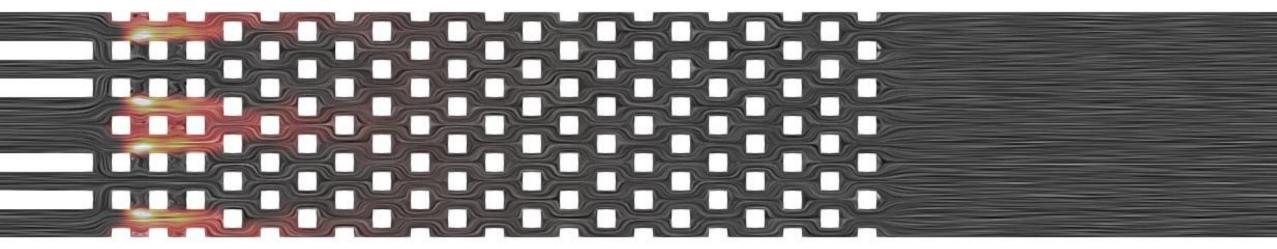


Predicting NO_x Emissions From Porous Media Burners Using Physics-Informed Graph Neural Networks

Rishabh Puri*, Oliver T. Stein*, Thorsten Zirwes*

*Karlsruhe Institute of Technology, Engler-Bunte Institute, Combustion Technology, Thermo-Fluid Systems

#University of Stuttgart, Institute of Combustion Technology



35th Parallel CFD International Conference 2024

Agenda

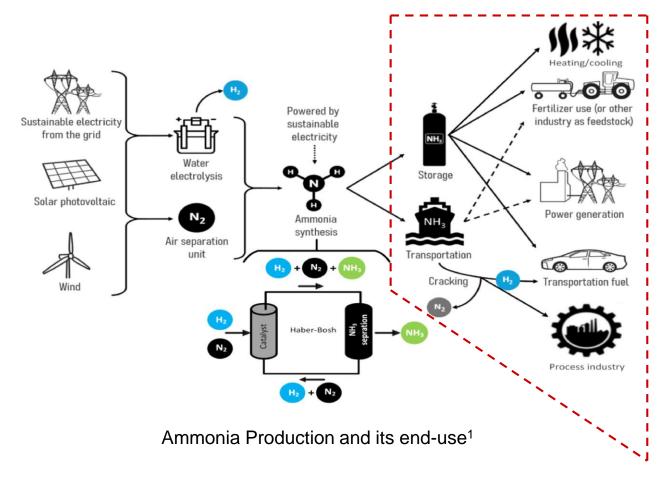
- Why Ammonia?
- Challenges of Ammonia combustion
- Porous media burner
- CFD approach
- Machine learning approach
- NOx emissions

Motivation

Universität Stuttgart

Why ammonia?

- Carbon free fuel
- A suitable H₂ carrier
- Easy to transport in the liquified form using the existing infrastructure
- High energy density

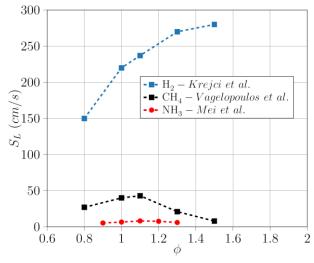


Service et al., Ammonia—a renewable fuel made from sun, air, and water—could power the globe without carbon, Science, 2018.

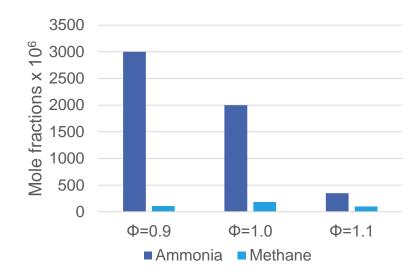
Motivation

Challenges of ammonia combustion

- Poor flame stability
- High NOx formation
- High toxicity at trace levels



Experimental measurements

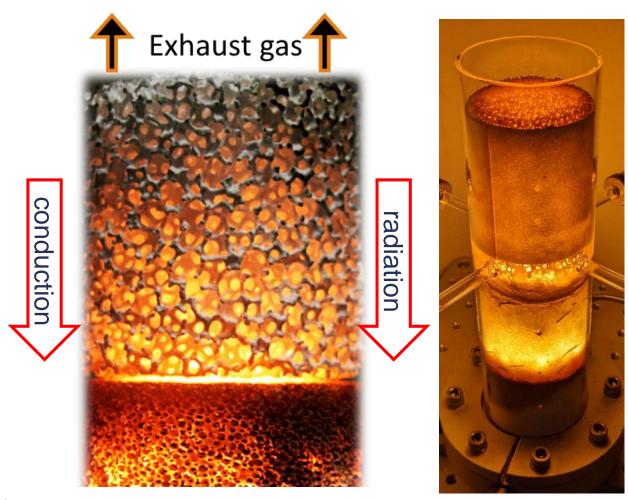


No_x emissions from 1D premixed free-flame simulations
(Reproduced from Kobayashi et al.)

- 1. Krejci et al. https://doi.org/10.1115/1.4007737
- 2. Vagelopoulos et al. https://doi.org/10.1016/S0082-0784(98)80441-4
- 3. Mei et al. https://doi.org/10.1016/j.combustflame.2019.08.033
- Kobayashi et al. https://doi.org/10.1016/j.proci.2018.09.029

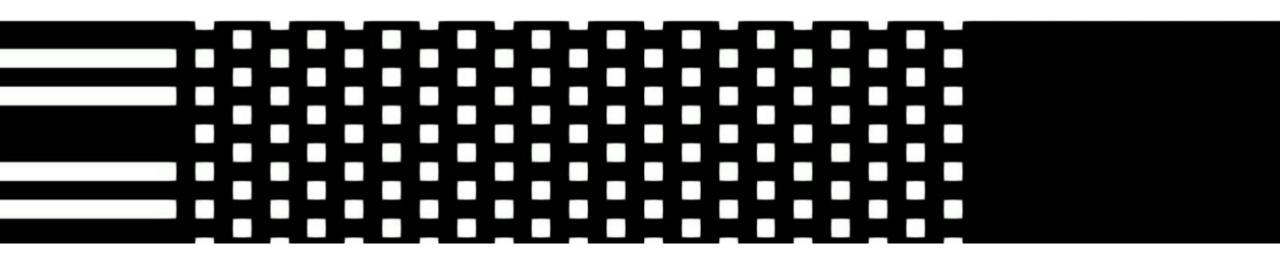
Porous Inert Media (PIM) Burner

- Preliminary work on NH₃ and NH₃/H₂ combustion in porous inert media (PIM) at Stanford University¹
- Result: Using the PIM combustion concept, ammonia can be stably burnt with low NOx formation.



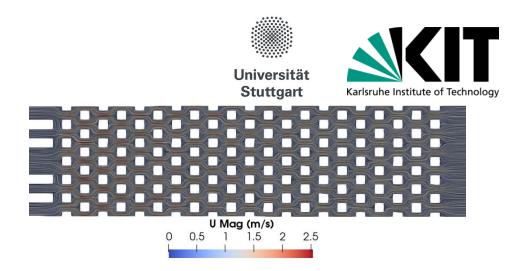
1. T. Zirwes. et al. https://doi.org/10.1016/j.combustflame.2023.113020

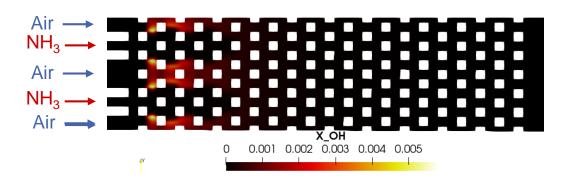
CFD approach



Simulation approach

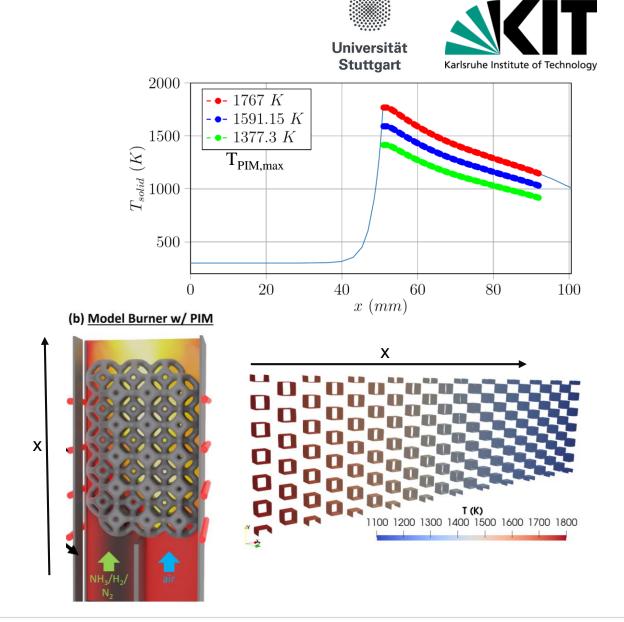
- In-house OpenFOAM extension with
 - Detailed chemical reaction mechanisms (finite rate chemistry)
 - Coupled with open source chemical library "Cantera"
 - Detailed molecular diffusion for each species
 - Fully-resolved reaction zones
 - Fully-resolved flow field inside the porous structures
 - Excellent parallel scalability for use on modern supercomputers
 - Currently radiation and Conjugate Heat Transfer (CHT) not considered
- 2D combustion simulations in regular porous structures





2D – Simulations with PIM

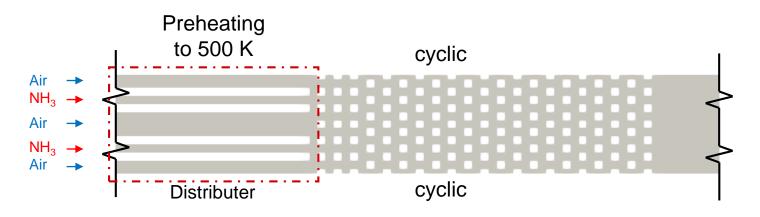
- PIM 1D temperature profile obtained from 1D-VAS and enforced as BC for 2D simulations
- Mechanism:
 - PoliMi (Stagni)¹ 2020
- U_{fuel}: 0.3 m/s
- T_{inlet}: 500 K
- Ignition with initial hot gases
- Premixed burner: Initial species mole fractions taken from 1D free-flame
- Ф: 0.9, 0.95, 1.1

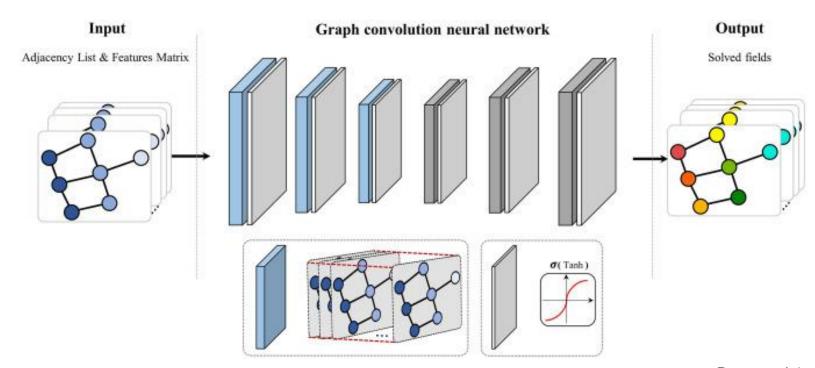


1. A. Stagni et al. doi:10.1039/c9re00429g

2D - Simulations with PIM

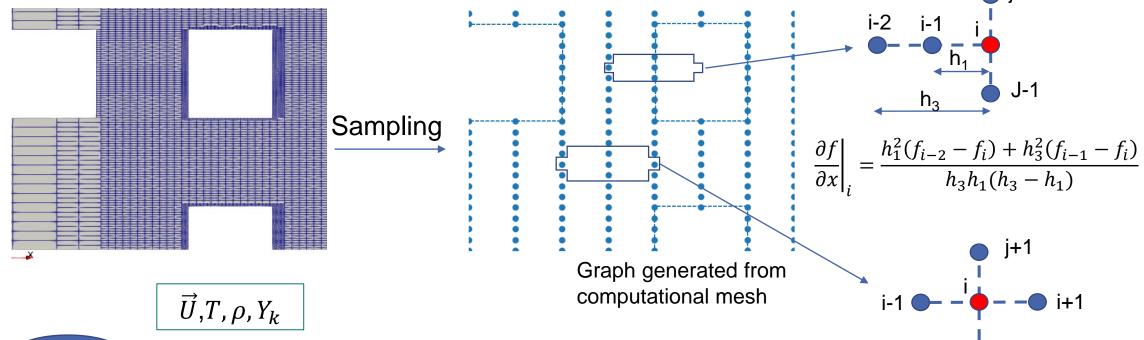
- Multi-channel geometry
- Strut size: 1x1 mm
- Pore size: 2x1 mm
- Solid structures defined by white squares
- Free flame thickness: 0.6 mm (Cantera, Φ=0.95, 0.7 NH₃ + 0.3 H₂)
- Smallest cell size:
 - Smaller than 10% of free flame thickness
 - $\Delta x = 41 \ \mu \text{m}$
 - $\Delta y = 12.5 \ \mu m$





Peng et al. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124593

Graph Convolutional Neural Networks (GCNN)



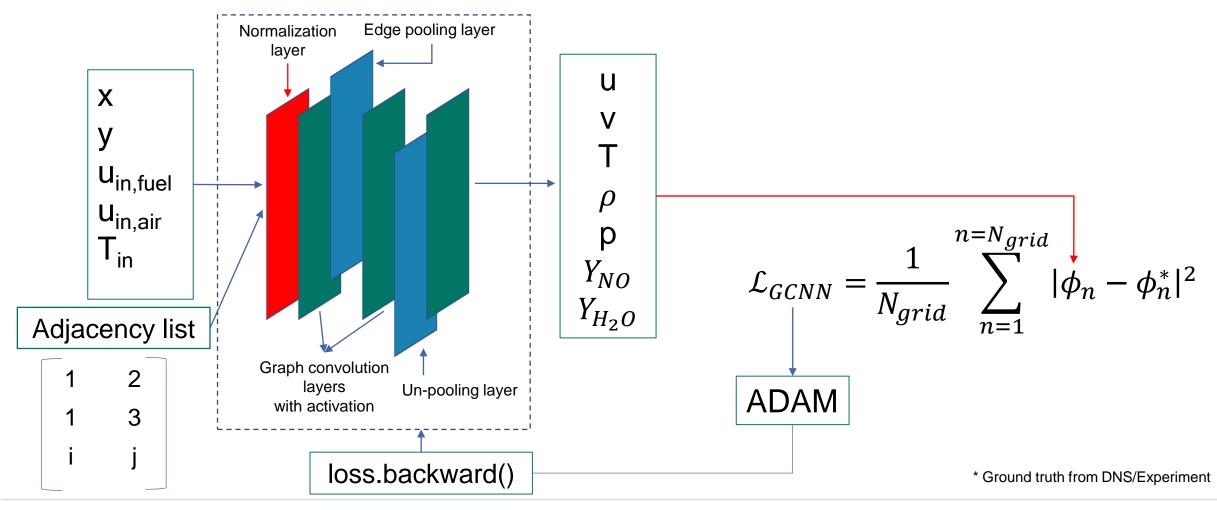
$$\left. \frac{\partial f}{\partial x} \right|_{i} = \frac{h_1^2(f_{i+1} - f_i) + h_2^2(f_i - f_{i-1})}{h_1 h_2(h_1 + h_2)}$$

Coordinates, Dirichlet boundary conditions **Nodes**

Adjacency list, neighbors, edges (x_i-x_{i-1},y_i-y_{j-1})

Domain and PIM boundaries as indices

Data-driven GNN



- Simplified governing equations
- Mass conservation

$$\frac{\partial}{\partial x}(\rho u) + \frac{\partial}{\partial x}(\rho v) = 0$$

Momentum conservation

$$\frac{\partial}{\partial x}(\rho uu) + \frac{\partial}{\partial y}(\rho vu) - \frac{\partial}{\partial x}(\tau_{xx}) - \frac{\partial}{\partial y}(\tau_{yx}) + \frac{\partial p}{\partial x} = 0, \qquad \frac{\partial}{\partial x}(\rho uv) + \frac{\partial}{\partial y}(\rho vv) - \frac{\partial}{\partial x}(\tau_{xy}) - \frac{\partial}{\partial y}(\tau_{yy}) + \frac{\partial p}{\partial y} = 0$$

Energy conservation (Temperature based)

$$c_{p}\frac{\partial}{\partial x}(\rho uT) + c_{p}\frac{\partial}{\partial y}(\rho vT) - \frac{\partial}{\partial x}\left(\lambda\frac{\partial T}{\partial x}\right) - \frac{\partial}{\partial y}\left(\lambda\frac{\partial T}{\partial y}\right) + \dot{Q} = 0$$

Species mass conservation

$$\frac{\partial}{\partial x}(\rho u Y_k) + \frac{\partial}{\partial y}(\rho v Y_k) + \frac{\partial}{\partial x}(j_{k,x}) + \frac{\partial}{\partial y}(j_{k,y}) - \dot{\omega}_k = 0$$

For unity Lewis number

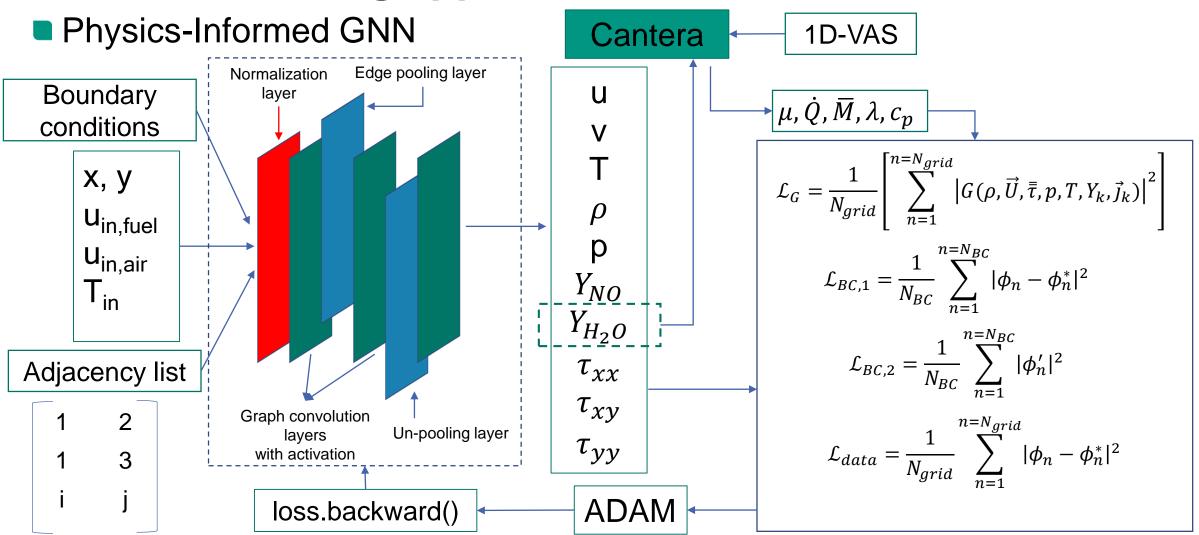
$$\overrightarrow{j_k} = -\frac{\lambda}{c_p} \nabla Y_k$$

Equation of state

$$\rho = \frac{p\overline{M}}{RT}$$

Universität Stuttgart

Machine Learning approach



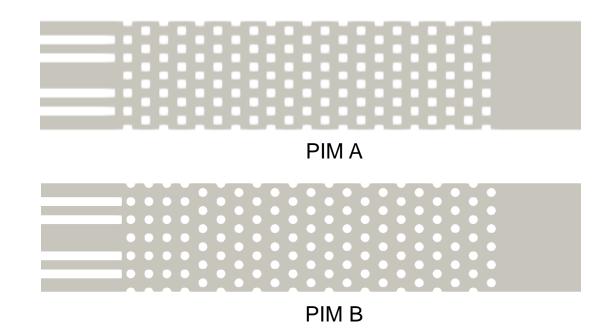
Universität Stuttgart

DNS data

Variation in inlet conditions and PIM temperature profiles

Case	Fuel composition at inlet (mole fraction)	Ф (global)	T _{PIM,max} (K)
I	0.9 NH ₃ + 0.1 H ₂	1.1	1377.3
II	0.7 NH ₃ + 0.3 H ₂	1.1	1377.3
III	NH ₃	1.1	1591.15
IV	NH ₃	0.95	1591.15
V	0.9 NH ₃ + 0.1 H ₂	0.95	1591.15
VI	NH ₃	0.9	1767

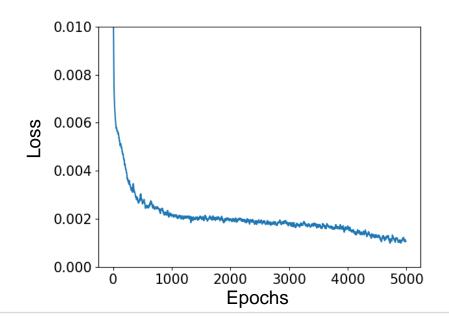
Variation in PIM structures

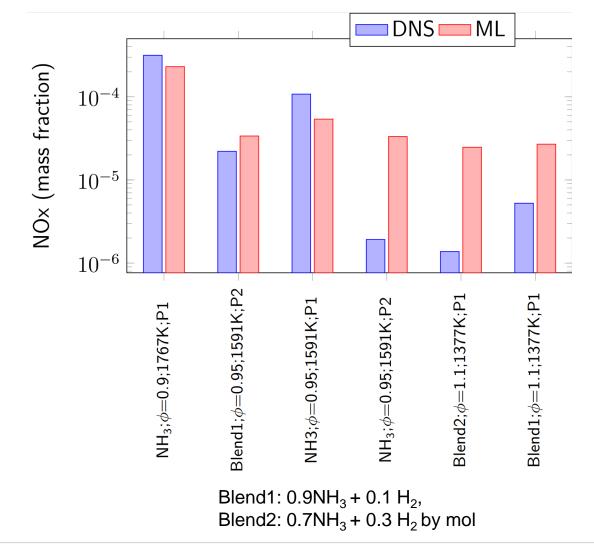


Initial results

Universität Stuttgart

- Data-driven model
- Model architecture
 7 GraphConv layers with 3 EdgePooling and 3 un-pooling layers
- Activation: Hyperbolic Tangent (Tanh)
- Epochs: 5000





Outlook and conclusions

- Challenges associated with combustion of ammonia
- Porous burners provide a potential solution to overcome the challenges
- High-fidelity reactive flow simulations in porous structures are computationally extensive
- Graph convolution neural networks (GCNN) provide a cost effective method to predict a solution
- Physics-Informed GCNN implemented for data-driven and data-free training
- Data-free PI-GCNN to be optimised for further PIM configurations

Thank you for your attention!