

Numerical Investigation of the Minimum Ignition Energy in Ammonia/Hydrogen/Air Mixtures Considering Radiative Heat Loss

M. Reinbold, C. Yu, R. Schießl, U. Maas

Institute of Technical Thermodynamics, Karlsruhe Institute of Technology (KIT)

Motivation

- Ammonia is a promising energy carrier and fuel due to its high volumetric energy density compared to hydrogen, lack of carbon atoms and existing infrastructure
- Combustion processes using ammonia suffer from its low laminar burning velocity and high ignition energy
- Hydrogen addition to the fuel is considered to improve ignition and burning characteristics
- Reliable ignition of mixtures important for technical applications
- Lack of knowledge on the ignition properties of NH3/H2 fuels, especially lean mixtures
- Low reactivity of ammonia makes ignition of these fuels prone to perturbation even by minor physical effects
- → Goal: investigate the effect of radiation on Minimum Ignition Energy MIE of NH₃/H₂/Air mixtures at the lean flammability limit

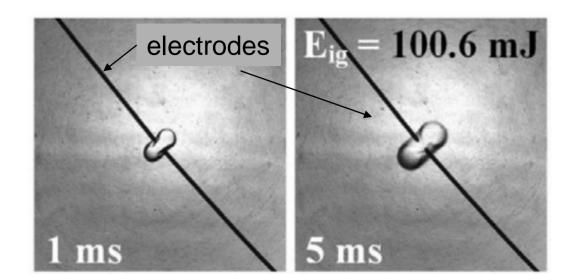


Fig. 1: Schlieren image of spark-ignition [5]; courtesy of Prof. S. Shy (NCU Taiwan)

Methodology

Approach

- Detailed numerical simulation study of ignition scenarios in 10%H₂ / 90%NH₃ (mol/mol) mixtures with air
 - Adjustable ignition source energy
 - Different equivalence ratios (from lean flammability limit to stoichiometric)
 - Radiation terms can be considered or neglected

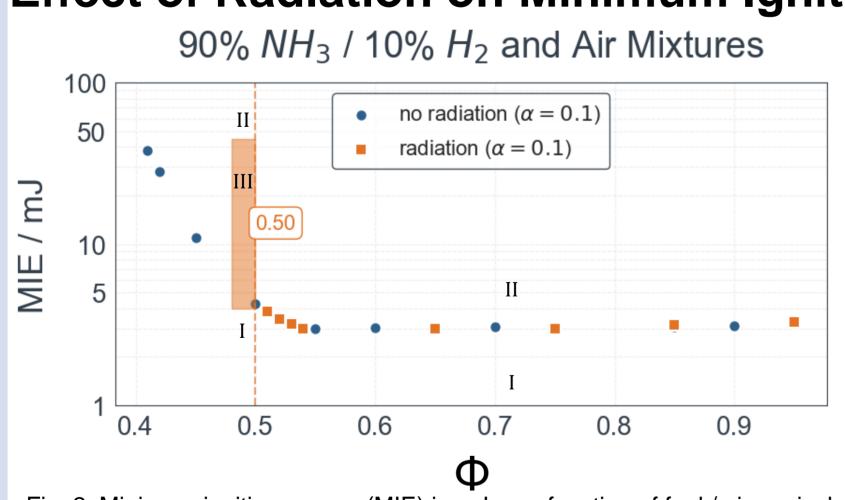
In-House Program INSFLA [1] for ignition simulations

- Solves conservation equations for total mass, species mass, energy, and momentum in 1D configurations
- Detailed chemical kinetics, reaction mechanism by Glarborg [2]
- Detailed molecular transport model including thermal diffusion (Soret effect) and differential diffusion
- Spatial grid and time steps adaptive, time stepping coupled to error control
- Spherically symmetric configuration
- Constant pressure (p = const) assumption; accurate for source time durations above $\approx 20 \, \mu \text{s}$ [1]
- Optically thin approximation model (OTM) applied for radiative heat loss [3]

Spark-Ignition Source

- Volumetric ignition source
 - source time (500 µs in this work*)
 - source radius (1 mm in this work*)

Optically Thin Approximation Model (OTM)


- Volumetric radiative heat loss given by $\dot{q}_{rad} = 4 \cdot k \cdot \sigma \cdot (T^4 T_b^4)$
 - k: total Planck mean absorption coefficient
 - : Stefan-Boltzmann constant
 - ": local temperature
 - T_b : background temperature (300 K in this work)

Simulation Setup & Evaluation Conditions

- Homogeneous NH₃/H₂/Air mixture with varrying equivalence ratio and fixed hydrogen content in the fuel $(a_{H_2} = \frac{n_{H_2}}{n_{H_2} + n_{NH_3}} = 0.1)$
- Atmospheric conditions: p = 1 bar, T = 300 K
- Successful ignition is counted when flame reaches $r = 7.5 \text{ cm}^*$
- Partially successful ignition counted when flame exists but not propagates until 7.5 cm

Results

Effect of Radiation on Minimum Ignition Energy (MIE)

- For $0.5 < \Phi < 1.0$ radiative heat loss has no appreciable effect on the ignition
- For $0.4 < \Phi < 0.5$ system is sensitive to radiation:
 - Radiation neglected: flame survives (II)
 - Radiation not neglected: flame starts propagating and finally extinguishes (III)

Fig. 2: Minimum ignition energy (MIE) in mJ as a function of fuel / air equivalence ratio Φ

The flammability limit is at an equivalence ratio slightly below $\Phi = 0.5$ – indicated by the orange bar, representing three distinct zones

- Below the bar, the energy deposition does not lead to a propagating flame (no ignition)
- Above the bar, the energy deposition leads to a stable propagating flame (successful ignition)
- III. Within the region represented by the bar, a flame front forms and propagates outward initially, followed by extinction due to the radiative heat loss (partially successful ignition)

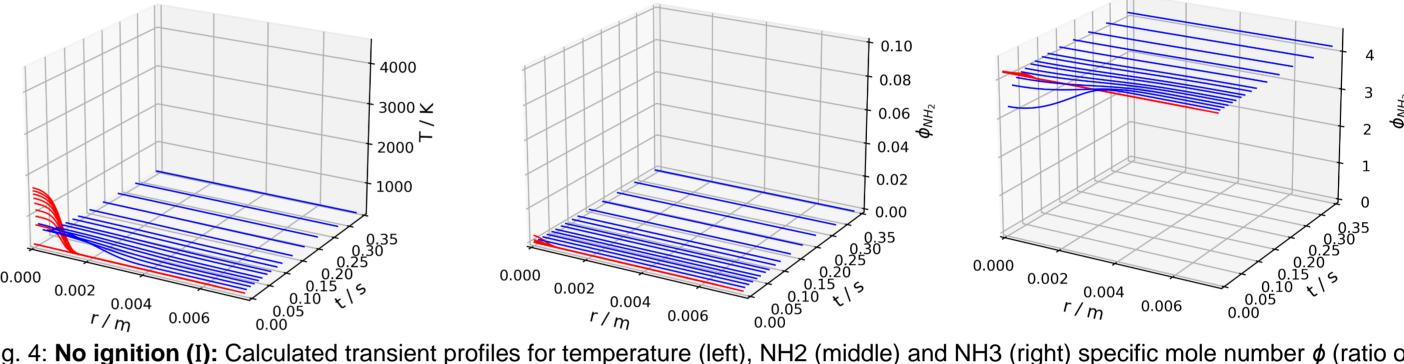


Fig. 4: **No ignition (I):** Calculated transient profiles for temperature (left), NH2 (middle) and NH3 (right) specific mole number ϕ (ratio of mass fraction to molar mass) for fuel/air equivalence ratio $\Phi = 0.51$ with source energy 3.0 mJ and considering radiation

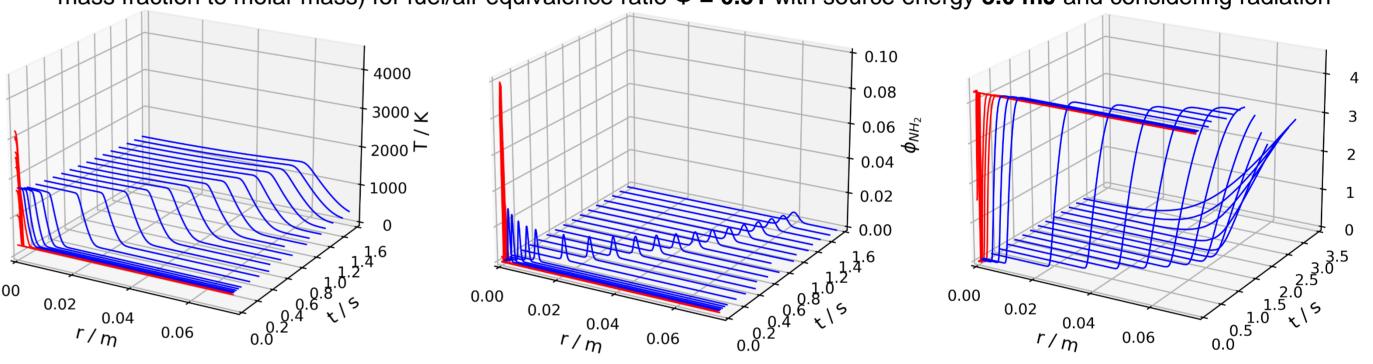


Fig. 5: Successful ignition (II): Calculated transient profiles for temperature (left), NH2 (middle) and NH3 (right) specific mole number ϕ (ratio of mass fraction to molar mass) for fuel/air equivalence ratio $\Phi = 0.51$ with source energy 3.8 mJ and considering radiation

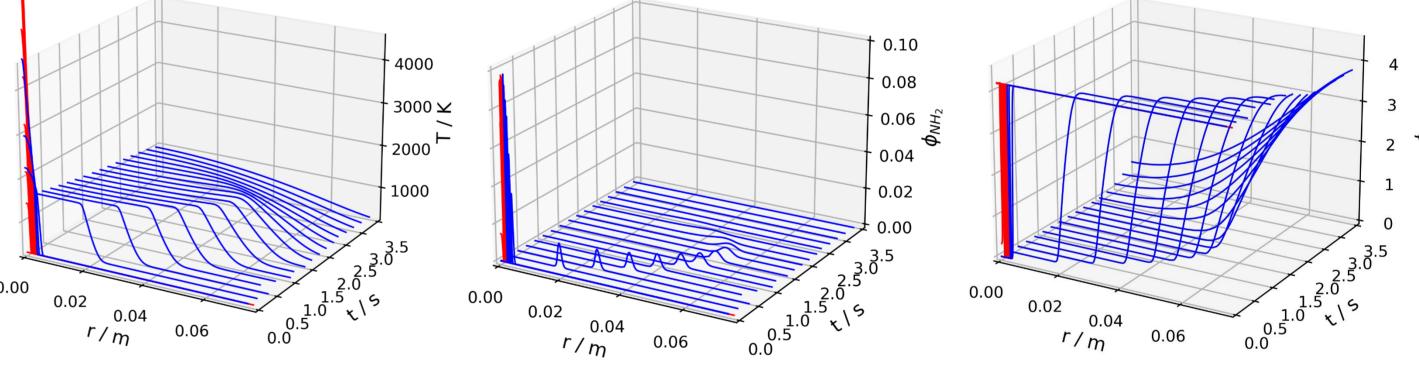


Fig. 6: Partially successful ignition (III): Calculated transient profiles for temperature (left), NH2 (middle) and NH3 (right) specific mole number ϕ (ratio of mass fraction to molar mass) for fuel/air equivalence ratio $\Phi = 0.50$ with source energy 41 mJ and considering radiation

Fig. 4: No ignition (I)

- No propagating flame
- No NH₂ peak (correlates with position of heat release rate maximum) is traveling
- Only very small amount of NH₃ consumed during source energy deposition

Fig. 5: Successful ignition (II)

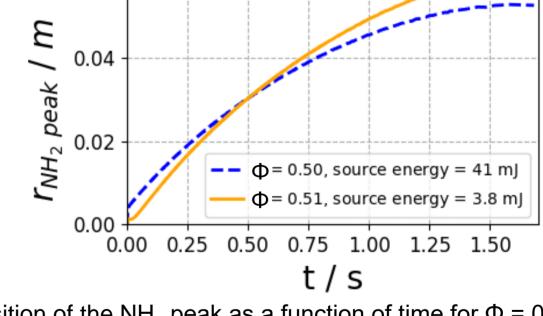
- Stable flame front forms and propagates outward after ignition
- NH₂ peak (correlates with position of heat release rate maximum) moves outward
- NH₃ is fully consumed by chemical reactions

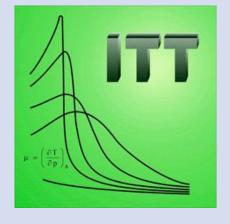
Fig. 6: Partially successful ignition (III)

- Flame front forms but weakens due to radiative heat loss
- NH₂ peak initially moves outward but diminishes as temperature drops
- NH₃ not fully consumed, indicating extinction

Fig. 7 Comparison of NH2 peak of II and III:

- NH₂ peak position indicates location of the flame; slope shows flame speed
- In partially successful ignition, flame movement slows down and extinguishes




Fig. 7: Position of the NH₂ peak as a function of time for $\Phi = 0.51$ (ignition energy = 3.8 mJ) and Φ = 0.50 (ignition energy = 41 mJ)

Conclusion

- It is clearly confirmed, that for the calculation of the MIE for lean mixtures close to the flammability limit (Φ < 0.5), radiation must not be neglected
- Radiation causes flame extinction even after several centimeters of flame propagation due to additional heat loss caused by radiation
- The values for the MIE are strongly depended of the criteria for defining a successful flame (see region I, II, III)
- At the flammability limit, the effect of radiative heat loss influences the MIE significantly

References

- [1] U. Maas, J. Warnatz, Ignition processes in hydrogen-oxygen mixtures. Combustion and Flame, 74(1), (1988), 53-69
- [2] J. Jian et al. An experimental, theoretical, and kinetic modeling study of post-flame oxidation of ammonia, Combustion and Flame 261 (2024)
- [3] M. Faghih et al. Effect of radiation on laminar flame speed determination in spherically propagating NH3-air, NH3/CH4/air and NH3/H2-air flames at normal temperature and pressure,
- Combustion and Flame 257 (2023) [4] H. Nakamura, M. Shindo, Effects of radiation heat loss on laminar premixed ammonia/air flames, Proceedings of the Combustion Institute 37 (2) (2019)
 - [5] C. Wu et al. Experimental and numerical investigation of the induced ignition process in ammonia/air and ammonia/hydrogen/air mixtures, Proceedings of the Combustion Institute 40 (1-4) (2024)

Institute of Technical Thermodynamics Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe, Germany

^{*} Parameters based on experimental data for future comparison