimizes for throughput and latency. The topologies
need not be known at design time and tables at each node which aid in routing are
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built in a distributed manner at runtime. If better paths are discovered over time,
the tables are updated accordingly.

The DREAM framework is designed to aid in flexible adaptive spatial isolation at
runtime. For critical applications, the partition shapes are typically known at de-
sign time as throughput and latency guarantees need to be met. Such applications
use GS communication which uses deterministic routing algorithms. For mesh
based topologies it is XY routing and for others it is a table based routing where
paths are deterministic. The tables for such cases are built at design time based
on a topology agnostic routing like UD. Here we focus on routing non-critical
packets and to aid in flexible isolation of its traffic. These applications use BE
communication where ACO based routing is used and the paths are not static.

5.2.1 Scalability Analysis

There exists topology agnostic routing algorithms like UD to determine paths in
irregular topologies. If all possible partition shapes are known at design time,
topology agnostic routing algorithms like UD can be used to compute routing
tables for each possible topology. Table based routing does not scale well with
the increase in network size. Here we analyse the memory requirements when
a router is part of different topologies over time and thus needs to store routing
information for all possible topologies.

Consider a simple example of 4 routers interconnected using a 2x2 mesh. All
possible partitions into regions are shown in Figure 5.2a. For a simple 2x2
there are 12 possibilities. Focusing on the top left router, the number of unique
topologies it belongs to is 7 as illustrated in Figure 5.2b. A single router topology
is also included for completeness. This results in each router storing 7 different
routing tables, or routing tables need to be updated each time a topology changes.
This requires that all possible routing table information be stored externally and
a table is updated at each router using an external network or use a centralised
router for example. The number of possible partitions increases to 1434 for a

94



5.2 Overview of DREAM NoC and Framework

(a) (b)

Figure 5.2: All possible orthogonal partitions in a 2x2 (a). The number of unique partitions the top
left node belongs to (b) [13]

Figure 5.3: Overview of DREAM framework for a partition P

3x3 mesh topology [110]. This does not scale well and can incur high resource
overhead.

If there is a topology agnostic routing like the ACO based routing which can
discover paths at runtime, each router stores only one table. The trade-off is that
there is a learning phase overhead where the routing tables (here we consider
pheromone tables for ACO based routing as routing tables) are built before the
application can transmit the packets to avoid packet loss. The algorithm due to its
inherent dynamic nature also has the advantage that based on the fluctuating traffic
pattern, better paths are discovered over time thus improving overall throughput
and latency. The paths are not deterministic and continuously discover optimal
paths. It also improves reliability when a node fails, new paths can be discovered
around it.
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5.2.2 Outline of DREAM Framework

An overview of the proposed DREAM framework is illustrated in Figure 5.3. It
is broadly divided into Learning Phase (LP) and Application Phase (AP). During
LP, special ant packets are generated at each node to discover paths between
every pair of nodes within a network partition P . This phase is dedicated to
discovering paths within a partition, application packets are not injected during
this time. Special ant packets here are forward and backward ant packets which
are explained in Section 4.1. The forward ants generated at each node attempts to
discover a path to a particular destination and if successful returns as a backward
ant to the source ode. During this return path, pheromone tables across all routers
in a given partition are updated with this new path information in a distributed
manner. If more backward ants per node are received, better paths are discovered
over time and pheromone tables at the routers are updated accordingly. This is due
to the reinforcement learning nature of the routing algorithms, over time better
paths are rewarded. This can increase the duration of the learning phase which
is an overhead. To ensure low learning phase overhead, we define learning phase
such that if at least one path is discovered between every source and destination
node pair, the learning phase is said to be completed.

Once the learning phase ends, this triggers the start of Application Phase (AP).
Where application packets are injected into the network. In the learning phase,
forward ants are injected at each node at a certain rate (for example every few cycles
to ensure low overhead). Once a node discovers a path to a certain destination,
it stops injecting forward ants to that destination to decrease traffic and thereby
decreasing learning phase time overhead. The paths discovered at the end of this
phase can be sub-optimal as the learning has just started and data traffic is not
present. Better paths are discovered due to the combination of long term and
local traffic information. Therefore, during the application phase, forward ants
are injected at all nodes once again at specified intervals, to discover better paths
over time based on the data traffic fluctuations as well.
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Figure 5.4: Learning time between a single pair of node, from node i to node j [106]

5.2.3 Learning Phase Analysis

Learning phase is an overhead which can vary depending on the number of nodes
and the regularity of nodes within a partition.Learning Phase here for a given
partition is defined as follows.

Learning PhaseThe Learning Phase is defined as the time required to discover
at least one path between every pair of nodes within a network partition.

In a partition, each node injects forward ant packets at certain intervals targeting a
random destination node. The time it takes to discover a path from node i to node
j is analysed next. Consider Figure 5.4. Node i injects forward ants targeting
destination node j until one is successful. This implies a successful path has been
discovered from node i to j. In the figure, T f wd ,i , j represents the interval between
forward packets injected from node i to node j. The learning time TLT,i , j is the
time it takes to discover one path from node i to node j. This is given by equation
5.1.
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TLT,i , j =
Fi j∑
f =1

T f wd ,i , j , f +T f wd s,i , j +Tbk,i , j (5.1)

The time taken for the successful forward ant to travel from node i and reach the
destination node j is represented by T f wd s,i , j . Once it reaches the destination it
is injected right back into the network as a backward packet towards the source
node. The time it takes for the backward ant to reach the source node i from node
j is given by Tbk,i , j . A buffer at the destination node receives the forward packet
and injects it back into the network, the time spent in the buffer here is considered
part of Tbk,i , j for simplicity. The number of failed forward ant packets from node
i to j is given by Fi j . The time interval between their injection is represented in
a generic manner by T f wd ,i , j , f .

In the implemented design, the interval between injection of forward ant packets
at each node is set to be constant. The time between the injection of forward ants
for a certain node (i , j ) is given by T f wd ,i , j . Thus equation 5.2 can be simplified
as below

TLT,i , j = Fi j T f wd ,i , j +T f wd s,i , j +Tbk,i , j (5.2)

Equation 5.2 gives the learning time to discover a path from node i to node j .
For a partition comprising of N number of nodes, the learning time of one node
is given by equation 5.3. Since the discovery of paths are done in parallel, the
learning time for one node ends when all the paths are discovered from this node
to every other node and is equal to the maximum of them as shown in equation
5.3. Thus the total learning time for all the nodes in a partition is equal to the
node which has the longest learning time and is provided by equation 5.4.

TLT,i = max{TLT,i , j ,∀ j ∈ 1, ..., N }, i ̸= j (5.3)
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Figure 5.5: Overview of DREAM framework[13]

TLT = max{TLT,i ,∀i ∈ 0,1, ..., N } (5.4)

5.2.4 Application Phase Analysis

During the start of Application Phase (AP), data packets are injected into the
network as well as special ant packets. Depending on the criticality of the packets
either the deterministic routing is used (GS for critical packets) or ACO based
routing is used (BE for non-critical packets). Special packets like forward ant
packets are injected at each node to discover new and optimal paths. In the
learning phase, forward ants are injected at each node at a constant rate (for
example every few cycles to ensure low overhead). Once a node discovers a
path to a certain destination, it stops injecting forward ants to that destination to
decrease traffic and thereby decreasing learning phase time overhead. The paths
discovered at the end of this phase can be sub-optimal as the learning has just
started and data traffic is not present. Better paths are discovered due to the
combination of long term and local traffic information. Therefore, during the
application phase, forward ants are injected at all nodes once again, to discover
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better paths due to the traffic fluctuations. Injection rate of ant packets during
the application phase can be static or dynamic as shown in Figure 5.5. In the
static technique, each node injects ant packets at the same constant rate and is
not dependent on the rate of data packets injected. In the dynamic technique,
ant packet injection rate of a node is dependent on its data packet injection rate.
Consider a forward ant injection rate at a node s to destination d is asd as shown
in Equation 5.5. Where c is a constant and I Rsd is the injection rate of the data
packets from the node s to d . The injection rate I Rsd can be static or dynamic
depending on the applications.

asd = c ∗ I Rsd (5.5)

5.3 Exploration vs Exploitation of Paths

According to the originalACOalgorithm [101], which is used as a basis here, when
the value of α in Equation 4.4 is close to 1, the contribution of the ants collective
learning is dumped. And the system closely follows local traffic fluctuations
resulting in possible large oscillations in performance. On the other hand, an
α close to 0 results in the decision completely dependent on the long-term ant
learning process. This can make the algorithm unable to follow quick variations
in traffic patterns. Thus in both cases, the system is not expected to perform
satisfactorily. In both the cases, the number of ants generated at each node is
expected to play a critical role According to [101]. Since a large number of ants
can aid in overcoming the negative effects of α close to 0. The large number of
ants can also mitigate the effects when α is close to 1 by creating an over-reactive
behaviour. From the experiments carried out by the authors in [101], a good and
robust choice of an α is in the range between 0.2 and 0.5

Routing tables maintained at each router store pheromone values which indicate
goodness of a port for a particular destination. A path is selected with a prob-
ability, which is a combination of this pheromone value and link attractiveness
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Figure 5.6: Overview of the static and dynamic α technique [109]

as explained in Section 4.1.3. A constant α which represents the trade-off be-
tween exploration of new paths and exploitation of the ones already discovered is
used when computing the probabilities. Instead of treating the α value as static,
we propose dynamically changing the α value over the learning and application
phase. The motivation here is to investigate the influence of α over the time it
takes to discover paths in a region. Using this dynamic α technique we aim to
decrease the discovery time overhead while maintaining comparable throughput
and latency. This work was published in [109] and an overview of the concept is
described in the next section.

5.3.1 Decreasing Learning Time Overhead

We aim to investigate the influence of α over time taken to discover paths in a
partition and dynamically change α to reduce the learning time overhead. We
propose the runtime adaptive α technique to decrease learning time while main-
taining overall latency and throughput. An overview of the runtime adaptive α
technique is shown in Figure 5.6. The learning time is used to discover paths in
the given topology in a region. This path information is used by the data packets
when the learning time ends and application starts running. During the learning
time, only ant packets are generated by each node in a region to discover at least
one path between every pair of nodes. During this time the pheromone tables at
each router are also being updated. This learning time is used by the ACO based
routing to discover routes within a certain partition. A certain value of α1 is set
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Figure 5.7: Example of a dynamic α technique for multiple topology changes [109]

as an initial value during this time period. When at least one successful path
between every pair of nodes is discovered, the learning time ends. The α1 value
is now changed to α2. Application data packets are now being generated along
with ant packets as the application has now started running. Generation of ant
packets continue, to find better paths than originally discovered, now taking into
account the varying data traffic patterns as well.

As a reference, the static technique where α remains constant and is the same for
both the learning time and application runtime is also shown in the Figure 5.6.
We make a differentiation between learning time and application time to ensure
that when application packets start using the network, at least one feasible path is
already available between every pair of nodes to avoid packet loss due to lack of
feasible path. To set the initial value of α1, we conduct tests to determine which
α value is suitable to achieve the least learning time. The α value which performs
better when there is a high amount of data traffic especially at network saturation
is selected for α2. Using this technique we aim to achieve the lowest learning
time, while ensuring the latency and throughput do not suffer.

If a partition shape changes after an application has started running, path infor-
mation for the resulting new topology needs to be computed. Partition shapes can
change when a higher priority application sharing the NoC consumes additional
network resources for example. An extension of the dynamic α technique when
multiple topology changes occur is shown in Figure 5.7. Initially α1 and α2 for
topology 1 are αt1a and αt1b respectively. After a period of time, when topology
changes, the second learning time tl2 commences to discover paths in topology 2.
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This second learning time occurs in parallel to avoid halting the application. The
α1 and α2 for topology 2 in the Figure are αt2a and αt2b respectively.

5.4 Ensuring Quality of Service

Quality of Service (QoS) in general is the overall performance of the network. It
can include bandwidth, latency and throughput for example. In the NoC context,
QoS can be the latency or throughput experienced by a component utilizing the
interconnect [20]. Guaranteeing QoS is the ability of the network to promise
certain throughput and latency. This is especially important for applications
having real-time, safety or security requirements. If throughput and latency can
be guaranteed by the network, it is referred to as Guaranteed Service (GS) [20].
To enable guaranteed service communication typically network resources are
reserved and prioritization techniques are used to ensure data traffic meets the
requirements. A challenge in adaptive NoCs is ensuring latency and throughput
guarantee, especially when dynamic routing is used. There is benefit when
utilizing run-time adaptations, but providing adaptative techniques and in parallel
maintaining guarantees is still an open research problem as mentioned in [9].

In this work, we present DREAM routing and a framework to execute it in mixed
critical scenario.We had restricted that only non-critical traffic use ACO based
routing. If latency and throughput guarantees can be providedwhen using theACO
based routing, critical applications can also benefit from the flexibility of such an
adaptive routing. The base router used supports both GS and BE communication
[20]. When using BE, data to be transmitted from source to destination is split into
packets and transmitted. It is packet based communication and the packets can
take different routes. In BE communication, packets obtain best-effort service, the
possible data rates and latencies cannot be clearly provided at design time as the
results depend on the current traffic load and the traffic load in a distributed system
is difficult to determine [20]. The base router when using GS communication can
provide hard guarantees. When using GS communication, network resources like
virtual channels and time slots are reserved from source to destination. Efficient
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resource sharing using virtual channels are used by allocating virtual channels
exclusively for GS communication. The base router supports reconfigurable
bandwidth. This is achieved by reserving a certain number of timeslots when data
is transmitted. The number of timeslots to be reserved are specified in the header
of a GS packet. This enables not just GS communication but also bandwidth can
be configurable at runtime.

5.4.1 Latency and Bandwidth Analysis of Base Router

The base router used [20], can provide hard guarantees regarding throughput and
latency. Since resources are reserved exclusively for GS communication and thus
isolating it from other data flow. For an established GS connection, latency and
throughput can be guaranteed and hard boundaries can be provided. The worst
case bandwidth when using GS service is provided below. The bandwidth for a
given service level SL ∈ {0,1, ...,SLmax } is provided in Equation 5.6.

BWGS (SL) = SL

T Suti l ,max
·BWl i nk (5.6)

where T Suti l ,max is provided by Equation 5.7. BWl i nk is the bandwidth of the
physical link.

T Suti l ,max = max{T Suti l ,i ,∀i ∈ {0,1, ...,k}} (5.7)

In Equation 5.7, T Suti l ,i is the current port utilization during transmission. Where
i represents the ports 0 to k used by an established GS connection. The trans-
mission latency LGS for a packet for a GS communication using a certain SL is
provided by Equation 5.8.

LGS (SL) = (T Suti l ,max −SL+1) · (H ·Lpi pel i ne +Spkt −1) (5.8)
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Where H depicts the number of hops of the packet from source to destination.
Lpi pel i ne is the flit processing delay per hop. It depends on the number of pipeline
stages taken by the body flit in a router. The packet size in flits is provided by
Spkt . To compute the worst case latency, since T Suti l ,max can change at runtime,
in 5.8, the value of T Suti l ,max is replaced by T Stot al which is known at design
time. All other parameters like SL,Lpi pel i ne , Spkt and H are known at design
time. Deterministic routing is used, where the number of hops H between source
and destination can be known at design time.

Let us take an example used in [20] for reference to determine the worst case
latency for a an example GS communication. Consider a GS communication
flow established between a source and destination node. The header flit reserves
virtual channels, router resources and channels along the path. The routing is a
static XY routing. Let us compute LGS (SL) for a SL of 4. This implies Service
Level is set to 4, so 4 out of the maximum available time slots (which is 8 in the
design) are used for communication. Let us consider in this example, the hop
count between the nodes is 8. So H is 8. T Suti l ,max is the maximum number of
time slots available, which is 8 for the base router design.

The base router is a pipelined design with 5 stages. An overview of the functions
at each stage is shown in Table 6.1. Minimum 2 stages are required for functioning
of the router and the other three are optional. Depending on the type of flit the
number of processing cycles in a router is different. For example the stage 2 and
3 processes only Header flits. In computing the worst case latency, Lpi pel i ne is
the flit processing delay per hop for only the body flits. In our example let us
consider a 5 stage pipeline. Here, the processing delay per router for the header
flit is 5 cycles and for body flit is 3 cycles. So Lpi pel i ne here is 3. The packet
size is reflected by Spkt , and let us set it to 16 in this example. Now LGS (SL)

for this example is 195 cycles. Let us focus on the routing aspect. Its is static
XY routing, which is deterministic. Hop count between a source and destination
can be determined at design time. In the next section, we discus how one can
potentially ensure guarantees when the ACO based routing is used.

105



5 Runtime Adaptive Spatial Isolation Framework

5.4.2 Worst Case Analysis of DREAM Router

Using the DREAM router in which the ACO based routing is integrated, the
paths which the packet can take between nodes can change when better paths are
discovered. This makes determining the exact hop count for a given pair of nodes
challenging at design time. Now, how can we ensure latency and throughput
guarantees using DREAM routing?

One method to ensure guarantees is to assign a threshold to the hop count allowed
for a given pair of nodes. Let us have a look at the latency analysis. The value
which is not deterministic at design time is the number of hops H . If we assign a
threshold to this hop count at design time, theworst case latency can be determined
at design time. Threshold can be assigned per pair of nodes or assigned the same
for all pair of nodes. Let us analyse for when a threshold is assigned per pair of
nodes. A Hop Count (HC) is the number of hops a packet takes to travel from
source node to destination node. Minimal Hop Count (MHC) is the smallest hop
count connecting a pair of nodes. To ensure a low worst case latency estimate,
one can set the hop count H in Equation 5.8 to be the minimal hop count. If the
topology is known at design time, this is one option for assigning threshold.

Here we aim to improve network flexibility, especially when aiding in spatial
isolation formixed criticality systems. When partitions are created, let us consider
the topology within the partition is unknown at design time. In such cases the
threshold can be set to higher number for example increased by 2 hops. This
allows for non-minimal paths which can be beneficial. For example when ant
packets discover better paths around a certain hotspot or failed node, taking
a non-minimal path to reach the destination. Or due to the boundary of the
partition, non-minimal paths need to be taken. The drawback is that the worst
case latency will increase accordingly. An overview of how the worst case latency
increases with the increase in hop threshold is illustrated in Figure. 5.8.
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Figure 5.8: Variation of worst case latency for different hop thresholds

5.5 Multi-Layered DREAM NoC

In the last chapter in Section 4.5, we had presented a multi-layered NoC topology
with a supporting adaptive congestion and criticality aware routing to decouple
mixed critical traffic. Critical packets were routed across shorter paths and non-
critical packetswere directed over short or longer paths depending on local network
information. Here we propose to utilize the DREAM router which runs the
reinforcement learning enabled routing in such a multi-layered NoC to transport
non-critical traffic. The ACO based algorithm is extended for multi-layered NoCs
and this work is published in [106]. Flexibility can be increased if a topology
agnostic routing can be utilized.

The multi-layered topology under test in which the ACO based routing is im-
plemented was presented in the previous chapter in Figure 4.15. The network
is illustrated again in Figure 5.9 and the variation of port count in the routers
are also presented. To refresh, it comprises of 25 nodes interconnected using
three network layers. The base layer referred to in the Figure as Layer 3 is a 5x5
mesh layer. The second layer interconnects alternate nodes forming a 3x3 mesh
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Figure 5.9: Variation in router count and potential of path diversity in a 5x5, three layer network [106]

network. The top layer interconnect alternate nodes of layer 2 forming a 2x2 layer.
Such a topology allows multiple paths between pairs of nodes with different hop
counts.

Here, we exploit the diversity of paths available, by implementing the DREAM
routing to transmit packets.In such topologies, the routers can have varying degree
of port counts as illustrated in Figure 5.9. Port counts of routers range from 3 to 8
as shown This results in routers with higher port counts facing more traffic which
contributes to formation of hotspots. This can have a detrimental effect on latency
and throughput. A fully adaptive and dynamic DREAM routing, continuously
discovers better paths between nodes.

Here, we implement such a routing mechanism on the multi-layered topologies
as it inherently exploits the potential of path diversity in such networks. Packets
are transmitted based on local network state and past history of selected paths.
The routing table located at each router is updated in a distributed manner by the
special ant packets when new paths are discovered. This enables the algorithm
for example to navigate around hotspots and aid in load balancing. Due to the
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diversity of paths available between nodes, potentially better paths are explored
by special ant packets over time.

For critical packets, static routing like the XY is used to ensure guarantees and
for non-critical packets dynamic routing like the ACO based routing is used. To
ensure guarantees and low latency critical packets travel on static paths comprising
of shortest hop counts. This can result in certain routers becoming hot spots at
high traffic scenarios. Especially when the communication links are also being
shared by non-critical packets. To reduce this inter application influence, the
non-critical packets are routed on alternate paths discovered using the DREAM
routing.

Routing table at each DREAM router is built over time using the special ant
packets. There is a learning phase overhead to build the routing tables before
the application can use the network. If the topology is fixed, an option is to run
this learning phase and build preliminary routing tables offline, at design time.
Here in this work, we aim to keep the routing scheme flexible to also support
networks having configurable topologies. Where topologies may not be fixed at
design time. To ensure this overhead is low, once preliminary tables are built
where at least one path is available between each pair of nodes in the network,
the application can start its runtime and start using the network to transmit the
packets. In the example here, the network is the 5x5, three layer topology Special
ant packets are injected along with application packets, to discover better routes
over time depending on application data patterns.

5.6 Summary

In this chapter, we presented the DREAM NoC which uses the reinforcement
learning enabled routing based on ACO. We also presented the supporting frame-
work which comprised of dedicated learning phase and application phase to aid
in flexible, adaptive, runtime spatial isolation in mixed criticality systems. The
analysis of learning time, which is dedicated to the discovery of paths in the given
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network and building of preliminary routing tables was presented. Techniques by
which this learning time overhead can be decreased was proposed. The latency
and bandwidth analysis of the DREAM router along with the worst case analysis
was discussed. We also extended the DREAM routers to support multi-layered
NoCs.
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This chapter describes the architecture of the base NoC router, DREAM NoC
and multi-layered NoC. This includes implementation description of adaptive
routing algorithm concepts presented in Chapters 4 and 5. Additionally, design
constraints, modifications done to make the DREAM routing algorithm imple-
mentationmore hardware friendly and custom functions implemented is described
in this chapter.

6.1 DREAM Router Architecture

An overview of the DREAM router architecture and its functionalities is described
in this section. The base router is based on [111] and an overview of its working
is presented in Section 2.3.2. A basic architecture overview is shown in Figure
6.1.

6.1.1 Base Router Features

An overview of the basic functioning of the router is as follows. The router utilizes
packet switching and the concept of virtual channels. The packets are transported
using wormhole switching technique for efficient buffer utilization. Arriving
packets are stored in the input buffers. In the design, there are four buffers per
input port, each representing a virtual channel. The number of input ports can be
set at design time. For a regular 2D mesh topology the number of ports is 5. Four
ports in each of the cardinal directions (N,S,E,W) and a local port(L). When the
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Figure 6.1: Base Router Architecture.
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Figure 6.2: Overview of packet structure comprising of head flit, one or more body flits and a tail flit.

packet arrives at the input buffer, information like source and destination addresses
are sent to the Routing Unit (RU). The output port is determined according to
a routing algorithm in the routing unit. A reservation request to the determined
output port is made in the Reservation Table (RT): The reservation table selects
a certain VC at the requested output port and reserves it for the requesting input
port. If all VCs are occupied, packet waits in the input buffers until a VC is
available. A Transmission Control unit, controls access to the output port and
arbitrates between the requests reserved to reserve the output port. A round-robin
scheduling scheme is implemented in the transmission control. The crossbar is
switched on by the Transmission Control unit and the data in a selected input port
is forwarded to its requested output port accordingly. To ensure there is enough
space in the input buffers of the downstream router, a credit-based flow control is
used.
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Ctrl Flag(1) Head Tail Dst SL Src Pkt Info Payload

Header Data

Figure 6.3: Format of a basic control flit appended with a control flag. A control flit can be a head
flit, tail flit or a single flit.

As the router design uses wormhole-switching, packets are divided into equal size
flits. A packet usually comprises of a Head flit, one or more Body flits and a
Tail flit. An overview of the basic packet format is shown in Figure 6.2. Each
flit is transmitted along with a control flag prefix to indicate if it is a body flit
or a control flit. A control flit can be a Head flit, a Tail flit or a single flit. A
single flit contains information of Head, Tail and body in a single flit. Addresses
and other relevant packet information needed to determine paths are present in
the Head flit and a control flag aids the router to process the different packet flits
accordingly. Format of a control flit and a data flit is illustrated in Figure 6.9 and
Figure 6.10 respectively. The size of the flit depends on the link width which can
be configured at design time. A Head flit is indicated by setting the respective
field to 1 and Tail field to 0. Similarly for a Tail flit, the respective field is set to 1
and the Head field is set to 0. The source and destination addresses are stored as
X and Y co-ordinates. Packet Information field contains information which might
be required and depends on the routing algorithm used.

The base router is hybrid as it supports both GS and BE communication. The
GS communication [111] provides different Service Levels (SL) and higher the
value of SL, higher is the bandwidth guarantees provided and with lower latency.
Applications can set the SL value in the packet header according to their require-
ments. SL value indicates if it is a BE or a GS packet. A zero value indicates
a BE packet and a non-zero value indicates a GS packet where the value of SL
indicates the service level requirement in terms of bandwidth allocation. The SL
value represents the number of time slots which can be reserved to transmit data
between one router to another.

To improve timing and clock frequency, a pipeline model is utilized. An overview
of the pipeline stages is shown in Table 6.1. Not all stages are required and the
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Ctrl Flag (0) Payload

Figure 6.4: Format of data flit comprising of the payload appended with a control flag

Table 6.1: Pipeline Stages of Base Router

Pipeline Stage Description Type of Flit Note

1.Input Buffer Requires one cycle All(H/T/B) Required
2.Routing Route/output port computation and

Arbitration
H Optional

3.Reservation Add entry in the reservation table H Required
4.Scheduling Scheduling using arbitration unit in

transmission control unit
All(H/T/B) Optional

5.Output Register Can be enabled to relax timing of
the links

All(H/T/B) Optional

number of stages can be configured at design time. At least two stages are required
for the functioning of the base router and the other three are optional. Depending
on the type of flit the number of processing cycles in a router is different. Here we
implemented a XY routing mechanism in the base router. To support multicast
and broadcast communication, we developed and implemented the block-based
multicast routing concept described in Section 4.4 and the results was published in
[100]. This Block-Basedmulticast routing is implemented in the RoutingUnit and
changes were made to the crossbar to support packet duplication when required.

In GS communication in the base router, the header flit reserves the router re-
sources from node to node as a chain of virtual channels. Body flits are used
to transmit data and tail flit releases the resources. The end-to-end GS com-
munication is established by exclusively reserving resources and is isolated from
other communication flows in the network. Thus hard guarantees in latency and
throughput can be provided using GS communication.In BE communication all
the flits of the packet, like header flit,body flits and tail flits are injected contigu-
ously into the network and there is no reservation of communication resources
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Figure 6.5: An overview of the DREAM router

by the header flit. All packets therefore obtain BE service and the latency and
throughput depend on the current network load.

6.1.2 DREAM Routing Unit

The DREAM routing is a reinforcement learning enabled routing algorithm tar-
geting mixed criticality systems and is based on AntNet routing algorithm. As
described in section 4.1.1, we aim to implement certain aspects of the AntNet
routing algorithm which is based on ACO in the NoCs and target mixed criticality
systems. Preliminary investigations into implementing the AntNet routing in a
NoC router was conducted as part of a supervised student’s work [37]. This
included investigating modifications to the original AntNet routing to simplify for
hardware friendly implementations.
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Figure 6.6: An overview of the DREAM routing unit

An overview of the DREAM router is illustrated in Figure 6.5. Each computation
unit comprises of a routing unit implementing the DREAM routing algorithm
and accesses the pheromone table accordingly. Relevant router features like the
credit counters is shown here which keeps track of the input buffer status of the
downstream router via the acknowledgement signals received. This buffer status
information is used by the transmission control to determine when the buffer is
free to transmit packet and is also used by the DREAM control unit to determine
better paths. The number of input ports depend on the chosen topology. For
a mesh network, there are 6 ports: four in the cardinal directions (N,S,E,W), a
local port (L) and a drop port. The four cardinal output ports are connected to the
neighbouring routers and the local port is connected to the local processing tile
via a Network Adapter. A drop port is built into the router is drop any forward
ant packets which were not successful in finding a suitable output port.

A more detailed architecture of the DREAM routing unit is shown in Figure 6.6.
When a packet arrives at the input router and is sorted into an input buffer, the
header information is accessed by the DREAM routing unit. A suitable routing
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Header Data ant antd fw ptr dir0 add0 dir1 add1 ... dirn addn

Path Information

Figure 6.7: Format of a forward ant flit

Header Data ant antd fw ptr dir0 t0 dir1 t1 ... dirn tn len

Path and Time Estimate Information

Figure 6.8: Format of a backward ant flit

algorithm is utilized based on the criticality of the packet. For a packet requiring
GS, a deterministic routing like XY is utilized to compute the output port. For a
packet requiring BE service, output port is computed using the DREAM routing.
DREAM routing comprises of processing the forward ant packets, backward ant
packets and the data packets.

6.1.3 Packet Format

Forward and backward ant packet sizes are restricted to a single flit to reduce router
processing delay. An illustration of a forward ant flit is illustrated in Figure 6.7.
Along with the base Header data it contains fields to indicate the type of ant
flit and stores the path information. The length of the path is restricted by a
certain upper bound to the number of hops allowed when discovering a forward
path. This threshold value can be set at design time. This also aids in avoiding
livelocks, as packets are dropped if the number of hops exceeds the value set.
Livelocks are scenarios where packets travel continuously in a network without
reaching its destination. An overview of the descriptions of the fields is illustrated
in Table 6.2. In our design, once the forward ant flit reaches the destination router,
it is converted into a backward flit and sent to the local port connecting a test
bench. The test bench implemented, receives this backward ant flit and injects it
back into the network. The backward ant flit format is illustrated in Figure 6.8.
In the backward ant flit, the source and destination addresses are swapped and the
path information like the directions is retained along with the total length of the
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Ctrl Flag(1) Header Data ant antd payload

Figure 6.9: Format of a DREAM control flit appended with a control flag. A control flit can be a
head flit, tail flit or a single flit

Ctrl Flag (0) Payload

Figure 6.10: Format of data flit comprising of the payload appended with a control flag

path. Direction information is enough for the backward ant to travel back to the
source router. The address fields in the forward ant flit is not needed any more and
its fields are reused to store link travel time information per hop. The backward
ants when travelling back to the source node, on its path, stores the estimated link
travel time for each hop and stores it in the respective field. Reusing the fields
in such a manner helps to maintain same flit length for forward and backward
flits. Data packets comprise of a head flit, one or more body flits and a tail flit.
Investigations into preliminary design of packet formats was conducted as part of
the supervised student’s work [37].

6.2 Design constraints

In this section, we describe how certain complex computations was handled to
make the implementation hardware friendly. Preliminary investigations was con-
ducted as part of the supervised student’s work [37] and an overview is provided
in this section and in section 6.3.

6.2.1 Router local memory

Pheromone values are represented by 4 bit fixed point numbers and is based on the
research by authors in [112]. This is because, pheromone values are always in the
range of [0,1), an integer part is not required and all bits can represent the fractional
part. The router local memory stores the pheromone table and the traffic model.
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Table 6.2: Fields of forward and backward ant flit

Field Description

Header Data Comprising of base packet information like source and desti-
nation addresses, as mentioned in Figure 6.9

ant if set to 1, indicates a forward ant, backward ant or a data
packet following DREAM routing

antd data ant field, if set to 1, indicates a data packet to be routed
using DREAM routing. If set to 0, and ant is set to 1,
indicates a forward or backward ant flit

fw if set to 0, indicates a forward ant flit. If set to 1, indicates a
backward ant flit

ptr for forward ant flit, it is to keep track of free cell to add address
when discovering paths. For backward ant flit, it is to keep
track of directions to travel back to the source

dir0-dirn forward ant flit stores directions is takes, so the backward ant
can travel back to the source

addr0-addrn forward ant flit stores addresses of nodes it visits. Aids in
avoiding loops.

T0-Tn backward ant flit stores link travel time estimate between
nodes

len length of the total path
payload In head flit of a data packet, stores packet ID information. In

data flit, stores the data to be transmitted

Each DREAM routing unit performs a read access this router’s local memory
when a forward and or a data packet arrives. Ant learning is part of the backward
ant routing unit and produces a read-modify-wrote cycle to this memory when
required. If the number of input ports is N (including the local port), the local
memory storing the pheromone table needs to support N concurrent read accesses
per clock cycle and a read-modify-write cycle for the destination of interest. The
memory needs to also support N-1 concurrent writes, as backward ant flits can
arrive on all external directions except the local link. Write collisions have to be
tolerated. This ant memory comprising of the pheromone table is implemented
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as synchronous RAM. Thus the read data is only valid for one cycle after the
address. Due to this, the optional routing pipeline stage 2 in the base router is now
mandatory. This is done so that in this cycle, the read address can be generated
from the destination address in the packet header, and the resulting information is
used route the packet in the next cycle This modification results in 3 mandatory
pipeline stages for the DREAM router. The pheromone table at each router stores
pheromones of all source-destination pairs. If a maximum possible partition size
is known at design time, then the size of the table can be set accordingly. Initial
values of the table is set based on a superposition of XY and YX routing for a
mesh based topology to allow for path diversity.

The values of link queues is derived from the credit counters which keep track
of the number of flits in the input buffers (virtual channels) in the downstream
routers. This gives a measure of the number of bits waiting in the buffers, which
was intended by the AntNet algorithm as well. The DREAM routing unit has
to process an entire ant packet before an output port can be determined. In our
design, the packet is of one flit size of 128bit. To decrease the link width, an ant
packet can be split into multiple flits but this can increase routing processing delay.
To simplify integration, reading and writing processes into the local memory, ant
packets are reduced to a single flit of size 128bit.

6.2.2 Overview of Modifications

An overview of modifications made to the AntNet routing algorithm to simplify it
to make to keep the hardware complexity manageable is explained in this section.
Sub-path updating is not performed as it requires an additional read-modify-write
cycle to the local memory for each sub-path. Secondmodification is the correction
term in the computation of r̃ in Equation 4.12 is excluded which implies setting
the parameters c1 = 1 and c2 = 0. This is done in our case as the correction term
has a little impact on the resulting reinforcement factor most of the time but is
responsible for expensive circuits. This simplification also eliminates the mean
and variance from the traffic model. As these two moments would require higher
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Table 6.3: Overview of AntNet’s parameters and the values assigned in our design [37]

Parameter Useful Domain AntNet Here Notes

α [0.2,0.5] 0.2 [0,1] exploration vs. exploitation, val-
ues beyond the suggested use-
ful domain is investigated to de-
crease the learning time over-
head

ϵ > 1 1.4 2 data exponent
ŵ c · 5/η c = 0.3 15 window length. Maximum

value is 15, can be stored in 4
bits

a > 0 5 5 squash factor

precision fixed point formats, this makes storage in the router memory structure
and updation logic less complex.

The AntNet algorithm has a number of parameters which influence the behaviour
of the algorithm and the its authors provide a useful domain for these parameters
along with the values used for their experiments in [36]. The values used in our
design are derived from these suggestions and they are rounded to the nearest
power of two to enable less expensive hardware implementation using bit shifts.
Table 6.3 gives an overview of these parameters.

6.3 Functioning

6.3.1 Forward and Backward Ant Routing

Forward ant flits are injected at each node in the network. When a forward ant flit
is routed, a list of all possible directions is first determined. Probabilities of the
output ports are then calculated based on Equation 4.4 and a direction is selected
randomly.The routing decision is stored in the ants memory along with the local
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address as described in Section 6.1.3. When considering possible directions to
route the forward packet, physical links which do not lead to an already visited
node is considered. If no such path exists, the ant flit is dropped. On the way
to the destination, if a loop is detected, the forward ant flit is dropped. At the
destination router, the forward ant flit is converted to a backward ant flit and it
retraces back to the source node based on the stored path information.

Backward ant flit inherits the forward ant’s memory, and on its way back to the
source stores the link traversal time for each hop. Address space is reused to store
the traversal time, as this information is not required any more. The conversion of
the forward ant flit to the backward ant flit occurs in the destination router of the
forward flit. The packet then is ejected via an output port and injected back into
the router to start the backward journey. To support this feature the base router
was modified to support the ejection of packet via a routing port through which it
has entered.

6.3.2 Ant Learning

When the backward ant arrives at a router, along with the processing of the
backward ant flit the ant learning is also executed. Due to the modifications
to the original AntNet algorithm to make it hardware friendly the traffic model
procedure is simplified as described in Section 6.2.2. Due to the simplifications
which include setting c1 = 1 and c2 = 0 and consequently eliminating mean and
variance from the traffic model, only the non-sliding window remains a part of
the traffic model. Refer to equations 4.12 and 4.13. Now, W is reset to the average
of best and current travel time to approximate the longer term mean:

W ′ = T +W

2
. (6.1)

The reinforcement factor now gets simplified to

r = sn

(
W

T

)
. (6.2)
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Figure 6.11: Squash function and approximations for |Nk | = 4 [37]

The squash function is used to emphasis good results by squashing the rein-
forcement factor as described in Section 4.1.4. The squash function as shown
in Equation 4.14 comprises of exponentials and divisions which increases hard-
ware complexity. However after quantization to 4 bit, s looks almost linear. The
approximation is illustrated in Figure 6.11 and is also compared to the original
squash function. This motivates replacing the original definition with a linear
approximation.

6.3.3 Data Packet Ant Routing

Data packets which uses DREAM routing is routed according to the ant data
routing policy described in Section 4.1.3. The routing probabilities are derived
based on the pheromone values using equation 4.5. The parameter, data exponent
is set to η= 2 as described in Table 6.3. The integer power results in less expensive
hardware. This also results in increased emphasis to good paths when compared
to AntNet routing due to the higher exponent value. Forward ant and backward ant
flits are modified during routing. For data packets, only the head flit information
is sent to the routing unit for processing and the rest of the packet is stored in the
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Figure 6.12: Random port selection [37]

input buffer. This results in the data path being spilt before the routing unit, and
a multiplexer and additional registers are utilized to reintroduce the modified flit
into the data path. Data packets requesting for BE communication is routed using
DREAM routing and GS communication is routed using deterministic routing.
For a mesh based topology one of the algorithms we implemented is XY routing
algorithm.

6.3.4 Random Port Selection

When routing forward ant flits and data packets, the output port is selected
randomly with a probability based on the pheromone value. This is implemented
by adding the probability values to an accumulator. When a probability value is
added to the accumulator, the current sum is compared to a pivot register that is
randomand uniformly distributed. If the accumulator sum is greater than the pivot,
the recently added probability is selected. An example of the selection process is
shown in Figure 6.12. The selections are only made with the correct probability
if the sum of all the probability values add up to 1. Thus a normalization
step is required. A pseudo random number for the pivot is generated using a
linear feedback shift register. A dedicated pseudo random number generator is
implemented in each DREAM routing unit with a unique seed which is derived
from the node address and port number. This randomness in selecting an output
port does not result in same routing decisions every time, which could lead to
congestion of ports which is now avoided.
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6.3.5 Division and Normalization

Investigations to evaluate suitable division and normalization techniques was
conducted as part of supervised student work [37] and a summary of the results
is presented here. The base router used is a pipelined design and to effeciently
integrate the DREAM routing scheme into the architecture, we aim to execute
the routing decision in a single cycle. Due to this, the division needs to be
combinatorial. Binary long division scales poorly with precision [113], but it is
combinatorial and can be effective for low precision numbers which is the case
in our design. The initial synthesis conducted in [37] revealed that this approach
reaches 77 MHz for the normalization of four pheromones. The circuit consumed
560 LUTs. An alternative method was that a division can be converted into a
unary inversion followed by a multiplication. The inversion could be performed
with a look-up table which holds all possible 1/q values and a division can then
be expressed by

p

q
= p · (1/q). (6.3)

This circuit reaches 300 MHz and uses only 47 LUTs and 4 DSP slices which
accelerate the multiplication. Thus the described alternate version was chosen to
implement the divisions.

6.3.6 Traffic Isolation Implementation

The DREAM router supports GS and BE communication as explained in Section
6.1.2. Non-critical applications use BE service where DREAM routing is used to
route packets and critical applications use GS communication which is routed on
deterministic paths using XY routing. The partition shape and thus the topology
occupied by critical application is usually known at design time and guarantees
need to be computed at design time. When a critical application arrives and
occupies resources, the region information is communicated to the border routers
to stop accepting any packets from nodes outside this region. Thus if an exploring
forward ant packet attempts to enter this region it is dropped, thus discouraging
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future ants attempting to enter the critical region. In general it is sufficient for the
pheromone table at each router to store route information within its own partition.
Thus the table size can be set to maximum number of nodes possible in a region
and not the total number of nodes in the entire network to improve scalability.

6.4 Deadlock and Livelock Avoidance

In the design, deadlock and livelock avoidance mechanism is implemented as
follows. A method to avoid deadlocks is by restricting turns in a turn model [14].
In turn models, possible deadlock cycles are defined using the turns which the
packets can potentially take. In a 2D mesh topology, there are eight turns which
can be combined to create two abstract cycles in clockwise and anti-clockwise
directions and is shown in Figure 2.11. In our design, one of the turns in each cycle
is eliminated to avoid cyclic dependencies and thus avoiding deadlocks. When a
forward ant packet is discovering a new path, at each router, the DREAM routing
unit determines a suitable output port. The routing unit uses the information
of the input port it arrived on and eliminates output ports which can lead to
a forbidden turn. Over time due to the reinforcement learning aspect of the
routing mechanism such turns are not rewarded and packets seek alternate paths.
Message dependent deadlocks are avoided by restricting certain packets to an
exclusive virtual channel. For example, memory based traffic data like request
and response packets can cause message depended deadlock even if the routing
algorithm used is deadlock free (XY routing for example). To avoid such cases, in
the design request packets are restricted to 3 virtual channels (example vc1, vc2,
vc3) and response packets are restricted to travel in its on fourth virtual channel
(example vc0). Due to this restriction the request and response packets do not
share the same virtual channel and message-dependent deadlocks caused due to
these packets can be avoided.

Livelock situations are when a packet is travelling in the network without reaching
its destination and can have a detrimental effect on performance due to increased
traffic. Such cases can be avoided by dropping the forward packet after it reaches
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a certain number of hop count value. The threshold for the hop count can be
assigned at design time and can depend on the topology. The forward ant packets
store the path information its memory, and using this information a hop counter
is used to determine the total number of hops travelled by the ant packet. Is
the forward ant packet meets a certain threshold the packet is dropped and such
paths are not rewarded and results in the path being avoided by future ant packets.
In our design, for a mesh based topology, we assign the threshold to greater or
equal to the diameter of the network to enable non-minimal paths. Diameter
is the shortest hop count between the farthest nodes of a network. To support
non-minimal paths for irregular topologies and to support longer paths we set
this threshold to twice the diameter for mesh based networks. Such non-minimal
paths can be advantageous to route around hot spots or faulty routers or links.

6.5 Multi-Layered NoC Architecture

We have discussed the DREAM NoC router architecture and hardware design
focusing on the 2D mesh based topology till now. Now we present an overview of
the multi-layered architecture incorporating the congestion aware adaptive routing
described in Section 4.5. The 5x5 multi-layered NoC topology described in
Section 4.5, is illustrated in Figure 6.13. In the Figure, tile numbering and
addresses of each router in

(x, y)

format is included. We also discussed an extension of DREAM NoC to support
this multi-layered NoC topology in Section 5.5. A brief overview of this multi-
layered DREAM router architecture is also presented in this section.
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Figure 6.13: Detailed overview of the multi-layered NoC illustrating tile numbering assigned and
addresses in (x,y) format

6.5.1 Multi-Layered NoC Router

An overview of the algorithms designed for multi-layered NoC is provided below
and its detailed description is provided in Section 4.5. The following algorithms
were integrated into the base NoC router.

• Static XY Routing (XY): Packets travel only on the 5x5 2D mesh (Layer3)
using traditional XY routing

• Static Layer XY Routing (Layer XY): An extended version of the XY
routing which utilizes all three layers. If source and destination is on the
same network layer, regular XY routing is used to transmit packets on the
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Figure 6.14: Routing unit for multi-layered NoC Router

Figure 6.15: Port information connecting the different layeres in the multi-layered router. Base router
shown for reference.

same layer. If the source and destination nodes are on different layer, the
base 5x5 layer is utilized using XY routing to transmit packets.

• Static routing using Near Node Function without Congestion Avoidance
(NN without CA): Packets are always transmitted on paths with the shortest
hop count across the three network layers.

• Dynamic routing using Near Node Function using Congestion Avoidance
(NN with CA): Packets are transmitted on shorter hop count paths during
low traffic and routed across pre-determined longer hop counts during high
traffic scenario.
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Figure 6.16: Number of ports for the different routers implemented. Base router for comparison,
DREAM router for 2D mesh based topology and DREAM router for a multi-layered
topology

The base router shown in Figure 6.1 was extended to support upto 9 links. As
the number of ports range from 4 to 9 depending on the router’s position in
the network, unnecessary ports can be disabled. In the Figure 6.13, only ports
connecting the neighbouring routers are illustrated. Local ports are not illustrated
for simplicity. Deadlocks were avoided here, by utilizing virtual channels and
restricting turns in the turn model at each layer. In our test implementation, the
linkwidth is set to 32bit, this can be configured at design time. The routing
algorithms were implemented in the routing unit and an overview is shown in
Figure 6.14. Along with a SL filed in the packet header which indicates BE or
GS packet, another special field is designed in the packet information section to
indicate the type of routing algorithm to be used for a packet. A GS packet is
routed according to the deterministic algorithms like XY, LayerXY or NNwithout
CA based on this packet information. These algorithms route packets on the same
paths and do not change at runtime. A BE packet is routed using adaptive NN
with CA routing. This algorithm, routes packets along different paths based on
local traffic information. With the increase in the number of ports, there is also
increase in the input buffer and cross bar resources. One of the motivations to
just connect alternate nodes in the lower levels of the network was to reduce the
number of high port routers. A general overview of the ports connecting different
layers for a multi-layered router is shown in Figure 6.15. A base router for a
regular 2D mesh is also shown for reference.
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Figure 6.17: Examples of DREAM router for multi-layer network at different address locations
(0,0),(0,2),(1,1) and (0,1). Refer Figure 6.13 for address locations

6.5.2 Multi-Layered DREAM NoC Router Extension

The DREAM router was extended to support the multi-layered NoC shown in
Figure 6.13. The total number of ports for a regular 2D mesh topology is 6
including the Local (L) and Drop (D) port. For the multi-layer topology the
maximum number of ports is 10, in our 5x5 test topology. A comparison of
routers is shown in Figure 6.16. The number of ports varies depending on the
position. It ranges from 5 to 10 and examples of the routers at different locations
is illustrated in Figure 6.17. Deadlocks are avoided by restricting certain turns
at each network layer to prevent cyclic dependencies. Thus such paths are not
rewarded. To avoid livelocks, forward ant packets are dropped if the number of
hops exceeds a certain threshold. In our design, for the 5x5 three layer multi-layer
NoC used to investigate in this work, the limit is set to the diameter of the 5x5
mesh layer which is 8. This can be configured at design time.

6.6 Summary

In this chapter, we described the NoC architecture implemented and the sup-
porting adaptive routing algorithms and multi-layered topology extensions. Sec-
tion 6.1 provided an overview of the DREAM router architecture. This includes
description of the base router used, DREAM routing units and packet formats.
Section 6.2 provided design constraints and discussed how complex computations
were handled to make the implementation hardware friendly. This also included
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an overview of the modifications done to the original AntNet routing algorithm
to simplify it with the aim of reducing hardware complexity. Functionality of
the DREAM router was described in Section 6.3 which included how different
packets like forward, backward and data packets are processed in the router.
Deadlock and livelock avoidance techniques implemented is described in Sec-
tion 6.4. Multi-layer extension and supporting routing algorithm was described
in Section 6.5.
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The architecture and evaluation of the contributions in this work like the DREAM
NoC, supporting framework, multi-layered extensions and supporting adaptive
routing algorithms is presented in this chapter. Its HDL implementation and
simulation framework is described and the feasibility of the proposed techniques
is presented. An HDL implementation which can be synthesized is developed to
obtain resource requirement numbers and achievable clock frequency. An HDL
implementation aids in FPGA-based prototype or an ASIC design. A proof-of-
concept HDL implementation of the proposed NoC and supporting concepts is
developed using SystemVerilog.

7.1 Evaluating Reinforcement Learning Based
Routing

7.1.1 Overview of Test Environment

A test bench was developed to test the DREAM NoC and supporting features in
SystemVerilog. An overview of the design is shown in Figure 7.1. It comprises
of multiple test modules dedicated to each node in the network. As shown in the
figure each individual test bench at each node injects and receives packets into the
network. Each dedicated test bench comprises of a Network Interface (NI), which
connects to the NoC. Here the NoC is an interconnection of routers according to
a certain topology. In general, each router comprises of a Local port which is
connected to its local processing tile comprising of data reception or generation
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Figure 7.1: An overview of test bench

modules. Examples for such modules include, processing units or memory units.
In the test setup, these processing tiles are represented by a dedicated test bench
which injects data into the network according to a specific pattern and receives
data. The data sent and received and monitored to compute metrics like data/ant
packet injection rate, data/ant packet ejection rate (throughput), average delay etc.

Before data packets are injected, the special ant packets are injected to discover
paths in the learning phase as explained in section 7.4 and illustrated in Figure 5.3
. When a learning phase is initiated, Forward Ant Generator at each node (Fwd
Ant Gen module in Figure 7.1) injects forward ant packets into the network
periodically according to the packet format in Figure 6.7. In the design, the
forward and backward ant packets are of one flit size of 128 bits. If a forward ant
packet successfully arrives at a destination router, it is converted to a backward
ant packet by swapping source and destination fields in the router. The backward
ant packet is according to the format in Figure 6.8. The backward ant packet is
ejected by the router to the test bench via its local port. The test bench, using
its monitoring units keeps track of the number of forward ant packets received
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and converted and injects the backward ant packets back into the network. The
backward ant packet then retraces its path back to the source node, updating the
routing/pheromone tables in the routers on its way. It is then received by the test
bench and a successful backward ant received indicates discovery of a feasible
path between a pair of nodes. A counter is used to keep track of successful
received backward ant packets which indicate discovery and/or update of paths
information. In the learning phase, the focus is to discover at least one path
between a pair of nodes while ensuring low learning phase overhead. Therefore,
as soon a successful backward ant is received the forward ant packet generation
for that pair of source and destination is paused to reduce unnecessary traffic.
Once at least one backward ant packet is received for all pair of nodes, indicating
at least one path is available for every pair of nodes in the network, the learning
phase is ended. For network or a partition comprising of n nodes the learning
phase ends when n ∗ (n −1) paths are discovered. The application phase is then
initiated.

In the test module, to denote the application traffic, data packets are injected
according to aUniformRandomTraffic pattern. The data packet generatormodule
(Data Pkt Gen), injects data packets of varying flit length in a uniform random
traffic pattern. Injection of packets according to a synthetic traffic pattern is
widely used for performance evaluation. In uniform random traffic, each node in
the network transmits packets to all other nodes of the network with the same rate.
When the application phase is initiated, the forward ant packet generator resumes
injection of forward ant packets at each node to discover better routes over time.
As the special ant packets now travel along with the data packets, better paths can
be now discovered based on application traffic patterns. Depending on if static
or dynamic α value technique is chosen the α value is updated and transmitted
to each router via the test bench accordingly. Monitoring units also keep track of
data packets injected and received to compute throughput and latency.
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7.2 Minimal and Non-Minimal Route
Computation

We start with studying the capability of the ACO based routing in DREAM NoC
to discover minimal and non-minimal paths in regular and irregular topologies.
Regular or irregular partitions in a network can be created which haver regular or
irregular topologies, either due to spatial isolation techniques or network compo-
nent failure. Such topology agnostic routing schemes are beneficial to discovering
routes within these partitions which are minimal and non-minimal. Minimal rout-
ing implies that the path between source and destination has the shortest distance
referring to the Manhattan distance in a regular mesh based topology. XY rout-
ing scheme is a minimal routing strategy. Non-minimal routing is beneficial to
distribute load in a network to avoid congestion. DREAM routing supports both
minimal and non-minimal paths. Evaluations are conducted on regular and irregu-
lar topologies. Results presented include learning time overhead to discover paths
and the learning time of topologies of varying degree of regularity is compared.
The number of special ant packets needed to explore paths within partitions and
the number of ants which are lost are analysed. The DREAM routing is tested on
a range of partitions as shown in Figure 7.2. A 4x4 NoC is setup, and a partition
under test is instantiated in the network. The border routers in this partition are
directed to not transmit or receive packets outside of it. The results presented here
include latency in cycles in terms of average hop count, learning time in cycles
required to computes all paths in a partition, percentage of ant packets successful
and overhead in terms of total ant packets needed.

The capability of the DREAM algorithm to find minimal and non-minimal paths
in regular and irregular topologies is demonstrated using the results. Different
partition shapes are chosen to test the algorithm and are organized into different
categorizes as shown in Figure 7.2. In category 1, regions having regular mesh
topology are considered with increasing number of nodes. The second category
considers different irregular topologies interconnecting 8 nodes. The third con-
siders three different topologies with 12 nodes. Topologies where non-minimal
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Figure 7.2: Range of partitions considered [21]

routing is required for successful communication between all pairs of nodes are
also considered as shown in category 2a, 2b, 3a and 3b.

A summary of the techniques used to discover paths is presented here again. A
forward ant packet which comprises of one flit is injected at each node in a region.
Forward ant packets are periodically generated at each node. If the forward ant
successfully reaches the destination, it returns back on the same path and updates
the pheromone tables along the way thus distributing the routing information. A
path is now said to be successfully discovered between a source and destination
pair. If the forward ant is not successful it never returns to the source router as
a backward ant packet. After a set waiting period elapses, the source node sends
another forward ant packet. This is repeated until a path is discovered for a chosen
destination node. Ant packets to that specific destination are not injected further
after a path is discovered, to avoid adding unnecessary traffic in the network. The
learning phase is considered complete here when every node has one discovered
path to every other node in the partition.
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Figure 7.3: Results of partitions in category 1, mesh topologies [21]

7.2.1 Learning Time Overhead Analysis

Results for regular mesh topologies of category 1 is shown in Figure 7.3. The
time required to compute paths (learning phase overhead) and the total number
of ant packets injected increases with the increase in number of nodes. This is
expected as the number of nodes increase, the number of forward ants injected
also increases. The success rate of the forward ant packets range from 65% to
83%. Let us elaborate this using an example of a 2x2 region size. Total forward
ant packets injected by the 4 nodes to discover at least one path between all pairs is
23. Among them 15 (65%) forward ants successfully reached its destination, and
translated to backwards ants. In mesh topologies, the nodes are clustered together,
and have high forward ant success rate when compared to irregular topologies as
we can see next.

Let us now compare results between regions having the same number of nodes
but different topologies. Challenging topologies which having high degree of
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Figure 7.4: Results of partitions in category 2, 8-node topologies [21]

irregularity leading to non-minimal paths is considered as shown in Figure 7.2.
Results for partitions in category 2 are shown in Figure 7.4 and compared against
mesh with the same number of nodes. The learning time overhead is the highest
for the first partition (a) which has a high degree of irregularity since more number
of non-minimal routes need to be computed. The percentage of success is the
lowest for this partition because it is the least clustered, thus available feasible
paths in all directions is limited. Therefore more packets need to be injected
to discover feasible paths. Similar results can be seen for category 3 as shown
in Figure 7.5 and compared against mesh with the same number of nodes The
total number of packets injected is presented next to analyse the packet injection
overhead. For partitions in category 3, which has 12 nodes in a region, it required
around 200 packets for a mesh based region to discover at least one path between
all source destination pairs as shown in Figure 7.5. The time taken was around
2600 cycles. This increased to 450 packets when the regularity of the topology
decreased and non-minimal paths were required. The learning time overhead
increased upto 8200 cycles.
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Figure 7.5: Results of partitions in category 3, 12 node topologies [21]

Table based routing has an inherent resource overhead when scaled up due to the
implementation of the tables. For larger network sizes, if the maximum possible
number of nodes in a partition is known, then the size of the routing/pheromone
tables can be fixed accordingly so as to avoid having all the source destination
pair information stored in the table. Preliminary hardware utilization for a single
regular 5-port XY router and an ACO router is shown in Table 7.1. The synthesis
targets Virtex-7 (XC7V2000T). The regular XY router here is the base router
architecture, using 32 bit link width and implementing XY routing. Since the
bit width chosen for ACO is 128 bits to have a single flit ant, this resulted in
the input buffers consuming most of the resources in ACO router. AntMem

Table 7.1: Resource usage [21]

XY total buffer
LUT 2284 1479
FF 4546 4184

AntNoC total buffer AntMem
LUT 7879 3461 642
FF 6586 4196 476
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module is where the pheromone table is designed, which has the probability of
attractiveness of each port when targeting a certain destination. To reduce the
resource consumption, an alternative is utilizing ant packets having multiple flits
and thus reducing the link width and input buffers. Overall the ACO based router,
while highly flexible, does consume more resources and further optimizations
are possible. This flexibility can be beneficial for large scale platforms, where
the alternative of utilizing an ad-hoc routing algorithm for each new partition
shape can incur high software overhead. The results presented in this section was
published in [109].

7.3 Runtime Adaptive Alpha Technique

Next we investigate the ACO based DREAM routing scheme further focusing on
exploiting the trade-off between exploration and exploitation which is represented
by the α factor in Equation 4.4. The aim here is to study how one can decrease the
learning time overhead by adapting the α over time. The results presented in this
section was published in [109]. Learning phase is used to discovering preliminary
paths in a given partition or network . After this period, the application packets
are injected and special ant packets travel in parallel to determine optimal routes
over time. It is desirable for this learning time period to be low. How different α
values for the learning phase and application phase can be used to improve overall
performance was described in Section 5.3. Here we present the results and study
the impact of the α factor on this time period and the effect on the degree of
regularity of the network on the time required.

According to the AntNet algorithm, best value of α varies between [0.2, 0.5],
beyond which there is oscillations in performance. We test α values within this
range and investigate lower values of α like 0 and 0.1 as well Such low values of
α do not take into account local traffic fluctuations. In the learning phase, only
special ant packets travel in the network and thus traffic fluctuations are low. We
conduct tests using static and dynamicα technique shown in Figure 5.6 on selected
regular and irregular topologies which are shown in Figure 7.6. We obtain the
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results of learning time overhead, latency and throughput. The injection rate is
set to when the throughput starts to saturate for each of the topologies.

Initially static α tests are conducted where the α value chosen at design time
remains constant throughout the learning time and application runtime. Different
values of α are tested for the selected topologies. The α values chosen here
are in the range between 0 and 0.5. For a given topology, these static tests are
conducted to investigate, which α value yields low learning time and which α

value results in high throughput. The α value which achieves the lowest learning
time is selected for α1 and the α value which achieves a high throughput and low
latency is selected for α2 for dynamic alpha technique shown in Figure 5.6.

Later we test the dynamic α technique on the selected topologies. The α1 and
α2 values obtained using static tests are utilized when evaluating the dynamic
α technique. During the learning time α1 is used. Once the learning time is
completed, the test bench dynamically updates to α2 in all the routers of the
network. Each successful backward ant packet received indicates a discovery of
a feasible path between a pair of nodes. When at least one path is successfully
discovered between all pairs of nodes, this triggers the end of learning time. Then
the application phase is initiated and the data packet generator in the test bench
starts injecting packets into the NoC. Special ant packets continue to be generated
once again to find optimal routes and travel along with the data packets. This
results in the initial pheromone table built inside every router is based on α1,
which resulted in low learning time in static tests. And during application run
time, α1 is changed to α2, and the pheromone tables are now updated based on
α2 which yielded high throughput in the static tests. The results presented here
are generated using HDL simulator Modelsim.

7.3.1 Improving Learning Time Overhead

Results for topology (a) which is a 3x3 mesh network as shown in Figure 7.6, are
shown in Figure 7.7. The α of 0.35 yields a lower learning time but α of 0.25
results in better throughput. When combined in the dynamic alpha technique there
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Figure 7.6: Regular and irregular topologies under test for static and dynamic α technique [109]

Figure 7.7: Comparison between different cases of static α and dynamic α (α1=0.35 to α2=0.25).
Results for topology (a) [109]

is a slight improvement in learning time, with comparable latency but decrease in
throughput. Results for topology (b) in Figure 7.6, are illustrated in Figure 7.8.
In this topology, α of 0.20 was selected for α1 even though α of 0.4 resulted in
a slightly lower learning time. This was done as α of 0.20 had a much higher
throughput compared to α of 0.4. The α2 was set to 0.45 as this resulted in the
highest throughput. Results for topology (c) in Figure 7.6 are illustrated in Figure
7.9. The α value of 0 here results in the lowest learning time. But the α value of
0.4 results in the highest throughput and low latency. Here we set α1 as 0 and α2

as 40. This results in the best performance for both, where the learning time is
now decreased by 51% with comparable latency and throughput when compared
to static α technique of 0.4 .

Similar tests are conducted across the other three topologies (d), (e) and (f) in
Figure 7.6. These topologies are similar to (c) as one corner node is removed
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Figure 7.8: Comparison between different cases of static α and dynamic α (α1=0.20 to α2=0.45).
Results for topology (b) [109]

Figure 7.9: Comparison between different cases of static α and dynamic α (α1=0 to α2=0.4). Results
for topology (c) [109]

Figure 7.10: Comparison between different cases of static α and dynamic α (α1=0.40 to α2=0.39).
Results for topology (d) [109]
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Figure 7.11: Comparison between different cases of static α and dynamic α (α1=0.45 to α2=0).
Results for topology (e) [109]

Figure 7.12: Comparison between different cases of static α and dynamic α (α1=0.41 to α2=0.35).
Results for topology (f) [109]

in all of them and orientation has changed. These tests were still conducted to
investigate if the initial pheromone table values present in each router has an effect
on performance. At design time, pheromone table values were set and the values
were not set to zero. Since the topologies under test were 2Dmesh based network,
initial pheromone table values were based on the concept of X-Y routing. Initially,
the forward ant packet start travelling on paths using pheromone values based on
the X-Y routing concept and over time the pheromone table values are updated
accordingly.

Results for topology (d) are shown in Figure 7.10. Here we test the network using
varied values of α to analyse the learning time better. After running the static
tests, α1 and α2 was set to 0.4 and 0.39 respectively. The resulting latency and
throughput of the dynamic test was better than when α was 0.4 with the same low
learning time overhead.

Results for topology (e) are shown in Figure 7.11. Here we see that α of 0.45
resulted in the lowest learning time, latency and throughput. Since latency ofwhen
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α was 0 was marginally better than when α was 0.45, we applied the dynamic α
technique where α1 and α2 are 0.45 and 0 respectively. Here we see that static
α of 0.45 performed better than the dynamic α. AntNet[36] algorithm describes
that when α is close to 0, fluctuations of performance can occur because it is
unable to follow sudden variation in traffic pattern. Here we see that, in this case
adapting it to 0 had a slight increase in latency and decrease in throughput.

Results for topology (f) are shown in Figure 7.12. Here we see that multiple
values of α results in low learning time. We select α1 to be 0.41 since its latency
and throughput is better compared to other values. We update α2 to 0.35, as it has
a higher throughput. Here, the dynamic α technique shows a decrease of 68% in
learning time compared to static α of 0.35. Compared to static α of 0.35, there is
also a decrease of 15.4% in latency and the throughput is the same. The adaptive
α technique reflects the low learning time of static α of 0.41 and throughput
performance of static α of 0.35.

The ACO based DREAM routing algorithm explores networks in partitions for
feasible paths based on history of already utilized paths and local traffic infor-
mation. We investigated dynamic setting of the α which represents the trade off
between exploration vs exploitation of already discovered paths to decrease the
overhead of learning time. With the aim to decrease learning time overhead,
by proposing an adaptive exploration technique, a decrease in the learning time
overhead by upto 68% could be observed. The proposed dynamic α technique
yielded better results for certain topologies when compared to others.

7.4 DREAM NoC and Supporting Framework

The DREAM NoC and supporting framework are designed using SystemVerilog
and evaluations are done using HDL Modelsim simulator. The results presented
in this section was published in [13]. Here we evaluate the learning phase and
application phase period. We present results of latency and throughput of the
data traffic which are routed based on the routing tables built at runtime by the
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(a) (b) (c) (d)

Figure 7.13: Test cases for evaluation [13]

DREAM routing mechanism. Based on the results in section different α values
are used for learning and application phase to improve overall performance. They
are represented as (α1,α2) in our evaluations for learning and application phase
respectively. We compare latency and throughput DREAM routing algorithm to
other topology agnostic algorithms like UP*/Down* (UD) [84] and Logic Based
Distributed Routing (LBDR) [88]. We also test against traditional XY routing
on a regular 4x4 mesh for reference. We implemented UD and LBDR routing
techniques based on [84] and [88] respectively. For UD, in our tests, routing
table information was computed at design time for all the topologies under test.
The routing table in each router was set at design time. For LBDR, the routing
restrictions in our evaluations are based on the UD routing as described in [88]
and the special bits to define regions and routing are set at design time. We
implemented both UD and LBDR in SystemVerilog and integrated it with the
base router architecture for fair comparison.

7.4.1 Latency and Throughput Analysis

We start the evaluations on a regular 4x4 mesh in Figure 7.13a. During the
application phase, synthetic uniform random traffic is injected at each node by the
test bench. Here (α1,α2) is set to (60, 20). Throughput and latency results are
shown in Figure 7.14. The throughput of DREAM routing is comparative to XY
and it performs better than UD and LBDR which are similar.

The latency of ACO based DREAM routing has a remarkably different S-curve
compared to the other algorithms. At low injection rates, it has the higher latency
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Figure 7.14: Results for a regular 4x4 topology as shown in Figure 7.13a [13]

and at high injection rates, it has the lower latency. At saturation, compared
to UD we see upto 22% decrease in latency. The reason for this difference in
the S-curve is because ACO based routing searches for and routes packets on
non-optimal paths as well. At low traffic scenarios, longer hops are explored and
used. Minimal and non-minimal paths are explored even at low traffic. Only
minimal paths are not used and over time when the traffic increases, there is a
jump and it stabilizes around 0.8. This is one of the advantages of the ACO based
routing: routing across non-optimal paths result in discovering new routes and
distributes traffic across the network. The injection rate of ant packets is based on
Eq.5.5, c is set to 1 here. So injection of the forward ant packets is at the same
rate as data packets. At low data injection rates, the number of forward ants are
fewer as well. Over time with more long term traffic information better paths are
discovered and performance improves as shown in the Figure 7.14. This is due to
the reinforcement learning nature of the algorithm.

Next we test the algorithm on an irregular topology as shown in Figure 7.13b
and the results are shown in Figure 7.15. We compare against UD and LBDR as
XY does not support such a topology. Results when different α values are set
for learning and application phase is also evaluated and shown in the figure. The
ant packets here are injected at twice the injection rate. There is a 25% increase
in throughput compared to other algorithms with the α pair (α1,α2)=(20,20).
The latency S-curves of the ACO based routing are remarkably different once
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Figure 7.15: Results for an irregular topology as shown in Fig. 7.13b [13]

Figure 7.16: Learning phase overhead[13]

again when compared to the other algorithms. The latency jump occurs at higher
injection rates. The latency starts to saturate approximately for UD (and LBDR),
ACO (60,20), ACO (20,20) at 0.5, 0.6 and 0.8 injection rates respectively. The
decrease in latency at these points is also shown in the Fig. 7.15. ACO(60,20)
has a decrease of 48.8%, 36.4% and 40.11% at 0.5, 0.6 and 0.8 respectively.
ACO(20,20) has a decrease of 59.29%, 63.45% and 28.70% at 0.5, 0.6 and 0.8
respectively. With the increase in injection of the ant packets, optimal routes are
discovered over time as paths are computed using a combination of long term
and local traffic fluctuations. The performance improves over time as shown in
the Figure 7.15. Since the paths are not static like UD, alternate paths are also
dynamically chosen at runtime. Learning time overhead is shown in Figure 7.16.
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7.4.2 Application Test Case

Now we test the DREAM NoC with traffic generated by the testbench based on
a Communication Task Graph (CTG) of an MPEG4 video decoder. The CTG in
MBps and itsmapping on a 4x4mesh is based on [114] and is shown in Figure7.17.
The maximum achievable frequency for the proposed DREAM router with the
DREAM routing algorithm is approximately 107MHz for a three stage pipeline.
This was evaluated by synthesizing for a Virtex-7 FPGA (xc7vx485tffg1761-2).
The router can be further optimized by increasing the pipeline stages to support
higher frequencies. For our text case we set the frequency to be 100MHz. The
CTG in MBps is converted to flits per cycle and using this value the simulator test
bench injects the required traffic from each node. Packet sizes vary from 1 to 15
flits. The results are shown in Figure 7.18.

The data packets injected comprises of a header, body and tail flits and data flits
vary from size 1 to 15. MPEG4 application is tested on topologies illustrated
in Figure 7.13c and Figure 7.13d. Figure 7.13c, is a regular partition, where
the topology is a 4x4 and only the nodes running the MPEG4 application inject
traffic. Figure7.13d, is an irregular partition. Throughput results are comparable
to XY and UD on a regular partition but latency is slightly higher. On an irregular
partition, XY routing is not supported, but throughput results are still comparable
and the latency is slightly higher. This is because the overall ant injection rate
was kept low to maintain throughput.

Comparison of single router resource utilization targeting the Virtex-7 FPGA
between the ACO based DREAM router and the router running UD routing
algorithm is shown in Table 7.2. ACO consumes more resources than UD due
to the routing computations involved and more input buffer resources. This is
because, an extra port was added to the ACO router to drop the ant packets
which were not successful. We see that more than half of the router resources are
consumed by the buffers and further optimizations are possible by improving this
feature. In this section, we evaluate the DREAM NoC along with its supporting
framework to aid in flexible spatial isolation for mixed-critical platforms.
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(a) (b)

Figure 7.17: CTG of MPEG4 video decoder and mapping [114] [13]

Figure 7.18: Results for MPEG4 video decoder [13]

7.5 Evaluating Adaptive Block-Based
Multicast Routing

At the routing level we also proposed to improve flexibility by proposing Block-
Based multicast routing as described in section 4.4 We implemented the block-
based multicast routing on a Virtex7 FPGAVC707 board and tested it using traffic
patterns seen in a fault tolerant application implementing redundancy. A brief
motivation for using this test case is described next.
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Table 7.2: Resource utilization comparison of a single router[13]

UD Total Buffer
LUT 4054 2151
FF 4060 2780

ACO Total Buffer
LUT 5739 2886
FF 4985 2780

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 7.19: A 4x4 Mesh with multicast groups MG1 and MG2 [100]

7.5.1 Fault Tolerant Application Use Case

Functional and data flow-based programmingmodels arewell known in the field of
high-performance computing (HPC). Such models target efficient programming
of highly parallelizable and distributed software. The communication in such
software is typically done via MPI. MPI is a standardized collection of functions
for communication and data transfers in distributed-memory and shared-memory
computing systems. Besides the Point-to-Point operations send and receive, MPI
defines a broadcast operation, where data is distributed to multiple processes. An
efficient hardware support for broadcast operations leads to a significantly lower
communication overhead for MPI and dataflow driven software applications.

Fault-tolerant applications benefit from broad-and multicast hardware support.
Fault tolerance is typically implemented by redundancy and comparison of re-
dundant results. Realizing redundancy is done by executing the same operation
multiple times, either sequentially in time or parallel in space. Double or triple
modular redundancy (DMR and TMR) uses redundant hardware components and
applies a voter to detect faults in the results. In a NoC-based system the redundant
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Figure 7.20: Comparison of hops for the two multicast groups shown in Figure 7.19 [100]

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 7.21: A 4x4 Mesh with node 0 as src and DstS. DstE varies from node 1 to node 15 [100]

components are mapped on separate processing units in the NoC. Broadcasting or
multicasting instead of individual transmission of the input data achieves a speed
up and reduces the load of the NoC.

We implemented a 4x4 NoC as shown in Figure 7.19 running on a clock frequency
of 50MHz. For sake of readability we refer to nodes using IDs shown in the
figure. Redundant tasks are mapped onto multiple nodes in two regions which
are highlighted. Memory tile is located in node 0 and data needs to be read
from the memory and transmitted from node 0 to nodes 1,2,4,5,6 forming one
multicast group (MG1). Node 0 needs to send another set of input data to nodes
9,10,11,13,14,15 forming another multicast group (MG2). Using the block-based
multicast, (DstS,DstE) for MG1 and MG2 are (0,6) and (9,15) respectively.
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Figure 7.22: Latency of packets with Block-Based multicast when DstE varies from 1 to 15 [100]
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Figure 7.23: Comparison of hops [100]

7.5.2 Performance

Results for total number of hops for the test case in Figure 7.19 is shown in
Figure 7.20. It can be seen that paths taken by packets when using block-based
multicast has a lower hop count than paths by packets using multiple unicasts
which uses DoR. The performance is better when the destination group is far
from the source node as can be seen from the results of MG2. This is due to
using tree based routing only within the block which restricts traffic to within
the block and uses common paths as far as possible. Address Overhead (AO) is
also lower, when using block-based the AO is 10 (16 with BV) and when using
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Figure 7.24: Comparison of Address Overhead [100]

multicast with all destination encoding AO is 24 bits. A 33% decrease in AO
is seen even with BV. Let us consider a more general case where source and
DstS is node 0 and DstE varies from node 1 to 15 as shown in Figure 7.21.
In this case we consider all the nodes within the block whose size is varying
as destinations. The variation in latency for block-based multicast is shown in
Figure 7.22. Comparison in terms of hop count when multiple unicast messages
are used is shown in Figure. 7.23. Block-based multicast performs better since it
uses common paths as far as possible.

7.5.3 Address Overhead and Resource Utilization

Consider the general case shown in Figure 7.21. Each node address is represented
by 4 bits. Two bits each for X and Y coordinate. The AO for this case is shown
in Figure 7.24. We can see that even with BV encoding the proposed technique
scales well when compared to multicast which uses all destination encoding used
in most multicast techniques. Now let us consider a case when the size of the
network increases. In larger mesh networks the address size gradually increases,
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Figure 7.25: AO of multicast when all destination encoding is used [100]

which contributes to greater AO in multicast packets. To illustrate the benefit of
the Block-Based technique we consider 16 potential destinations grouped together
in a block of 4x4 in a 2D Mesh network. We look at networks of sizes 4x4, 8x8,
16x16, 32x32, 64x64 and 128x128. In Figure 7.25 AO of multicast packets
using all destination encoding is presented, and results of block-based is shown
in Figure 7.26. AO of block-based scales better and has a 79% decrease in
overhead for 128x128 NoC. Resource utilization of a single router implementing
Block-Based multicast is shown in Table. 7.3.

Table 7.3: Resource Utilization [100]

Resource BB Router BB Unit
% Over-
head

Slice LUTs 5341 388 7.2%

Slice Reg 3734 49 1.3%

Slices 2035 385 23%
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Figure 7.26: AO of block-based multicast with (above graph) and without (below graph) bit vector
[100]

7.6 Evaluating Multi-Layered NoCs

In Section 4.5, we described developingmulti-layered NoCs with adaptive conges-
tion aware routing targeting mixed-criticality systems. In this section, we present
the evaluations of such a network and the results were published in [105]. The
routers are designed using SystemVerilog and results are generated using HDL
simulator Modelsim. We present the results for the 5x5 three layer NoC shown in
Figure 4.15. The results of the proposed congestion aware algorithm are compared
against the popular XY routing, a modified XY routing for layered mesh and the
static algorithm without congestion described in Section 4.5. Modified version
of the XY routing was developed here to compare against the proposed routing
against. It functions as follows. If the source and destination nodes are on the
same layer then XY routing is used to transport the packet using the routers on
same layer. For example if the source and destination nodes are on a Layer 2, then
a packet is transported only on routers on Layer 2. If the source and destination
belong to different layers, regular XY routing is used utilizing only routers on the
base layer which is Layer 3.
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Figure 7.27: Throughput and Latency in cycles[105]

Data is injected into the network based on an uniform random traffic to test the
algorithms. In this traffic case, each node has equal probability to send packets to
every other node. Thus all pairs of source destination pairs are considered here.
The packet length is also varied to show the influence on congestion and how the
proposed algorithm with congestion avoidance performs better with increasing
packet length. We use an FPGA platform to obtain resource utilization for the
approach. A summary of the algorithms evaluated and compared is shown below:

• XY Routing(XY): Traditional XY Routing utilizing only 2D mesh (only
the base 5x5 layer)

• Layered XY routing(Layer XY): Modified XY routing utilizing all the three
layers

• Near Node Function without Congestion Avoidance (NN without CA)

• Near Node Function using Congestion Avoidance (NN with CA)

Throughput and latency results when the packet length is 10 are shown in Fig-
ure 7.27. With the integration of congestion avoidance there is an improvement
of upto 16% in throughput. For latency, the algorithm with congestion avoidance
has a decrease of upto 56% in latency compared to XY routing and decrease of
upto 29% in latency when compared against the algorithm without congestion
avoidance. At this packet length, the throughput of XY, Layer XY and NN are
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Figure 7.28: Comparison of throughput and latency for packet length 20[105]

comparable. The NN algorithm, always transports packets on paths with the
shortest hop count. This can lead to creation of hotspots in the network which
is eased by directing packets on longer hop paths when available. This results
in increase in throughput of NN with CA algorithm when compared with the
other algorithms with the increase in injection rate. With the increase in packet
length, we can see in Figure 7.28 the algorithm without CA increasingly performs
better than traditional XY routing. There is an improvement in the results of the
algorithm with congestion avoidance when compared against the others.

The effect of packet length on latency is presented in Figure 7.29 by comparing
performance under different packet lengths. With the increase in the injection
rate, it can be seen that the saturation value for latency is lesser for NN with
CA routing. For packets of length 5 for example, the improvement is less when
compared against longer packet lengths of 10 and 20 as is shown. With the
presence of longer packets, number of occupied routers increases for a single
packet thereby increasing the possibility of hotspot especially when there is a high
injection rate. Using congestion avoidance the packets are more evenly distributed
across layers. The packets are forwarded on less frequently used paths (long hop)
thereby decreasing overall latency.
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Figure 7.29: Comparison of latency under varying packet lengths[105]

7.6.1 Resource Overhead

An important drawback in such a multi-layered NoC implementation is resource
utilization. Resource utilization of a single routing unit is presented in Table 7.4
for the different algorithms. Target Platform is Virtex-7 FPGA (7vx485tffg1761-
2) and tool used is Xilinx Vivado 18.3. Resources utilized by the routing unit for
different algorithms is shown and it can be seen that the proposed routing algorithm
uses more resources, which is expected when compared with XY routing. Such a
routing unit is present at each port of the router. Even with increase in complexity
of the routing algorithm and the number of ports, the resources utilized by the
routing units in the router is considerably lesser when compared against the rest

160



7.6 Evaluating Multi-Layered NoCs

Table 7.4: Resource utilization of one routing unit. For comparison, percentage of resource consumed
by one routing unit in a 5-port router is also shown [105]

Resource XY (%) LayerXY (%) NN (%) NN with CA (%)

Slice LUTs 6 (0.094%) 6 (0.094%) 93 (1.46%) 305 (4.8%)

Slice Reg 0 0 4 (0.1%) 4 (0.1%)

of the router resources as shown in Figure 7.30. The input buffers in the router
here occupy a major portion of the resources.

Multi-layered networks can be beneficial for large scale networks. For small scale
networks and in situations where severe resources constraints are present, the
the proposed multi-layered network is not profitable due to its high port count
routers. Such multi-layer routers occupy more resources than a router targeting
a regular 2D mesh topology. But with increasing number of tiles being utilized
in SoC platforms, the network size growing, the presence of layers and adaptive
algorithms can yield benefits as can be seen in terms of latency and throughput
here. At the expense of fraction of more resources, the improvement seen in
latency and throughput is profitable in such circumstances.

Figure 7.30: Comparison of router resource utilization [105]

In this section we evaluated a multi-layered hierarchical NoC targeting mixed
criticality systems with an adaptive congestion aware routing algorithm. The
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NoC comprised of multiple layers which the adaptive routing algorithm utilized
to evenly distribute the packets depending on the availability of the links and
criticality of the packets. Since multiple applications of varying criticality are
sharing the same communication resources like routers and links, critical applica-
tions are prioritized and assigned the shortest hop paths. In high traffic scenarios,
non-critical packets are assigned paths with longer hop counts to decrease influ-
ence over critical packets. Thus decreasing the congestion scenarios for critical
applications and improving overall performance.

7.7 Multi-Layered DREAM NoC

The DREAM routing algorithm was integrated into multi-layered NoC described
in the previous section and the evaluations are presented in this section. The
evaluations presented here is using HDL simulator Questa Sim-64 2019.4. The
testbench described in 7.1.1 is used along with the DREAM framework and the
special ant packets and the data packets under uniform random traffic patterns is
injected accordingly. Here the parition under test is the entire 5x5, three layer
topology. Alpha value in equation 4.4 is set to 0.2 based on [36], where the authors
describe that alpha value between 0.2 and 0.5 has less oscillations in performance

The proposed ACO based DREAM routing is compared against other static and
adaptive routing algorithms targeting multi-layered NoCs described in section 7.6.
An overview of the algorithms is provided below. The following algorithms are
implemented in SystemVerilog and integrated into the same base NoC router for
fair comparison

• Static XY Routing (XY)

• Static Layer XY Routing (Layer XY)

• Static routing using Near Node Function without Congestion Avoidance
(NN without CA): Packets are always transmitted on paths with the shortest
hop count across the three network layers.
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• Dynamic routing using Near Node Function using Congestion Avoidance
(NN with CA): Packets are transmitted on shorter hop count paths during
low traffic and routed across pre-determined longer hop counts during high
traffic scenario.

7.7.1 Latency and Throughput Analysis

Throughput and latency of the DREAM routing for the multi-layer topology
is shown in Figure 7.31 and Figure 7.32 respectively. Packet length is set to
10. Dynamic routing algorithm have better throughput when compared to static
routing. The proposed ACO based DREAM routing has upto 42% increase
in throughput when compared to static XY routing and upto 29% increase in
throughout compared to the adaptive congestion avoidance routing algorithm.
There is improvement of upto 75% in latency when compared against static
XY routing and upto 65% decrease in latency when compared to the adaptive
congestion avoidance routing.

The adaptive routing algorithm used for comparison, takes into consideration
the buffer level of only the downstream router when choosing the output port
at each router. The proposed reinforcement enabled DREAM routing algorithm
computes path based on local network information and history of travelled packet
information. The forward ant packet when discovering new paths between nodes,
takes into consideration buffer levels of all the router levels in its path. This
is represented by the link attractiveness in equation 4.4. Due to the distributed
learning feature of the algorithm, better paths are discovered. Variation in latency
with different packet lengths is shown in Figure 7.33. Longer packets occupy
multiple routers and can result in higher overall latency with increase in average
packet length.
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Figure 7.31: Throughput results for a 5x5, three layered topology as shown in Figure 4.15 [106]

Figure 7.32: Latency results for a 5x5, three layered topology as shown in Figure 4.15 [106]
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Figure 7.33: Latency results for ACO based routing. Testing for different packet lengths for a 5x5,
three layered topology as shown in Figure 4.15 [106]

7.7.2 Learning Time and Hardware Overhead

An overhead is the learning time period required to build preliminary routing
tables before the application can use the network. For the topology under test
which is a 5x5, three layer network, 9542 cycles were required to discover at least
one path between every pair of source and destination. Another overhead is the
router resources required. Single router resource utilization targeting Virtex-7
FPGA (xc7vx485tffg1761-2) is shown in Table I. The base router, which was
designed for regular mesh topology comprised of 5 ports. Resource utilization for
a minimum and maximum port count router for the multi-layer topology under
test is shown in Table 7.5. Two extra ports are added, one to connect to the local
processing tile and another referred to as a drop port. A drop port is added to drop
failed ant packets. Further architecture optimization is possible here to avoid the
drop port since buffers are resource heavy. In this section, we evaluated DREAM
multi-layered NoC with its supporting framework and the results were published
in [106].
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Table 7.5: Resource utilization comparison of a single router [106]

ACO based Total (10 Port) Total (5 Port)
LUT 7868 6423
FF 5801 5331

7.8 Summary

In this chapter, the evaluations of the DREAM NoC along with its supporting
framework and its multi-layered extension is presented. Section 7.1.1 described
an overview of the test bench developed. In section 7.2, the ability of the DREAM
routing to discover minimal and non-minimal paths in regular and irregular net-
works was discussed. Such features are beneficial to ensure load balancing and
potential of using DREAM routing in traffic isolation within partitions was in-
vestigated. The learning time overhead was analysed in section 7.2.1 along with
preliminary resource utilization. To reduce this learning time overhead, dynam-
ically changing the alpha value which represents exploitation vs exploration of
routes was evaluated in section 7.3. The DREAMNoC and supporting framework
was evaluated in section 7.4 and latency and throughput results were presented.
The results showed improved performance when compared to other topology ag-
nostic routing schemes. We also tested it under MPEG4 application test case
as discussed in section 7.4.2. We also evaluated adaptive Block-Based multicast
routing technique in section 7.5 and compared the address overhead scalability
to traditional destination encoding schemes. At the topology level, multi-layer
networks was proposed targeting mixed critical NoCs and supporting adaptive
congestion aware routings was evaluated in section 7.6. The proposed adap-
tive routing showed improved performance against the static routing tecniques.
The DREAM NoC was further developed to support such multi-layer NoCs as
well. The reinforcement learning enabled DREAM routing was evaluated and
performed better when compared against other static and dynamic routing tech-
niques as seen in section 7.7. The chapter also presented the overhead in terms
of resource utilization and learning time overhead.
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8.1 Conclusion

Recently, there have beenmultiple changes in the field of semiconductors that have
impacted the microprocessor industry. The ending of Dennard scaling around
2004 led to the microprocessor industry to replace a single inefficient processor
withmultiple efficient processors or cores. Additionally, the prediction inMoore’s
Law where the number of transistors per chip would double every two years,
recently ended. But there is always an ever increasing demand for computational
services. This has resulted in the development of complex systems to improve
performance. The increase in integration density has resulted inMPSoCplatforms
evolving to contain 100s of processing cores. Increasing the number of cores
results in its own set of challenges. Focusing on communication, researchers
identified that traditional bus-based communication was becoming a limiting
factor for performance. Which led to the development of NoCs, which is a scalable
solution for the increasing communication requirements of complex MPSoCs.
NoCs are a modular, scalable and flexible communication infrastructure.

Realtime applications are a major portion of applications in the embedded systems
field. Realtime computation and communication need to meet certain stringent
deadlines, which impose special constraints on such MPSoC platforms. An
increasing trend when designing realtime embedded systems is the development
of MCS where components of different criticality are integrated on the same
computing platform to meet stringent non-functional requirements. With the
increase in the number of cores and applications sharing resources, the on-chip
communicaton is becoming a critically shared resource. NoCs in mixed criticality
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systems have their own range of challenges. They include providing support for
QoS, where guarantees in terms of latency and throughput need to be ensured
for critical applications. Realtime MPSoCs are subjected to varying workloads
and application requirements at runtime, motivating the need to support runtime
adaptive NoCs. There is potential in making a mixed criticality NoC more
adaptable at runtime to improve overall performance. An ongoing research area
is developing runtime adaptive NoCs while ensuring realtime guarantees are met.

In this work, the aim is to address the above challenges and present an adap-
tive NoC targeting mixed criticality applications. The thesis proposes, develops
and evaluates adaptive features at the routing and topology level to improve per-
formance like latency and throughput. The NoC also provides QoS service,
guaranteeing throughput and latency for critical applications. An overview of
essential contributions in this work is summarized below.

DREAM NoC: A Distributed Reinforcement learning Enabled Adaptive Mixed-
Critical Network-on-Chip (DREAM NoC) was proposed in this work. DREAM
is a distributed and self-learning NoC which uses a topology agnostic, reinforce-
ment learning enabled routing algorithm based on the Ant Colony Optimization
(ACO) metaheuristic [115]. The routing scheme discovers better paths over time
based on traffic fluctuations and by monitoring the network. The thesis presents
a routing scheme targeting mixed criticality NoCs based on the AntNet model
[101, 41] with focus on the reinforcement learning aspect. A contribution in this
work includes simplification of complex computations and methodologies in the
base model used, to be feasible for hardware implementation while still maintain-
ing the inherent flexibility the routing scheme offers. In this work, identifying
the potential of using such a topology agnostic, reinforcement learning enabled
routing scheme to develop adaptive NoCs to aid in flexible spatial isolation for
mixed criticality systems is presented A hardware friendly router implementing
the routing scheme as a synthesizable HDL model is shown in this work.

DREAMFramework for spatial isolation inMCS: In this work, theDREAM frame-
work comprising of learning phase and application phase to utilise the DREAM
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routing mechanism effectively to aid in spatial isolation of NoC resources is pre-
sented. Learning phase was assigned to build preliminary routing tables at each
router in a distributed manner and investigations were conducted to decrease this
learning time overhead as well. During the application runtime, the routing tables
built are updated periodically over time when new better routes are discovered
by the routing algorithm. Test benches in HDL was developed to evaluate the
NoC with this framework, for a range of regular and irregular partitions under
different traffic scenarios. Evaluations using an MPEG4 application use case was
also presented.

Multi-Layered NoCs for MCS: In this work, a multi-layered network running
adaptive congestion-aware routing to decouple mixed-critical traffic is proposed.
The aim here was to reduce inter-application influence. The topology and sup-
porting routing schemes were are also developed in HDL. The DREAMNoC was
extended to support such multi-layered topologies as well and performance was
compared against static and dynamic routing schemes.

Adaptive multicast techniques: A flexible and scalable multicast routing technique
called asBlock-Based routing is proposed. The aimherewas to improve traditional
multicast routing by making it more scalable, adaptive and flexible. Here, a block
of destination nodes can be defined at runtime.The proposed solution scales better
as the bit vector addressing encoding used is restricted to the block of nodes. It is
more flexible as bit vector length can be changed dynamically at runtime.

The router design used in all the above contributions is a base router, comprising
of state of the art features. It is a configurable pipeline based design utilizing
wormhole packet switching with virtual channels and credit-based flow control.
Deadlock and livelock avoidance mechanisms were developed for the proposed
adaptive routing techniques. The router supports both BE and GS communication
which is vital for critical applications. A common overhead of the proposed
techniques is increased resource utilization. This is primarily due to the custom
computation units, table based routing schemes and increased port count in the
DREAMNoC. This port count is further extended in the multi-layer NoC version.
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Hardware optimizations are possible and are part of future work as outlined in the
next section.

8.2 Future Work

The proposed DREAM NoC, supporting framework, adaptive routing schemes
and the multi-layer extension provide a comprehensive basis for future adaptive
mixed criticality NoCs. There is potential for future work. An overview of general
improvements possible, especially addressing the overhead of resource utilization
is provided next.

Table based routing has an inherent resource overhead when the network is scaled
up. When the number of cores increases in the network, the tables do not scale
well in terms of area overhead. For larger network sizes, if the maximum possible
number of nodes in a partition is known, then the size of the routing/pheromone
tables can be fixed accordingly so as to avoid having all the source destination pair
information stored in the table. An alternative is to apply a window based solution
described in [112]. As part of future work, further hardware optimizations can be
investigated to reduce resource consumption by reducing input buffer overhead.
In the current design, each port has exclusive routing module and sharing the
routing unit implementing the DREAM routing across multiple ports within the
router can decrease overall resource overhead. For routers with high port counts,
it would be beneficial to investigate the possibility of clock gating for unused
resources to decrease power consumption.

Next, a more general extension as part of future work is presented. Here the focus
is more on the hardware architecture of the NoC. It would be beneficial to develop
a supporting software-based management of the proposed concepts and features.
Developing an operating system for example, tomanage the reinforcement learning
based DREAM routing. Some areas of future work include, incorporating OS
features of transmitting relevant information to the processing tiles to trigger
learning and application phases of the DREAM framework, communicating to
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8.2 Future Work

the processing tiles of the border routers etc. The alpha parameter representing
the exploration vs exploitation of routes can be investigated further in tandem
with a supporting operating system.

Though the work here focused in aiding in flexible spatial isolation, the other
advantages of the reinforcement learning based DREAM NoC is increasing reli-
ability in the network when faced with network component failure. Due to the
runtime discovery of better paths, alternate paths can be discovered in case of
unpredicted change in the network state. This feature can be investigated further
to develop efficient fault tolerant mechanisms. In this work, primary 2D mesh
based and multi-layer topologies were investigated. Evaluating on 3D network
topologies opens a range of possibility and opportunities. In this work, the focus
was on wired NoCs. Investigating the proposed concepts on wireless NoCs offers
an interesting research area. In wireless NoCs, on-chip antennas are integrated at
the routers to transmit the packets wirelessly across the network. Such wireless
NoCs have the advantage of high bandwidth but care must be taken regarding data
loss and error protection.
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