KIT | KIT-Bibliothek | Impressum | Datenschutz

Customer Decision-Making Processes Revisited: Insights from an Eye Tracking and ECG Study using a Hidden Markov Model

Weiß, Tobias ; Merkl, Lukas; Pfeiffer, Jella ORCID iD icon

Abstract:

Good timing is key for many activities in business and society. In context of adaptive user assistance, it can work as door opener to further engage with the user. This paper presents a virtual commerce study which combines eye tracking, electrocardiography, and virtual reality with the goal to detect decision phases in two different purchase scenarios. We therefore collect objective sensor data in combination with subjective decision phase annotations. Shifts between decision phases are determined subjectively by the participants via retrospective video analysis. For decision phase recognition, we demonstrate how to use the neurophysiological sensor data to train a Hidden Markov Model with multivariate mixed Gaussian emission distributions and how to use it for inference. A main benefit of our approach is its lightweight character regarding both training and inference


Originalveröffentlichung
DOI: 10.1007/978-3-031-58396-4_19
Dimensions
Zitationen: 1
Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik (WIN)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2023
Sprache Englisch
Identifikator ISBN: 978-3-031-58395-7
ISSN: 2195-4968
KITopen-ID: 1000181954
Erschienen in Information Systems and Neuroscience. Ed.: F.D. Davis
Veranstaltung NeuroIS Retreat (2023), Wien, Österreich, 30.05.2023 – 01.06.2023
Verlag Springer
Seiten 221-230
Serie Lecture Notes in Information Systems and Organisation ; 68
Schlagwörter Customer behavior; Decision making; Eye tracking; Electrocardiography; Hidden Markov model; Gaussian mixture model; Machine learning; Virtual commerce; Virtual reality
Nachgewiesen in Dimensions
Scopus
OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 16 – Frieden, Gerechtigkeit und starke Institutionen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page