KIT | KIT-Bibliothek | Impressum | Datenschutz

Controlling the mechanical properties of laser powder bed fusion manufactured AlSi10Mg using optimized oscillating scan paths

Meyer, Samuel 1; Englert, Lukas ORCID iD icon 1; Schüßler, Philipp ORCID iD icon 1; Schulze, Volker 1; Dietrich, Stefan ORCID iD icon 1
1 Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK), Karlsruher Institut für Technologie (KIT)

Abstract:

In the field of metal additive manufacturing, laser powder bed fusion (L-PBF) stands out for its maturity. The path the laser takes over the powder, in this study AlSi10Mg, is determined by a large set of separate parameters; the combination of which offers ample room for optimization. The close ties between the parameters chosen, and the resulting mechanical properties, are what motivates the extensive research done in this field. This study changed the scan line path into a circular oscillation (prolate trochoid) and narrows down a large set of parameters to two sets that exhibit significant differences from traditional scan lines in terms of density, porosity distribution, tensile strength, elongation at fracture, hardness, surface roughness, and melt pool (MP) shape. Remarkable upper bounds for MP size were also characterized for the first time in this work. Some of the noteworthy findings consist of an up to 70% reduction in surface roughness, up to a 40% increase in the elongation at fracture, and up to a 150 μm range of hatching distances to produce a part with under 0.5% porosity. The last of which leads to an overall increase in the robustness of the L-PBF manufacturing process by reducing the sensitivity to parameter fluctuations.


Verlagsausgabe §
DOI: 10.5445/IR/1000181974
Veröffentlicht am 28.05.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 20.12.2024
Sprache Englisch
Identifikator ISSN: 2363-9512, 2363-9520
KITopen-ID: 1000181974
Erschienen in Progress in Additive Manufacturing
Verlag Springer International Publishing
Vorab online veröffentlicht am 19.12.2024
Nachgewiesen in Scopus
Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page