KIT | KIT-Bibliothek | Impressum | Datenschutz

Breather solutions for semilinear wave equations

Henninger, Julia 1; Ohrem, Sebastian 1; Reichel, Wolfgang 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We prove existence of real-valued, time-periodic and spatially localized solutions (breathers) of semilinear wave equations $V(x)u_{tt}−u_{xx}=\Gamma(x)|u|^{p−1}u$ on $\mathbb{R}^2$ for all values of $p\in(1,\infty)$. Using tools from the calculus of variations our main result provides breathers as ground states of an indefinite functional under suitable conditions on $V,\Gamma$ beyond the limitations of pure $x$-periodicity. Such an approach requires a detailed analysis of the wave operator acting on time-periodic functions. Hence a generalization of the Floquet–Bloch theory for periodic Sturm–Liouville operators is needed which applies to perturbed periodic operators. For this purpose we develop a suitable functional calculus for the weighted operator $−\frac{1}{V(x)}\frac{d^2}{dx^2}$ with an explicit control of its spectral measure. Based on this we prove embedding theorems from the form domain of the wave operator into $L^q$-spaces, which is key to controlling nonlinearities. We complement our existence theory with explicit examples of coefficient functions $V$ and temporal periods $T$ which support breathers.


Volltext §
DOI: 10.5445/IR/1000181891
Veröffentlicht am 21.05.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 05.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000181891
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 38 S.
Serie CRC 1173 Preprint ; 2025/20
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Abstract/Volltext
Schlagwörter semilinear wave equation, breather solutions, time-periodic solutions, variational methods, functional calculus, spectral measure
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page