KIT | KIT-Bibliothek | Impressum | Datenschutz

Predicting NOx emissions from porous media burners using physics-informed graph neural networks

Puri, Rishabh ORCID iD icon 1; Stein, Oliver T. ORCID iD icon 1; Zirwes, Thorsten ORCID iD icon 2
1 Engler-Bunte-Institut (EBI), Karlsruher Institut für Technologie (KIT)
2 Universität Stuttgart (Uni Stuttgart)

Abstract:

The combustion of ammonia is accompanied by the release of NO𝑥, which refers to both NO and NO2 i.e., the nitrogen oxides contributing to air pollution. A potential technology for complete combustion
of ammonia and reduced NO𝑥
emissions is combustion in porous media. Multiple test cases are defined
using 2D burner configurations that are investigated computationally by means of Direct Numerical
Simulations (DNS). The main objective of this work is to study the exhaust gas products for a wide
range of burner configurations. However, simulating a large number of burner setups using DNS is
time-consuming and costly. To reduce the number of DNS computations, a physics-informed deeplearning model based on Graph Convolution Neural Networks (GCNNs) is employed. In a first step,
the effectiveness of data-driven GCNNs is validated for reactive flows in porous media and preliminary
data is shown here. Subsequently, GCNNs augmented with constraints from combustion chemistry are
implemented to train on sparse data and to predict the combustion characteristics of the porous media
burner with high efficiency.


Verlagsausgabe §
DOI: 10.5445/IR/1000181918
Veröffentlicht am 22.05.2025
Originalveröffentlichung
DOI: 10.34734/FZJ-2025-02463
Cover der Publikation
Zugehörige Institution(en) am KIT Engler-Bunte-Institut (EBI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1868-8489
KITopen-ID: 1000181918
HGF-Programm 38.05.01 (POF IV, LK 01) Anthropogenic Carbon Cycle
Erschienen in Proceedings of the 35th Parallel CFD International Conference 2024, 35th Parallel CFD International Conference 2024, ParCFD 2024, Bonn, Germany, 2 Sep 2024 - 4 Sep 2024
Veranstaltung 35th International Conference on Parallel Computational Fluid Dynamics (2024), Bonn, Deutschland, 02.09.2024 – 04.09.2024
Verlag Forschungszentrum Jülich GmbH
Serie Schriften des Forschungszentrums Jülich IAS Series ; 69
Vorab online veröffentlicht am 08.05.2025
Schlagwörter Ammonia Combustion;, Direct Numerical Simulation;, Graph Convolution Neural Networks
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page