KIT | KIT-Bibliothek | Impressum | Datenschutz

Simulation Data: Modeling, Observer and Controller Design for AZO particle Synthesis and Characterization

Jiokeng Dongmo, Marcel Kévin ORCID iD icon 1
1 Institut für Mechanische Verfahrenstechnik und Mechanik (MVM), Karlsruher Institut für Technologie (KIT)


Zugehörige Institution(en) am KIT Institut für Mechanische Verfahrenstechnik und Mechanik (MVM)
Publikationstyp Forschungsdaten
Publikationsdatum 22.05.2025
Erstellungsdatum 01.04.2025
Identifikator DOI: 10.35097/u8a5wx8wr4b9rj48
KITopen-ID: 1000181834
Lizenz Creative Commons Namensnennung 4.0 International
Schlagwörter Particulate System Modeling, Population Balance Equation, Dynamic Mode Decomposition, Observer and Control Design for Particulate Systems
Liesmich

Simulation data for the modeling, observer and model predictive control are summarized. Model predictive control is utilized to regulate the size of nanoparticles synthesized within a batch reactor under specific temperature, concentration, and pressure conditions. A custom model of the synthesis process is developed, focusing on integrating nucleation, growth, and aggregation phenomena of particles. This model is constructed with a combination of partial and ordinary differential equations, which are efficiently discretized to maintain accuracy and robustness while facilitating real-time implementation of the controller. This method employs dynamic mode decomposition with control to approximate the nonlinear system as a time-discrete linear system. The initial state, estimated from the measured nanoparticle concentration, serves to initialize the
optimization problem solved at each time step. The objective is to minimize the disparity between the desired particle size
and the actual size throughout the process by adjusting the power of heaters, thereby controlling the temperature within
the reactor.

Art der Forschungsdaten Dataset
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page