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ABSTRACT

This article provides an analysis of the utilization of Machine Learning (ML) models in Flood Susceptibility Mapping (FSM),

based on selected publications from the past decade (2013-2023). Recognizing the challenge that some stages of ML modeling

inherently rely on experience or trial-and-error approaches, this work aims at establishing a clear roadmap for the deployment

of ML-based FSM frameworks. The critical aspects of ML-based FSM are identified, including data considerations, the model's
development procedure, and employed algorithms. A comparative analysis of different ML models, alongside their practical ap-
plications, is made. Findings suggest that despite existing limitations, ML methods, when carefully designed and implemented,
can be successfully utilized to determine areas at risk of flooding. We show that the effectiveness of ML-based FSM models is

significantly influenced by data preprocessing, feature engineering, and the development of the model using the most impactful

parameters, as well as the selection of the appropriate model type and configuration. Additionally, we introduce a structured

roadmap for ML-based FSM, identification of overlooked conditioning factors, comparative model analysis, and integration of

practical considerations, all aimed at enhancing modeling quality and effectiveness. This comprehensive analysis thereby serves

as a critical resource for professionals in the field of FSM.

1 | Introduction

Annually, floods affect approximately 200 million people
(Ritchie and Rosado 2024) and are responsible for over half of the
damage from natural disasters in the last 50years (Bates 2021).
In Germany, the 2021 extreme flood caused at least 180 deaths
and EUR 46 billion of estimated loss (Mohr et al. 2022). The
scale, frequency, and impact of flood events are not only in-
creasing globally but also becoming complex due to the inter-
play of climate change and uncontrolled development (Ludwig
et al. 2023; Tellman et al. 2021). To mitigate flood risks, ad-
dressing hazard, vulnerability, and exposure is essential. Flood
Hazard Mapping (FHM) encompasses various approaches to as-
sessing flood likelihood and severity. As a subsection of FHM,

Flood Susceptibility Mapping (FSM) focuses on identifying
flood-prone areas based on environmental and topographical
factors. This process is supported by Flood Inventory Maps
(FIM), which document past flood events and provide histori-
cal insights for improved flood risk assessment (Razavi-Termeh
et al. 2025). In this study, FSM is a focal point.

The FSM is an important approach in flood management, pro-
viding vital information for planning and response (Bentivoglio
et al. 2022). Simulation models are the basis of FSM and they
can be categorized into four groups: physical, physics-based,
empirical, and hybrid models (Mudashiru et al. 2021). Physical
models use actual laboratory experiments to simulate flood-
ing (Tomiczek et al. 2020), but they can be costly, are limited
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in scale, require specialized equipment, and solid know-how.
Physics-based models, such as numerical solvers, use mathe-
matical equations describing principles of fluid motion to sim-
ulate the flood dynamics; these require advanced expertise,
tedious parameterization, and a comprehensive knowledge of
flood-related parameters, making them complex to set up and
utilize (Brunner 2016). Empirical models rely on statistics from
past floods and other influential parameters such as rainfall, to-
pography, and land use. They can be classified into three types:
statistical models, which are used for quantitative data analy-
sis; Machine Learning (ML) models, employed for data-driven
predictions; and Multi Criteria Decision Analysis (MCDA) mod-
els, which provide experts a key role in assessing criteria and
weights (Wang et al. 2019). Finally, Hybrid models are a combi-
nation of two or more of the former three.

Rooted in observed data, statistical models are popular for their
simplicity and usefulness in data-scarce regions, but they strug-
gle with predicting extreme events and lacked the ability to cap-
ture underlying physical processes (Mudashiru et al. 2021). To
compensate for the above limitations, a leapfrog is possible via
the integration of ML-based models, grounded in the realm of
Artificial Intelligence (AI), into FSM. Given flood modeling, an
Al-driven model could integrate data-driven (leveraging ML)
and knowledge-based (e.g., hydrological models) insights to cre-
ate a comprehensive model of flood susceptibility and risks for
a particular area. ML-based models, however, belong to a sub-
set of AI focused on developing algorithms that can learn from
and make predictions or decisions based on data (e.g., historical
flood data, real-time data from sensors, and satellite imagery, to
name but a few).

ML-based methods have grown in popularity due to their abil-
ity to provide accurate and efficient prediction models for both
long-term and short-term floods (Mosavi et al. 2018). They also
offer simplicity, speed, and reasonable accuracy; however, they
are prone to overtraining, limited generalization, and occa-
sionally produce unreliable results. These shortcomings arise
because ML-based models are heavily dependent on the qual-
ity of input data and contributing parameters, as well as they
cannot fully capture the fundamental physics of flood dynam-
ics. To overcome such limitations, the researchers have in-
creasingly focused on integrating ML-based models with other
modeling strategies like metaheuristic techniques, optimization
algorithms, numerical analyses, and physical models (Razavi-
Termeh et al. 2018). These hybrid approaches, categorized as
Al-driven hybrid models, have significantly boosted the effec-
tiveness, physical interpretability, soundness, and accuracy of
ML-based models.

Many studies have applied ML models in FSM; however, a lack
of consensus on critical aspects such as model setup, data pro-
cessing, and model validation limits their reproducibility and
transferability. This paper fills this gap by systematically ana-
lyzing the existing literature and presenting a detailed roadmap
for developing ML-based FSM models. Our study addresses
these gaps by systematically reviewing the current literature
and providing a comprehensive framework that emphasizes the
often-overlooked stages of data preprocessing, model develop-
ment, validation, and post-processing. Unlike previous works,
this paper not only critically analyzes the state-of-the-art models

but also offers guidelines and best practices to improve their ap-
plication across various geographic and contextual scenarios.
The novelty of this paper lies in its provision of a structured
roadmap to the development of ML models for FSM, enhanced
by a comparative analysis of model performance across various
geographic and contextual scenarios. This approach allows for a
deeper understanding of ML model effectiveness and improves
their applicability for future research and real-world implemen-
tations. All abbreviations used in this paper are listed and de-
fined in Appendix 1.

2 | Existing Knowledge on the Application of ML
in Flood Management

Here, to identify recent advances, emerging trends, and critical
gaps that necessitate further investigation, we analyze recently
published literature that explores the role of ML in advancing
flood management techniques. Table 1 presents the key dis-
tinctions identified in flood management, synthesizing insights
from recent reviews on the integration of ML techniques. While
current applications of machine learning in flood management
provide invaluable insights, several methodological gaps still
hinder its broader utilization. Previous studies mentioned im-
portant considerations like model explainability and general-
ization. However, they often lacked an in-depth exploration of
the methodologies to undertake these tasks. We present detailed
procedures to address these elements, enhancing the applica-
tion of ML in flood management. We outline comprehensively
the phases of model development, from pre-processing to post-
processing, detailing suitable methods for each stage.

3 | Research Methodology

To find the most relevant articles to base our analysis, we
searched Scopus, Science Direct, Web of Science, and Google
Scholar databases for publications dealing with FSM using ML
and statistical methodologies. We identified a total number of
521 articles published and indexed in above-mentioned data-
bases between 2008 and 2023, using the following keywords:
“machine learning” and [“flood susceptibility mapping” or
“flood susceptibility” or “flood susceptibility assessment” or
“flood prediction”]. Before 2008, there is no indexed article with
these keywords. Figure 1a depicts the distribution of these arti-
cles across different years, illustrating both the number and per-
centage of articles published annually. The selected articles are
published across 250 journals. To enhance clarity in representa-
tion, Figure 1b highlights only journals contributing more than
2% of the selected articles (> 10 articles). However, the selection
process included articles from a broader range of journals, in-
cluding those contributing less than 2%.

After 2013, there was a notable increase in the number of arti-
cles using ML methods for flood management, totaling 503 over
the past decade. To select the most relevant publications, we
used a “snowballing” strategy (Lechowska 2018), starting with
highly cited articles and then exploring those that cite or are
cited by these key studies. This approach narrowed the focus to
100 innovative articles, which were analyzed in detail for their
contributions to model types, input parameters, and evaluation
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methods. These articles and their main characteristics are de-
tailed in the appendices of the study (Appendices 2 and 3).

4 | Roadmap for the Construction FSM Based on
ML

4.1 | General Steps

Developing the ML-based model for FSM includes pre-
processing, processing, and post-processing (Table 2). The pre-
processing phase refers to data preparation for the modeling
process, which includes data collection, study area selection,
contributing parameters determination, feature engineering,
data cleaning, and feature scaling (Pourzangbar et al. 2023)—
compare Section 4.2.

In the processing phase, the focus is on model development.
After determination of the methodology for partitioning the

Q

200

Number

120

80

40

T30
t 25
k20

Year of publication

dataset into training and testing subsets, the configuration,
architecture, and training algorithm of the ML-based model
are selected. Subsequently, hyperparameters of the ML-based
models are determined using either conventional approaches or
meta-heuristic algorithms. In this phase, the model is developed
and ready to be implemented into testing and unseen datasets—
compare Section 4.3.

In the post-processing phase, the performance of the developed
model in terms of accuracy and precision, model explainabil-
ity, and generalization is evaluated against testing and unseen
datasets. Model explainability is assessed to elucidate the contri-
bution of conditioning factors to the overall predictions (Aydin
and Iban 2023). Furthermore, in this phase, the performances
of different models are compared (comparative performance),
thereby drawing conclusions about their relative superiority
based on accuracy and physical interpretability. Some import-
ant steps of this phase, as highlighted in Table 2, are elaborated
in Section 4.4.

35

Percentage

WRM NH
2.72% 2.45%

SERRA
2.17%

FIGURE1 | (a)Published articles on the application of ML-based models to FSM in different years, (b) journals with over 2% of published articles
on FSM using ML-based models during 2013—2023. GI=Geocarto International; JEM =Journal of Environmental Management; JH =Journal of
Hydrology; NH =Natural Hazards; RS=Remote Sensing; SERRA =Stochastic Environmental Research and Risk Assessment; STE =Science of the

Total Environment; Wat = Water; WRM = Water Resources Management.

TABLE 2 | Phases for developing robust and physically sound ML-based FSM (the subsections in which each subject is discussed are indicated

between square brackets).

Pre-processing [4.2]

Processing [4.3]

Post-processing [4.4]

Data collection [4.2.1]

Data splitting [4.3.1]

Performance assesment
[4.4.1]

Study area [4.2.2]

Feature importance[4.3.2]

Model explainability

Contributing parameters

Model selection [4.3.3]

[4.4.2]

[4.2.3]

Model architecture [4.3.4]

Model generalization
[4.4.3]

Feature selection [4.2.4]

Hyper-parameters [4.3.5]

Comparative analysis

Data treatment [4.2.5]

Model validation [4.3.6]

[4.4.4]
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We incorporated a flowchart in Appendix 3: Figure A1, which
illustrates the three phases of developing a ML-based model for
FSM. This flowchart clearly outlines each phase, providing a
structured overview to guide the reader through the model de-
velopment process.

4.2 | Pre-Processing Phase
4.2.1 | Data Collection

Existing resources for producing data required for ML-based
model development include in situ measurements collected by
ground-based sensors; Remote Sensing (RS) such as satellite
imagery, Google Earth Engine, and drone-generated data; re-
construction data such as generated by numerical simulations;
and finally, crowdsourcing and social media mining (Maspo
et al. 2020).

In situ measurements provide highly accurate, detailed data, but
are geographically limited and financially costly. Given flood
modeling, field observations provide high temporal resolution
data for parameters like precipitation and discharge, but they
have lower spatial accuracy and are prone to damage during ex-
treme events (Ludwig et al. 2023).

RS, on the other hand, offers global coverage and is cost-
effective over time (Pourzangbar et al. 2023) despite high
initial costs and varying data quality that require calibration
with in situ data. In a majority of the analyzed articles, con-
ditioning factors and flood inventory maps are derived from
satellite imagery, including data from Landsat 8 (Operational
Land Imager, OLI) and Sentinel-1 (Synthetic Aperture Radar,
SAR), among others. SAR images are widely used in flood
modeling due to their all-weather, day/night capabilities
(Anusha and Bharathi 2020), enabling accurate mapping of
flood extents (Hitouri et al. 2024) and improving hydraulic
models for better flood simulations, especially in urban areas
(Scotti et al. 2020).

Flood inventory maps are either derived from the interpreta-
tion of digital satellite images or compiled from historical flood
databases (Chen et al. 2019; Yu et al. 2023). Riazi et al. (2023)
employed Sentinel-1 SAR data to distinguish between flooded
and non-flooded areas. Similarly, Nguyen (2022) utilized SAR
imagery, enhanced with the Lee filter to reduce noise, for the
detection of flood-affected regions. Topographical data, includ-
ing Digital Elevation Models (DEMs), slope angle, aspect, and
plain curvature, were extracted using satellite imagery. The
Shuttle Radar Topography Mission (SRTM) has been widely
used in various studies to generate DEM layers (Razavi-Termeh
et al. 2023). Land-use and land-cover data, which are also im-
portant conditioning factors for flood modeling, were obtained
through the OLI onboard Landsat satellites, accessed via Google
Earth Engine. This satellite-derived data provides detailed in-
formation on human activities and natural landscapes that sig-
nificantly affect flood susceptibility (Ha et al. 2023; Mahdizadeh
Gharakhanlou and Perez 2022).

Furthermore, physics-based models supply spatial and tempo-
ral data for training ML models, which are then used for pre-
dicting events like water depth and urban floods rapidly. Social
media platforms also emerge as vital real-time data sources
for flood management, aiding in immediate response actions,
although their integration into ML-based FSM models is still
in early stages but shows promise for enhancing real-time pre-
dictive capabilities. Table 3 summarizes data sources and col-
lection methods, illustrative parameters associated with these
sources, and an assessment of the advantages and disadvan-
tages of each method.

4.2.2 | Study Area

Study areas are conditioned by geographical, climatic, human,
geopolitical, historical, environmental, and geological factors.
Study areas in FSM research cover diverse climate zones from
arid regions like Saudi Arabia and Egypt to tropical climates
such as Vietnam and Malaysia, and temperate zones including

TABLE 3 | Summary of data collection sources, corresponding tools used, and remarks about their utilization in FSM.

Type of data source Data collection method

Example parameters

Remarks

In situ (observational data) Sensor/gauge

Field surveys

Remote sensing Satellite imagery

Historical flood location

Flood inventory maps

Precipitation/rainfall
Flow properties
Lithological maps

High accuracy
Detailed data over long periods
Limited spatial coverage
Vulnerable to extreme events

Vast spatial coverage

Google Earth Engine Topographical data Require in situ data for calibration
Drone DEM Expensive and time-consuming
Aerial photos NDVI Susceptible to weather conditions
Physics-based model Physics-based model Flood maps Accurate and robust
Numerical simulation Flow properties Expensive and time consuming
Crowdsourcing Social media Flood maps Real-time data for flood maps
Flow properties Difficult to analyze
Evacuees' behavior Often of poor quality
Temporal and spatial
resolution not controlled
6 of 44 Journal of Flood Risk Management, 2025
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FIGURE2 | The study areas (marked with red spots) and their associated countries in the analyzed articles.

southern Canada and Switzerland (Figure 2). The spatial scales
for flood modeling vary from local (covering small areas like
towns), regional (encompassing up to 100,000km? such as prov-
inces), national (involving whole countries), to supra-national
(dealing with entire continents or the globe).

Evaluation of the selected study areas has shown that certain
intrinsic characteristics of these locations influence the quality
of the flood analysis:

» Geography and topography: landscapes with varied eleva-
tions and landforms significantly condition flood-prone
areas, as demonstrated by the diverse terrains of Maneh and
Samalgan City (Eslaminezhad et al. 2022), and the Haraz
watershed (Chapi et al. 2017).

« Historical occurrence of floods or natural disasters: histor-
ical flood data is essential for calibrating and validating
flood susceptibility models, especially in areas known for
severe flooding impacts (Al-Areeq et al. 2022).

« Climatic patterns and seasonal variation: areas that expe-
rience diverse climate conditions, especially those with
seasonal heavy rainfall or extreme weather events, are op-
timal for analyzing how climate influences flood risk (Luu
etal. 2021; Ullah et al. 2022) due to their broad range of data
on climatic factors that condition flooding.

» Urbanization and land use: population density and land
cover are identified as critical factors in choosing study
areas for flood susceptibility analysis. Locations ex-
periencing changes in land use and population offer
valuable insights into the relationship between human
activity and the likelihood of flooding (Aldiansyah and
Wardani 2023).

 Data availability: adequate and reliable data availability is
a crucial factor; areas with extensive data collection allow

for ML-based models which are more generalizable and re-
liable (Mohr et al. 2022). The brief duration of some events,
for example, flash floods, makes RS tools like satellites not
adequate. Social media mining may be an alternative in
these cases (Costa et al. 2023).

4.2.3 | Contributing Parameters

The input parameters for the development of ML-based models
can be classified as follows: topographical, hydrological, envi-
ronmental, and morphological. Each of these is prepared in the
form of raster maps with different spatial resolutions, usually the
30m X 30m pixel size (Vafakhah et al. 2020). The relationship be-
tween different parameters and flood susceptibility, along with
the value ranges of these parameters, is detailed in Table 4. The
positive and negative correlations, 1 and | respectively, show that
the parameter of interest may have a positive or negative correla-
tion with flood susceptibility depending on its value.

Topographical features play a critical role in the land's capacity to
retain water. Steeper slopes can increase runoff velocity, height-
ening the risk for flash floods (El-Magd et al. 2022). The Digital
Terrain Model (DTM) represents land elevations and shows
that higher elevations are less flood-prone due to their natural
distance from major water bodies, while lower areas are more
vulnerable due to water accumulation (Deroliya et al. 2022). TRI
and TPI measure the land's unevenness and relative elevation,
respectively, influencing how water disperses and potentially re-
ducing flood risk in elevated or rugged terrains (Chapi et al. 2017;
Kalantari et al. 2017). Conversely, land curvature affects water
flow, with convex areas (positive curvature) often seeing reduced
flooding due to water divergence (Ha et al. 2023).

Hydrological parameters assess water movement and soil ab-
sorption to predict flood-prone areas during heavy rainfall.
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TABLE 4 | Overview of key parameters analyzed in FSM, their typical ranges, and their correlation with flood susceptibility.

Correlation
Category Parameters Unit Range/attributes of parameter with FSM
Topographical Slope Degree 0-80 1
Elevation Meter (m) —22t0 4000 !
Terrain Ruggedness m 0-871 N
Index (TRI)
Topographic Position m —150 to 160 !
Index (TPI)
Plan curvature Inverse meter (m™!) —142 to 57 N
Profile curvature m™! —50 to 50 (concave, flat, convex) N
Hydrological Topographic Wetness — 0.50-27 t
Index (TWTI)
Rainfall Millimeter (mm) 180-1025 1
River(stream) Kilometer per square 0-2.574 1
Density (Riv-Den) kilometer (km/km?)
Drainage Density km/km? 0.0017-1.29 l
(Drain-Den)
Flow Accumulation — 0-1.73e+07 1
(FloAcc)
Flow Direction Degree East-West-North-South-Northeast- tl
(FlowDir) Northwest- Southwest-Southeast
Environmental Land Use Land — Construction- N
Cover (LULC) Transportation-Residential
areas- Mountainous-Agriculture-
Grasslands-Water bodies-Forests-
Woodlands-Barren land
Distance to River m 0-10,000 |
(DisRiv)
Lithology — More than 26 geological units such N
as Cretaceous, Jurassic, Permian,
Quaternary, Cambrian marine,
Millennium rocks, to name but a few
Soil type — Different soil types are listed, N
such as Alluvial, Gleisol,
Kambisol, Litosol, Mediterranean,
Podsolik, to name but a few
NDVI — —1—1 l
Distance to Road m 0-12,806 N
(DisRoa)
Distance to Fault m 0-14,000 1
(DisFau)
Morphological Stream Power Square meter per 6-26 1
Index (SPI) meter times degree
[(m?/m) degree]
Aspect Degree —1 (flat) and 0-360 N
Sediment Transport (m?/m)degree 0-22,540 )
Index (STI)
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FIGURE 3 | Frequency of the input parameters used in the analyzed articles for FSM (only parameters are reported here whose contribution in

the analyzed articles is more than 5%).

Higher TWI values indicate potential water accumulation
areas, highlighting flood risks. Similarly, excessive rainfall
can surpass the capacity of drainage systems, causing rapid
runoff and floods (Park and Lee 2020). River and drainage
densities indicate how rivers and their networks can affect
water flow and flood likelihood. Higher river density can
lead to a more complex network of water paths, potentially
increasing flood risk (Horton 1932). Increased drainage den-
sity facilitates quicker runoff, possibly heightening flood risk
(Sajedi-Hosseini et al. 2018). Flow accumulation (Al-Juaidi
et al. 2018; Meliho et al. 2021) and direction (Nguyen 2022;
Pham et al. 2021) help determine potential flood paths by
tracking how water moves across a landscape.

Environmental parameters influencing floods encompass both
natural elements and human activities. LULC notably impacts
flood risks by modifying surface runoff and infiltration (Brody
et al. 2014), where urbanization increases impermeability, thus
enhancing runoff and increasing flood risk (Eslaminezhad
et al. 2022). Proximity to rivers increases the likelihood of riv-
erine flooding, particularly with rivers prone to overflow (Luu
et al. 2021). Soil types (Gabriels et al. 2020), lithology, and the
presence of vegetation (measured by NDVI) (Aldiansyah and
Wardani 2023) are significant as they affect water absorption
and retention, influencing how floods develop. Additionally,
roads can alter flood dynamics by acting as barriers that either
block or redirect water flow, thereby affecting flood susceptibil-
ity in surrounding areas (Nguyen et al. 2023). Distance to faults
is conversely proportional to flooding susceptibility if their ac-
tivity increases and starts moving (Eslaminezhad et al. 2022).

Morphological parameters, such as SPI and ST1I, are used to as-
sess the erosion potential and sediment transport in watersheds.
SPI correlates with slope angle and watershed area, indicating
flood erosion power (Ullah et al. 2022). The aspect factor, which
denotes the distribution of different topographical directions,
influences slope stability by affecting water flow, solar exposure,
and evaporation, which together impact broader hydrological
and meteorological processes, potentially leading to landslides
and floods (Ullah and Zhang 2020). STI helps estimate erosion
and sedimentation rates, highlighting the dynamics of sediment
movement influenced by terrain.

Several input parameters have consistently been recognized as
crucial for effective FSM. Key conditioning factors in FSM in-
clude the topographic wetness index, land slope, land use and
land cover, rainfall levels, and proximity to rivers. Notably,
DisRiv and TWI are significant factors, being central in 61%
and 68% of studies, respectively. These findings highlighted
the prevailing importance of these variables in the field of
FSM. Figure 3 illustrates the frequency of various parameters
commonly employed in the development of ML-based models
for flood susceptibility. Only parameters which are used more
than five times in the analyzed articles are reported here (i.e.,
they are used at least in five different articles for the modeling
procedure).

Diverse techniques have been employed to assess the relative
significance of input parameters in ML-based models—compare
Section 4.3.2. The relative importance of the 13 most important
parameters is illustrated in Figure 4. A comparison of Figures 3
and 4 shows an alignment between the most commonly incor-
porated input parameters in ML models and those deemed most
critical.

4.2.4 | Feature Selection

Including irrelevant parameters can lead to complex models that
are more difficult to interpret and implement than those created
using only the most essential parameters (Pourzangbar 2012);
the identification of the most relevant parameters for the model
development is called feature selection. Multicollinearity testing,
which evaluates if two or more conditioning factors are highly
correlated with each other, is one of the most common feature
selection methods and can play a role. Testing multicollinearity
allows the exclusion of redundant flood predictors within the
modeling framework. for this, several criteria are commonly em-
ployed, such as Pearson's Correlation Coefficient (CC), Variance
Inflation Factor (VIF), and condition number. Resolving multi-
collinearity issues typically involves either removing one of the
correlated variables, combining them, or applying methods such
as ridge regression or Principal Component Analysis (PCA). It is
important to note that none of these tests can definitively prove
the presence of multicollinearity, but rather provide evidence

9 of 44

85UB017 SUOWIWIOD 8A 11810 3|qeot ddke ayy Aq pausenob afe Sl YO 8SN JO S8|nJ 10} ARIq1T8UIUO 8|1 UO (SUOTHPUOO-PUR-SLUIBY/IO A8 |1 ARe.q1jBu 1 JUO//:Sdy) SUOTPUOD PUe Swie | 8y} 885 *[6202/90/20] Uo ARiqiauliuo A8|im ‘@ifojouyse | in- 1misul jeynsie Aq zz002 €4 (TTTT 0T/I0pAuco A3 1m Atelqjeuljuo//sdny woiy pepeojumod ‘Z ‘520z *XBTEESLT



Elevation
Slope

DisRiv

TWI

LuULC

Rainfall
Lithology
Riv(Drain)-Den
Plan Curvature
SPI

NDVI

Soil type
Aspect

100%
90%
81%
63%
62%
60%
49%
44%
43%
37%
36%
32%
31%

FIGURE4 | Relative importance of parameters contributed to the development of the ML-based models in the analyzed articles.

that it may be present in a model. Therefore, it is important to
use multiple tests and to interpret the results to conclude that
there is multicollinearity between contributing factors.

4.2.5 | Data Treatment

Data treatment involves feature scaling techniques such as
normalizing or standardizing the raw data, converting data to
the appropriate format, and data cleaning (Hastie et al. 2009).
Various methods, such as max-min normalization and z-score
standardization, are employed to scale data types of differ-
ing magnitudes (Tabbussum and Dar 2021; Ding et al. 2020).
However, standardization is preferred over min-max scaling
for its robustness against outliers. Standardization is especially
suitable for algorithms that assume normally distributed data,
such as Logistic Regression (LR), linear regression, and Support
Vector Machines (SVMs). A common approach involves normal-
izing the entire dataset before splitting it into training and test-
ing groups, although this may not always yield accurate results.
However, data normalization should be done after splitting the
dataset into training and testing groups. Normalization parame-
ters from the training data are applied to the test data to ensure
consistent transformation. Furthermore, normalization can af-
fect the evaluation metrics. Therefore, during evaluation, out-
puts are converted back to their original scale (de-normalization)
to accurately assess the model's real-world effectiveness.

Data cleaning involves the process of identifying and correcting
inaccuracies or inconsistencies in data, such as missing values,
duplicates, outliers, or errors, to improve the quality and reli-
ability of the dataset for analysis. Outliers, which are data points
significantly deviating from the dataset's norm, can greatly in-
fluence the analysis and model performance. Therefore, it is of
great importance to handle outliers properly before proceeding
with analysis and model development (Khosravi et al. 2023).
ML-based models developed for FSM are notably sensitive to
outliers, which can influence the model's performance and ac-
curacy. The outliers in flood data are not inherently incorrect;
they may represent extreme events relevant to flood modeling.

In the case of data with extreme events, one should be careful not
to treat extreme flood data as outliers. Outlier detection methods
are categorized into statistical methods (based on data distribu-
tion properties), distance-based methods (identifying outliers
using distance thresholds), density-based methods (detecting
anomalies in low-density regions), machine learning-based
methods (using supervised, unsupervised, or semi-supervised
learning), and ensemble methods (combining multiple tech-
niques for better accuracy) (Pourzangbar et al. 2023). The choice
depends on data characteristics and problem requirements. For
more details on outlier detection methods, the reader may refer
to (Pourzangbar et al. 2023). Outlier detection methods are not
typically utilized directly in the preprocessing phase, though
they are essential for handling anomalies in data. However,
some ML-based models such as Random Forest (RF) (Razavi-
Termeh et al. 2023), Boosted Regression Trees (BRT) (Youssef
et al. 2022), and Gradient Boosting (GB) (Aydin and Iban 2023)
are intrinsically capable of handling outliers. Table 5 summa-
rizes the robustness degree of the ML-based algorithms and sta-
tistical indices frequently employed to treat outliers. Regarding
the outlier robustness scale, the robustness of different models is
categorized into four levels, represented schematically in bars.
Each bar has four segments, where green portions indicate the
method's capability to handle outliers. A bar with one green seg-
ment represents a model highly sensitive to outliers, whereas a
fully green bar indicates strong robustness against outliers.

4.3 | Processing Phase
4.3.1 | Data Splitting

Splitting techniques are essential for optimizing model perfor-
mance through training, testing, and validation. These tech-
niques include cross-validation methods like Leave-one-out and
K-fold cross-validation (Xie et al. 2021), sampling methods such
as random sampling, random subsampling, and bootstrap resam-
pling (Aldiansyah and Wardani 2023), and split techniques like
fixed ratio and proportional splits with a validation set (Khan
et al. 2018). These methods help evaluate the robustness of model
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TABLE5 | Robustnessdegree of the frequently used ML-based models and statistical indices against outliers (Green segments indicate robustness

to outliers; Grey segments indicate sensitivity).

Category Outlier robustness  Reason for robustness against outliers

ML-based models

RF Aggregates multiple decision trees to reduce overfitting

SVM Maximizes the margin which reduces the impact of outliers
ANN Robust to noise but can be sensitive to outliers

DT Prone to overfitting, but ensemble methods improve resistance.
LR Can be significantly affected by outliers

K-NN Sensitive to outliers due to distance-based reliance

MLP Generalizes well but may require outlier detection beforehand
AdaBoost Merges weak learners into a robust, outlier-resistant model.

GB Sequentially builds models using appropriate loss functions
XGBoost Has regularization that helps reduce the influence of outliers
LightGBM Handles large, outlier-prone datasets via gradient-based learning
Optimized tree-based ML Less sensitive to outliers due to optimization techniques
REPTree Split data into subsets which can isolate outliers

Maximum entropy

Uses strategies like pre- and post-pruning to handle outliers.

CNN Uses pooling layers to reduce feature location sensitivity

B-LMT Resistant via Bagging's ensemble averaging

Statistical indices

AUROC Balances true and false positives, minimizing outlier impact
Median It is not affected much by extreme values

IQR Measures variability, ignoring extreme outliers

MAD A robust measure of variability

Accuracy Accuracy is skewed by outliers, affecting overall correctness.
MAE MAE is less sensitive to outliers than MSE, which squares errors.
F-Measure Influenced by outliers affecting the true positive rate

RMSE Sensitive to outliers because it squares the errors

Kappa Index Less affected by outliers, depending on their distribution
Sensitivity/Specificity Affected by outliers causing false negatives and positives.
cC Outliers can distort CC, exaggerating relationship strength

Abbreviations: AdaBoost: Adaptive Boosting; B-LMT: Bagging-Logistic Model Tree; IQR: Interquartile Range; MAD: Median Absolute Deviation; REPTree: Reduced

Error Pruning Tree; XGBoost: Extreme Gradient Boosting..

predictions against data variations, identifying potential areas for
improvement in model development. Table 6 provides a summary
of different data splitting techniques, along with their definition.

4.3.2 | Feature Importance

Feature importance assesses which factors are most influential in
evaluating flood susceptibility. Techniques such as PCA, chi-square
evaluation, FR, and Information Gain Ratio (IGR) help determine
the relevance of different parameters in flood susceptibility mod-
els. IGR assesses the predictive power of factors, removing those
with little or no influence (Quinlan 1996). FR measures the cor-
relation between flood occurrences and influencing factors, with
values indicating the strength of this correlation. The Jackknife test

evaluates a factor's impact on model accuracy by observing changes
in AUROC when the factor is removed. PCA and Functional PCA
(FPCA) reduce data dimensionality to enhance interpretability (El-
Haddad et al. 2021; Youssef et al. 2022), with PCA applied broadly
to multivariate data and FPCA suited for data represented as func-
tions or curves. Figure 5 illustrates nine frequently methods utilized
in the analyzed articles to determine the parameters’ importance.
RF is the most popular method since it intrinsically determines the
inputs weights and contribution to the FSM.

4.3.3 | Model Selection

A diverse array of ML-based and statistics-based models are em-
ployed for FSM. ML-based models include (1) Neural Network
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TABLE 6 | Different data splitting techniques utilized in the ML-based FSM models.

Category

Method

Definition

Cross-validation techniques

K-Fold

Sampling techniques

Bootstrap resampling

Random subsampling

Fixed and proportional split techniques

Proportional split with validation set

Leave-one-out

Random sampling

Fixed ratio split

The method excludes one flood event
at a time for validation, with the
remaining data used for training.

In K-Fold, cross-validation the dataset
is divided into “K” equally sized
subsets and “K-1” subsets are used for
training and the remaining one for
validation. A “K” value of 5 is chosen.

The model is trained using a random
sample containing 70% of the data, balanced
between flood and non-flood samples. The
remaining 30% is used for validation.

It involves repeatedly selecting small
samples from a dataset with replacement,
to improve flood prediction models.
Train the model on each resampled
dataset to assess the variability and
stability of the model's predictions.

This method, a Monte Carlo technique,
involves dividing a dataset randomly into
training and testing. This is repeated
“B” times, with each iteration creating
distinct, non-repeating samples. Unlike
Bootstrap, this method ensures unique
samples in each iteration, leading to
varied data correlations and a different
approach to data analysis and sampling.

The dataset is split into training (70%)
and testing (30%) datasets. This technique
emphasizes class balance, meaning
an equal number of flooded and non-
flooded points in each subset, ensuring
that the model is trained and tested on a
balanced representation of both classes.

It divides data into 60% for training,
20% for validation, and 20% for testing.
The impact of varying the training data

volume is also explored, concluding
that a lower fraction (50%) for training
could be ideal for allowing a larger test
dataset and robust statistical inference.

(NN) based models, for example, ANN, that mimic biological
NNs are capable of learning from data for tasks such as clas-
sification and regression (Pourzangbar, Losada, et al. 2017;
Pourzangbar, Saber, et al. 2017); (2) kernel functions utilized
to map input data into a higher-dimensional space, aiding lin-
ear algorithms in solving non-linear problems such as SVMs
(Pourzangbar, Brocchini, et al. 2017); (3) tree based models such
as M5’ model tree and Alternating Decision Tree (ADT) that
employ decision tree structures to make predictions through a
series of binary “if-then” decision thresholds, suitable for both
regression and classification tasks (Afsarian et al. 2018; Ong
et al. 2022); (4) ensemble models such as RF and Rotation Forest

(RoF) that combine multiple base predictive models to improve
overall accuracy and robustness of predictions (Obregon and
Jung 2022); (5) hybrid models such as ANFIS that merge differ-
ent types of models or model architectures to leverage strengths
of individual models, enhancing performance and explainabil-
ity (Kurz et al. 2022).

Statistical models rely on a variety of assumptions (e.g., data dis-
tribution) and mathematical principles (e.g., regression analysis)
to analyze relationships between input and output variables. The
implemented statistical models for flood prediction can be cat-
egorized into regression-based such as LR, MCDA such as FR,
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Bayesian such as Naive Bayes (NB), instance-based like K-NN,
among others. Figure 6 illustrates diverse ML configurations and
statistical approaches used in FSM.

The selection of ML models depends on several key factors
such as data availability, model generalization, explainabil-
ity, robustness to outliers, and performance, among others.
Statistical models are more efficient in data-scarce regions,
but models like RF and SVM are better for complex datasets.
Hybrid models tend to generalize better (Section 4.4.3), while
RF and SVM also show robustness against outliers, unlike
linear regression and K-NN (Table 5). Model explainability
is crucial, with tree-based models offering easier interpreta-
tion than NNs. Hyperparameter tuning, often through meta-
heuristic algorithms, plays a key role in optimizing model
performance, as shown in Section 4.3.5. Performance varies
depending on the dataset and study area, making it important
to tailor model selection (Section 4.4.4). Lastly, RF and SVM
are the most frequently used models in the literature (Table 9),
reflecting their reliability for FSM.

FIGURES |

4.3.4 | Model Architecture

Various ML models demonstrate effectiveness in FSM, showing
significant diversity and adaptability across architectures. MLP
models, often using sigmoidal and linear functions, are efficient
with minimal data and optimal with 3 to 10 neurons in hidden
layers (Xie et al. 2021). Techniques like Fuzzy Adaptive Resonance
Theory (FART) and Self-Organizing Maps (SOM) incorporate
complex neuron structures to enhance adaptability (Andaryani
et al. 2021), using functions such as commitment and typicality in
FART, and larger grids in SOM. CNN models, like the Simple CNN
and LeNet-5, vary in complexity with multiple layers, including
convolutional and pooling layers (Zhao et al. 2020).

SVM models using the Radial Basis Function (RBF) kernel have
shown superior accuracy over other kernels in assessing flood
risk. Meanwhile, RF models, augmented with algorithms like
Invasive Weed Optimization (IWO) and Slime Mold Algorithm
(SMA), have improved prediction accuracy by adjusting the
number of trees and their features. Additionally, Gradient
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Boosting Decision Tree (GBDT) models have been effective in
boosting the performance of weaker learners through adjust-
ments based on previous errors. These diverse ML approaches
underline the potential for tailored and efficient FSM.

4.3.5 | Hyper-Parameters

Hyperparameters such as learning rate, number of layers, and
number of hidden neurons are critical for optimizing the perfor-
mance of ML models (Aydin and Iban 2023). Hyperparameter
tuning methods can be categorized into manual and auto-
matic approaches. Manual tuning relies on expert knowledge,
trial-and-error, or default ML package values, which, while
effective in certain cases, become inefficient as the number
of hyperparameters increases (Le Nguyen et al. 2023). It is
computationally intensive, relies on intuition, and struggles
with complex optimization problems. To address these chal-
lenges, automatic search methods have gained prominence
(Yang and Shami 2020). These include model-free approaches
like Grid Search and Random Search, gradient-based optimi-
zation, Bayesian optimization (e.g., Gaussian Processes, Tree-
Structured Parzen Estimator), and metaheuristic algorithms
inspired by natural processes (Liao et al. 2024). Automatic
methods offer improved efficiency and adaptability, making
them essential for optimizing ML models, especially in complex
applications like FSM. Below, we summarize the methodolo-
gies used in the reviewed articles for fine-tuning the hyperpa-
rameters of various ML models.

ANNs are optimized using the Levenberg-Marquardt algo-
rithm, adjusting hidden neurons based on predictor count (Xie
et al. 2021). MLP fine-tunes learning rates and layer configu-
rations through backpropagation. SVM balances complex-
ity and accuracy by optimizing the cost parameter (Costache
et al. 2021). RF performance depends on the number of decision
trees, determined via cross-validation. Bagging classifiers are
optimized through trial and error, using AUROC as a perfor-
mance metric (Chapi et al. 2017). Metaheuristic algorithms like
GA, Differential Evolution (DE), Particle Swarm Optimization
(PSO), and Grasshopper Optimization Algorithm (GOA) are
integrated with ML models to improve their predictive per-
formance by fine-tuning hyperparameters (Arora et al. 2021;
Sahoo et al. 2021). Given RF models, optimization techniques
such as IWO, SBO, and SMA have been utilized to find the most
optimal hyperparameters (Razavi-Termeh et al. 2023). Similarly,
the GridSearchCV method combined with cross-validation is ex-
tensively used across various tree-based classifiers and CNNs to
identify the best hyperparameter settings for maximum accu-
racy (Liao et al. 2023; Lyu and Yin 2023). Based on the analyzed
articles, the architecture and parameters of some main models
are summarized in Table 7.

4.3.6 | Model Validation

Model validation involves three essential aspects including rep-
licative validity, structural validity, and predictive validity (Xie
et al. 2021). These aspects evaluate a model's ability to repro-
duce input-output relationships in different geographical re-
gions (replicative), its accuracy in representing the underlying

real-world (physical) process it is intended to simulate (struc-
tural), and its performance on unseen datasets (predictive).

To evaluate the replicative validity, techniques such as K-fold
cross-validation and spatial cross-validation are utilized (Al-
Areeq et al. 2022). In K-fold cross-validation, the data are split
into K folds, with one fold used for validation and the remaining
K-1 folds used for training (Darji et al. 2023; Witten et al. 2016).
However, spatial cross-validation evaluates the model perfor-
mance using data from a different spatial region to assess how
well it generalizes geographically (Wang et al. 2023). Section 4.4.3
provides a detailed discussion on model generalization. Given
structural validity, XAI techniques like SHAP (SHapley Additive
exPlanations) or LIME (Local Interpretable Model-agnostic
Explanations) can provide insights into how the model's input
features influence the model predictions (see Section 4.4.2 for
detailed information). By providing local explanations, SHAP
identifies key contributing factors in ML models, demonstrating
high accuracy and revealing top contributing factors in flood
susceptibility. Several studies highlight the value of XAI in im-
proving the interpretation of model results and fostering trust
among stakeholders in flood-related decision-making processes
(Pradhan et al. 2023). Almost all the analyzed articles address
predictive validity. Model accuracy and precision are evaluated
using statistical metrics such as CC, RMSE, and MAE, while
classification performance is measured using AUROC, accuracy,
precision, recall, and the F1-score (Lyu and Yin 2023).

4.4 | Post-Processing Phase
4.4.1 | Performance Assessment

Performance evaluation of ML-based flood models employs var-
ious metrics specific to the nature of the task. Regression models
utilize RMSE, CC, and MAE, which are sensitive to error mag-
nitudes, while classification models, such as those used in flood
susceptibility, favor accuracy, recall (sensitivity), precision, F-
Score, and the Kappa index. The use of recall is crucial for high-
lighting false negatives, which are critical in flood modeling, but
it can exaggerate model accuracy if not balanced with measures
for false positives (Bentivoglio et al. 2022). The F1-score is ef-
fective for balancing recall and precision, assessing both false
negatives and positives. Additionally, the Receiver Operating
Characteristic (ROC) curve helps in evaluating model effective-
ness across different thresholds, ensuring a robust assessment of
model performance in differentiating flood and non-flood areas.

4.4.2 | Model Explainability

Model explainability, an important topic in XAI, deals with
understanding how ML-based models make decisions and de-
termines the contribution level of conditioning factors to the
overall predicted results (Aydin and Iban 2023). There are two
well-known XAI techniques including global and local meth-
ods. Global explanations (see Section 4.3.2) give a broad un-
derstanding of the model's behavior. They answer questions
like: “on average, which factors are most important across all
predictions a model makes?” Some sample methods for the
global explanation are shown in Figure 7. Local explanations
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provide insight into individual predictions. They help to un-
derstand why a model made a specific decision for a single
instance (at a sample-wise scale). As illustrated in Figure 7,
two popular methods for locally explaining model decisions
are SHAP and LIME. SHAP assigns an importance value to
each feature for a particular prediction (Shapley 1953). LIME
is used to explain individual predictions regardless of the ML-
based model used (Ribeiro et al. 2016). It works by approxi-
mating the model locally and explaining why the model made
a certain decision.

4.4.3 | Model Generalization

Despite its importance, few studies have evaluated model
generalization (Riazi et al. 2023). Given generalization, semi-
supervised models often outperform supervised ones in flood
susceptibility due to less dependence on data quality (Yu
et al. 2023). Furthermore, hybrid models demonstrate better
generalization compared to standalone models.

Given standalone models, ANNs show good generalization but
struggle with long-term predictions (Jain and Indurthy 2003).
MLP models are more efficient and generalize better than other
ANN types (Senthil Kumar et al. 2005). RBF networks have
strong generalization with fewer nodes (Rong et al. 2020), while
CNN s benefit from batch normalization and data augmentation
to enhance generalization (Zhao et al. 2020). ANFIS models
excel in long-term predictions and generalize better than non-
linear regression and ANNSs (Shu and Ouarda 2008). SVMs
are highly effective in FSM, outperforming ANNs and linear
regressions, particularly with radial basis kernels (Mosavi
et al. 2018). They generalize well across data dimensions and
are robust against overfitting with limited flood data. GBDT
and RF models tend to overfit with scarce data, making SVMs
more reliable (Yu et al. 2023). Hybrid models, like K-NN with
ANNs or ANN with PCA, show improved generalization (Chen
et al. 2019). Wavelet Neural Networks (WNNs) outperform
ANNSs in generalization (Linh et al. 2021). Ensemble Prediction
Systems (EPSs), for example, combining ANNs and WNNs with
techniques like genetic programming and Bayesian methods,
enhance speed, accuracy, and generalization beyond tradi-
tional methods.

Challenges in flood modeling generalization persist, especially
in DL (Bentivoglio et al. 2022). Incorporating real-world data

Some sample methods
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and pre-training strategies can improve accuracy, but chal-
lenges remain in applying these models to new domains without
extensive retraining. Advances in mesh-based NNs, particularly
geometric and physics-based DL, show promise. Transfer learn-
ing enhances model generalization in areas with sparse data by
training in regions with sufficient data first (Zhao et al. 2021).
Rong et al. (2020) mentioned that an imbalance in the number of
flood and non-flood points is another factor impacting the per-
formance and generalization of the models.

4.4.4 | Comparative Analysis of ML-Based Models
Given FSM

In Section 4.3, different structures of ML-based models em-
ployed in the analyzed articles are discussed. The focus here is
on the frequency of different ML-based and statistical models
employed in different studies. Figure 8 illustrates the variation
trends in various AI models over the years. It clearly shows that
ensemble and hybrid models have gained significant popularity
in recent years. It should be noted that the mentioned frequency
of a model's usage does not correspond to the same number of
separate articles, as a single article may employ a particular
model type multiple times.

The deployment of these models across various tasks high-
lights their specific strengths and applicability. Shallow Neural
Networks (Shallow-NN) and Basic Decision Trees (Basic-DTs)
are favored for their simplicity and interpretability in less com-
plex scenarios. In contrast, CNNs, LSTMs, and Deep Neural
Networks (DNNs) provide the computational power and flex-
ibility needed for handling complex, high-dimensional data.
Advanced tree-based and kernel-based models demonstrate the
importance of integrating sophisticated techniques to enhance
predictive performance and handle more challenging data
environments. Ensemble models, whether through bagging,
boosting, or hybrid approaches, enhance predictive accuracy by
leveraging multiple learning algorithms. Statistical models, with
their foundational principles, provide robust and interpretable
solutions for various predictive tasks.

The analyzed articles employ various NN-based models 62
times. Shallow-NNs such as ANN are used for classification, re-
gression, and pattern recognition. Their architecture is simple
with fewer layers, which makes them suitable for problems with
straightforward data patterns. Grid-Based Neural Networks
(Grid-NN) such as CNN handle grid-like data, such as images.
Sequential Neural Networks (Sequential-NN) like LSTM excel
in learning long-term dependencies in sequential data, mak-
ing them indispensable for time series analysis and natural
language processing (NLP). DNNs with multiple hidden layers
are used for complex feature extraction and hierarchical data
representation.

Tree-based models are employed 36 times in the analyzed ar-
ticles, focusing on decision-making processes and rule-based
learning. Basic-DTs and Classification and Regression Trees
(CARTS) are used for classification tasks due to their simplicity
and interpretability. Advanced Decision Trees (Advanced-DTs),
like LMT and REPTree, enhance basic decision trees with com-
plex rule-based algorithms, improving accuracy and robustness.
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FIGURE 8 | Trends in the utilization of various ML-based models across different years in the analyzed articles.

Kernel-based models utilize different kernel functions to handle
non-linear data patterns effectively. SVM-based Models (Kern-
SVM) like Weakly Labeled SVM (WELLSVM) and SVM-RBF
are used for classification and regression, effectively handling
scenarios with partially labeled data. Kernel-based Regression
(Kern-Reg) and Kernel-based Classification (Kern-Class) extend
the kernel trick to regression and classification tasks, respec-
tively, transforming input data into higher-dimensional spaces
to enable linear separation of data.

Ensemble models, used 107 times in various articles, combine
multiple models to improve predictive performance. Bagging-
based Ensembles (e.g., RF) enhance accuracy and prevent
overfitting by using predictions from different data subsets.
Boosting-based Ensembles (e.g., AdaBoost, Boosted Generalized
Linear Model (BGLM) and Gradient Boosting Machine (GBM))
focus on correcting errors of previous models, reducing bias and
variance. Forest-based Ensembles (e.g., RF, RoF) leverage the
power of forest algorithms to build a collection of decision trees
for improved robustness and prediction accuracy.

Hybrid models, used 102 times in the analyzed articles, in-
tegrate various ML techniques to exploit their combined
strengths. Fuzzy Logic-based Hybrids (FL-Hyb) like FART and
FL-NN enhance robustness by merging fuzzy logic with NNs
and evolutionary algorithms. Tree-based Hybrids (Tree-Hyb)
such as Naive Bayes Tree (NBT) combine tree methods with
statistical and evolutionary techniques for better prediction
reliability. NN-based Hybrids (NN-Hyb) integrate NNs with
fuzzy logic, ensemble methods, or evolutionary algorithms,
including models like Deep Neural Network-Aquila Optimizer
(DNN-AO) and Extreme Learning Machine-Particle Swarm
Optimization (ELM-PSO). Weighted Average-based Hybrids
(WAve-Hyb) like RF-SVM use weighted averages of predictions
from different methods. Kernel-based Hybrids (Kernel-Hyb)
combine kernel-based models with statistical, ensemble, and
evolutionary techniques.

Statistical models, appear 74 times, employ various principles
to provide robust solutions. Regression models, such as LR and
GLM, predict numerical outcomes based on linear relation-
ships. Instance-based models like K-NN classify and predict

by comparing new data to similar examples. MCDA methods,
such as FR, facilitate decision-making by evaluating alternatives
across multiple criteria. Bayesian methods, exemplified by NB,
use Bayes' theorem for probabilistic classification, updating pre-
dictions as new evidence is obtained (Table 8).

Figures 9 and 10 and Table 9 highlight the relative perfor-
mance of different ML-based models. These comparisons are
based on each study's assessment of several ML-based mod-
els against a unique dataset, leading to a ranking of models
based on their performance. The primary metrics used for this
comparative analysis are RMSE and ROC, which are key to
determining the effectiveness (accuracy and precision) of the
models. Inspection of Figure 9 reveals that in terms of overall
performance, the RF and CNN models stand out. Specifically,
the RF model excels in 10 different studies, while the CNN
model is the best in five analyzed articles. This observation
underscores their superior generalization and effectiveness in
the field of FSM.

In Table 9, colors differentiate each category, creating a visual
hierarchy. Accordingly, RF configuration tops the table, with
variations such as RF-BPSO, RF-IWO, and RF-ANN being
mentioned, and it has the highest frequency of being reported as
superior, with a count of 13. SVM configurations follow closely,
with types like AHP-ANP-RF-SVM and FR-SVM among oth-
ers, showing a frequency of 11. DNN, with variants such as
Deep Neural Network-Naked Mole-Rat Algorithm (DNN-
NMRA) and Deep Neural Network-Social Spider Optimization
(DNN-SS0), and Tree-based models like ADT and BART share
a frequency of 8.

To ensure a fair comparison, it is essential to assess the per-
formance of ML models against the dataset used for their
development. Figure 10 provides a comparative analysis of
different models using different colored symbols to represent
the performance of various models on distinct datasets. Each
colored symbol (e.g., green circle, blue square, red triangle)
corresponds to a specific dataset and the models evaluated
on that dataset (details of datasets and models are available
in Appendix 3). The size of the symbols reflects model per-
formance; the larger the symbol, the better the performance.
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TABLE 8 | Various ML and statistical model types employed in the analyzed articles, each accompanied by examples.
Configuration (no. of utilization) Model type Frequency of utilization Example(s)
Ensemble (107) Forest-Ens 38 RF, RoF
Boosting-Ens 37 AdaBoost, GBM, BRT
Others 22 EMCA, EMMean, RS-GAM, RS-MARS
Bagging-Ens 10 Bagging Ensembles
Hybrid (102) FL-Hyb 34 FART, FL-NN, FL-RF, FL-
EA, FL-NN-EA
Tree-Hyb 21 NBT, RF-GA
NN-Hyb 17 DNN-AO, ELM-PSO
WAve-Hyb 17 RF-SVM
Kernel-Hyb 13 AdaBoost-RBF, Bagging-RBF, SVR-BA
Statistical (74) Regression 23 LR, MARS
Instance-based 17 KNN
MCDA 17 FR, AHP
Others 11 Maximum Entropy
Bayesian 6 NB
NN-based (62) Shallow-NN 34 ANN
Grid-NN 13 CNN
Sequential-NN 11 LSTM/RNN
Deep-NN 4 DNN
Tree-based (36) Basic-DT 20 Classification Tree, J48 DT, CART
Advanced-DT 16 LMT, REPT, FT, CDT
Kernel-based (31) Kern-SVM 26 SVM, SVM-RBF, K-SVM, WELLSVM
Kern-Reg 4 SVR
Kern-Class 1 SvC

Abbreviations: CDT: Credal Decision Tree; EMCA: Ensemble Model Committee Averaging; EMMean: Ensemble Model to estimate Mean; K-SVM: Kernel Support
Vector Machine; MARS: Multivariate Adaptive Regression Splines; RS-GAM: Random Subsampling-Generalized Additive Model; RS-MARS: Random Subsampling-
Multivariate Adaptive Regression Splines; SVC: Support Vector Classification.
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FIGURE9 | The frequency of Models' superiority in the analyzed articles.
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FIGURE 10 | Comparative performance of various ML-based models implemented into various datasets.
TABLE 9 | Superiority frequency of different model configurations.
Models' configuration Model's types Frequency
RF RF, RF-BPSO, RF-IWO, RF-ANN 13
SVM SVM, AHP-ANP-RF-SVM, FR-SVM, SVM-RBF, SVR-FA, 11
WELLSVM, WoE-SVM, MDA-CART-SVM, PLS-SEM-SVM
DNN DNN, DNN-NMRA, DNN-SSO, WNN, MLP-WCA, PSO-ELM 8
Tree based ADT, BART, CDT-FT, ERT, QPSO-CDT, RSub-REPTree, NBT 8
ANFIS ANFIS-GA, ANFIS-ICA, ANFIS-GOA, ANFIS-PSO, MONF-EG-PSO 7
Boosting ensembles BRT, CatBoost, DB, XGBoost, Light GBM, SGB 7
CNN CNN, SCNN 6
Bagging ensemble Bagging KNN-SVM-LMT, Bagging Tree, BFT, Bagging-GA, 6
Bagging-LMT, RC-RBF, Dagging ANN-SVM-RF
LSTM LSS-LSTM, LSTM-ED, LSTM, STA-LSTM 4
DBN DBN-ELM-PSO, DBP-GA 3
Adaptive Boosting AHP-AdaBoost, AdaBoost 3
Logistic Regression LR, FR-LR 3

Note: Shading from green to red indicates model usage frequency, from most to least frequent.

Abbreviations: BFT: Bagging Functional Tree; CDT-FT: Credal Decision Tree-Functional Tree; DB: Deep Boost; DBN: Deep Belief Network; DBP: Deep belief network
with Back Propagation algorithm; ERT: Extremely Randomized Tree; ICA: Imperialistic Competitive Algorithm; LSS-LSTM: Local Spatial Sequential Long Short-Term
Memory; LSTM-ED: Long Short-Term Memory based Encoder-Decoder; MDA: Multivariate Discriminant Analysis; MONF-EG-PSO: Metaheuristic Optimization

and Neural Fuzzy inference-Evolutionary Genetic-Particle Swarm Optimization; PLS-SEM: Partial Least Square-Structural Equation Model; QPSO-CDT: Quantum
Particle Swarm Optimization-Credal Decision Tree; RSub: Random Subsampling; SGB: Stochastic Gradient Boosting; STA-LSTM: Spatio-Temporal Attention Long-
Short Term Memory; WCA: Water Cycle Algorithm.

Models closer to the bottom-left corner demonstrate supe-
rior performance, with lower RMSE and higher ROC values.
Figure 10 shows that combining model types (tree-based,

NN-based, Fuzzy, and Kernel-based) with optimization al-
gorithms (PSO, WCA), bagging, or boosting significantly
improves performance. Specifically, Bagging-LMT and RF
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TABLE 10 | Comparative analysis of ML models based on accuracy, interpretability, computational efficiency, and robustness.

Models’ configuration Accuracy Interpretability Computational efficiency Robustness
Shallow-NN and Basic-DT Moderate High High Low
Deep-NN High Low Low High
Advanced-DT High Moderate Moderate High
Kernel-based High Low Low Moderate
Ensemble models Very high Low to moderate Moderate Very high
Hybrid models Very high Low Low Very high
Statistical models Moderate High High Moderate

among tree-based models, hybrid SVM-EA and ANFIS-EA
for fuzzy and kernel-based models, and hybrid DNN-EA for
NN-based models demonstrate superior performance based
on RMSE and ROC.

Table 10 presents a comparative analysis of ML models based
on accuracy, interpretability, computational efficiency, and ro-
bustness. Shallow NNs and basic decision trees offer high in-
terpretability and computational efficiency but have moderate
accuracy, making them suitable for simple patterns, while their
low robustness makes them prone to overfitting. Deep learning
models (e.g., CNNs, LSTMs) provide high accuracy and robust-
ness, excelling in complex, high-dimensional data, but require
significant computational resources and lack interpretability.
Advanced tree-based models balance accuracy and efficiency,
performing well on structured data and resisting noise with
pruning, though their interpretability depends on tree depth
and complexity. Kernel-based models are highly accurate for
classification and regression, capturing complex relationships,
but are computationally expensive, sensitive to hyperparam-
eters, and difficult to interpret. Ensemble and hybrid models
improve predictive performance and robustness by combining
multiple models, mitigating individual weaknesses. Statistical
models are efficient and interpretable but may struggle with
high-dimensional data, limiting their application in complex
machine-learning tasks.

5 | Practical Considerations
5.1 | Data Considerations

Data scarcity remains a major challenge, particularly in regions
with limited computational resources and technical expertise.
This issue arises from technical constraints, especially during
extreme weather events, such as malfunctioning ground-based
instruments, inadequate spatial and temporal coverage, and
limitations of RS tools (Mohr et al. 2022). To address these is-
sues, crowdsourcing, data augmentation, and data fusion are
suggested. Alternative data sources like social media can pro-
vide supplementary insights when traditional methods are lack-
ing (Costa et al. 2023). Data augmentation helps address data
scarcity by artificially expanding training datasets, enhanc-
ing the performance of predictive models. Techniques such as
geometric transformations (rotating, flipping, altering image
patches) improve model accuracy, especially when real-world

data are limited (Guo et al. 2022; Madhuri et al. 2021). FSM re-
lies on data from multiple sources, leading to discrepancies in
spatial-temporal resolutions. For instance, DTMs typically have
higher resolution than rainfall data. To manage these discrep-
ancies, data fusion integrates multiple data sources, ensuring
consistent spatial and temporal dimensions, which is crucial in
the pre-processing phase (Islam et al. 2023).

5.2 | Model Development
5.2.1 | Physical Relevance of the Conditioning Factors

It is crucial that the conditioning factors in the ML models
not only contribute to the model's accuracy but also contrib-
ute mechanistically to the system being modeled. This means
that a parameter should only be excluded if it has no significant
impact on the model's accuracy and reliability, or physical rel-
evance. Removing a factor solely for the purpose of enhancing
accuracy is generally not advisable, especially if that parameter
is physically important to the mechanisms being modeled. This
approach is in line with the principles of physics-informed ML,
where the integration of data and physical laws is essential to
ensure that the model is not only accurate but also physically
meaningful (Carleo et al. 2019).

5.2.2 | Contributing Parameters in the Development
of ML-Based Models

Inspection of Figures 3 and 4 (Section 4.2.3) reveals that some
important parameters are neglected in the FSM procedure in the
analyzed articles. Some of these parameters are as follows:

« Reservoir existence: reservoirs may(not) play multifaceted
roles in flood control by reducing flood peaks and intercept-
ing sediment (Li and Xu 2023). Hence, their existence may
affect flood susceptibility and should be considered in the
modeling process.

e Prior condition in river basins: catchment precondi-
tions, specifically soil wetness measured by Antecedent
Precipitation Index (API) values, are important for de-
termining flood occurrence and magnitude (Mohr
et al. 2022). Therefore, these preconditions should be con-
sidered in FSM.
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« Snow melting: precipitation, including rainfall and snow-
fall, is the most important climate parameter for hydrologi-
cal processes and flood risk assessment (Chapi et al. 2017).
In glacial or nival regions like North and Central Europe,
flood intensity has decreased due to reduced spring snow-
melt from global warming. However, the frequency and
intensity of flood events are increasing under a warming
climate, with snowmelt floods being a significant contrib-
utor (Zhou et al. 2021).

« Meteorological conditions such as temperature and humid-
ity: temperature anomalies due to atmospheric blocking
and high solar insulation play a significant role in creating
extreme precipitation and subsequent flooding (Madhuri
et al. 2021). These factors are among the often-neglected pa-
rameters in FSM.

o Infrastructures influence on flood modeling: recent studies
highlight the significant impact of infrastructure on flood
risk and resilience. However, many flood models overlook
changes in infrastructure, landscape occupation, and flood
protection measures, which can directly affect flood risk.

» Morphological evolution: traditional hydrological mod-
els struggle to capture dynamic river changes caused by
erosion and human activities, impacting flood behavior
(Chau and Lee 1991). Infrastructure developments and
climate change further exacerbate flood risks (Ludwig
et al. 2023). Many models use static parameters, though
flood conditions evolve over time. Al-based models like
LSTM and RNN offer potential solutions but require ex-
tensive data. Given limited post-flood data, researchers
may rely on social media and historical sources for quali-
tative insights.

» Debris and sediment contribution to flood risk: debris accu-
mulation worsens floods by obstructing rivers and streets
(Mohr et al. 2022). Its inclusion in flood risk analysis is cru-
cial, as it affects flood susceptibility. Methods such as ana-
lytical models, GIS techniques, and numerical simulations
have been used to study debris transport, but lack robust
benchmark data (Valero et al. 2024). Integrating debris
effects into flood models, with validation through social
media data, is needed.

5.2.3 | Model Overfitting

Overfitting occurs when a model, while performing well on
training data, shows diminished effectiveness on test and un-
seen data. If the training data set is too small, it may not repre-
sent all possible scenarios, leading the model to overfit to this
limited data. The complex structure of a ML-based model often
enhances its performance; however, this can lead to overfitting
(Bentivoglio et al. 2022). To avoid overfitting, it is important to
feed the ML-based models with processed data and select the
most appropriate configuration for the model of interest.

5.2.4 | Trade-Off Analysis

Trade-off analysis focuses on finding an optimal balance
between model complexity and factors like computational

efficiency, accuracy, and data availability. While complex
models offer higher accuracy, they demand more resources
and time, whereas simpler models are more efficient but less
accurate. This balance remains a central consideration in the
evolving field of ML (Andaryani et al. 2021). Only a few of the
analyzed articles included discussions on trade-off analysis.
While CNNs are known for their high accuracy and efficient
predictions, they are resource-heavy, demanding significant
computational power for training (Zhao et al. 2020). Liao
et al. (2023) proposed the utilization of clustering methods in
CNNs to enhance training efficiency and overall performance.
Andaryani et al. (2021) found that MLP with a sigmoidal ac-
tivation offers better accuracy than a linear one, though the
latter is faster. Models like FART and SOM need large datasets
due to their complexity.

5.3 | Value of the Decisions Produced by Al

The integration of digitalization and AIin knowledge production
and management raises concerns about the value of truth gener-
ated by these tools. Ethical issues persist, particularly regarding
responsibility gaps in AI-driven decisions (Matthias 2004). This
is especially critical in AI-based flood emergency management,
necessitating collaboration with ethics and philosophy experts
to address human-centered challenges.

5.4 | Limitations of the Current Study and Future
Directions

This contribution reviews ML models for FSM, focusing on riv-
erine and urban flooding. However, the review does not address
other flooding types, such as coastal flooding, or areas like flood
inundation mapping, vulnerability modeling, and risk assess-
ments. Additionally, climate change effects, vulnerability types,
force-induced models, evacuee behavior, and physics-informed
machine learning models were not part of our analysis.

While this review focuses on ML models for FSM, future re-
search should explore hybrid approaches integrating ML with
hydrological models (e.g., HEC-RAS) to enhance predictive
accuracy and generalization. Combining physics-based simu-
lations with data-driven ML techniques can address challenges
such as data scarcity, regional adaptability, and process inter-
pretability. Additionally, while we analyze the performance of
ML-hybrid models, further studies should compare their per-
formance against ML-hydrological hybrids to assess robustness
across diverse conditions.

6 | Summary and Conclusions

This article investigates the utilization of machine learning mod-
elsin FSM by examining a 100 articles from the last decade, reveal-
ing the potential of machine learning in predicting flood-prone
areas. There is no universal consensus on ML model develop-
ment for FSM, leading to variations in model selection, hyperpa-
rameters, and data preprocessing. The optimal approach depends
on data quality, generalizability, and interpretability. This study
systematically reviews successful ML applications, highlighting
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their strengths, limitations, and applicability. We compare ML
models in terms of performance, interpretability, and usage
trends. To address overlooked aspects, a Practical Considerations
section outlines common limitations and solutions. While this
study does not introduce new algorithms, it provides novel in-
sights by evaluating existing techniques, identifying gaps, and
recommending best practices for feature selection, model optimi-
zation, and a structured roadmap for the utilization of ML-based
models to map flood susceptibility. These contributions serve as a
foundation for future research and practical applications.

We recognized the need to bridge the gap between technical
sophistication and real-world applicability. To address this, we
have included a discussion in Section 5 on the practical limita-
tions of FSM, emphasizing resource constraints and limitations
in available resources, data accessibility, model generalizabil-
ity, and ethical AI considerations. These factors are crucial for
ensuring that ML models remain interpretable, actionable, and
adaptable to diverse contexts, including resource-constrained
settings.

The main conclusions drawn from this analysis are as follows:

1. Various conventional data sources, including in situ
measurements, RS, numerical data, along with emerging
sources like social media, may be utilized to refine FSM
models, each with its benefits and limitations.

2. The quality and efficacy of ML-based FSM models are
profoundly affected by the specific characteristics of the
study area, such as geography, historical floods, climate,
urbanization, and data availability.

3. The parameters identified as critical for FSM are topo-
graphic wetness index, slope, land use and cover, rain-
fall, and distance to rivers, with distance to river and
topographic wetness index being particularly significant.
These findings underscore the importance of these varia-
bles in flood susceptibility.

4. Techniques like IGR and random forest assess factors
strongly correlated with flood susceptibility. Elevation
and slope are highlighted as both highly crucial and com-
monly used parameters in ML-based FSM models.

5. The research reveals diverse ML and statistical models
for FSM, such as NNs, SVM, tree-based, ensemble, and
hybrid models, each with unique strengths for complex
flood prediction tasks. The dominant trend is toward the
use of ensemble and hybrid models due to their accuracy
and versatility in FSM, with NNs being the most com-
mon. The integration of optimization algorithms, bag-
ging, or boosting with other model types enhances their
performance.

6. Data collection challenges during extreme weather
include equipment failures and data coverage gaps.
Solutions like crowdsourcing, data augmentation, and
data fusion improve data quality and model training.

7. In ML models, especially for physical systems like FSM,
factors should enhance accuracy and have a mechanistic
role. Excluding parameters should consider both their
impact on accuracy and physical relevance, aligning

with physics-informed ML principles for meaningful
models.

8. Traditional hydrological models fail to account for
dynamic river changes due to erosion and human ac-
tivities. The ML-based flood models should capture
temporal morphological changes despite data collection
challenges.

9. Current flood models need to integrate debris dynamics
for accurate risk assessment. The gap in utilizing ML
models for large debris transport studies highlights the
need for incorporating debris effects into flood mod-
els, with social media data offering a novel validation
approach.

10. Digitalization and Al's synergy raises challenges in
knowledge value and ethics, highlighting a responsibility
gap in Al-driven decisions, necessitating ethical specialist
engagement.
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Appendix 1 Abbreviation Definition
Nomenclature
DNN-NMRA Deep Neural Network-Naked Mole-Rat
Algorithm
Abbreviation Definition DNN-SSO Deep Neural Network-Social Spider
Acc Accuracy Optimization
AdaBoost Adaptive Boosting Drain-Den Drainage Density
ADT Alternating Decision Tree DT Decision Tree
Advanced-DT Advanced Decision Tree DTM Digital Terrain Model
AHP Analytical Hierarchy Process EA Evolutionary Algorithm
Al Artificial Intelligence ELM Extreme Learning Machine
ANFIS Adaptive Neuro-Fuzzy Inference System EMCA Ensemble Model Committee Averaging
ANN Artificial Neural Network EMMean Ensemble Model to estimate Mean
API Antecedent Precipitation Index EPS Ensemble Prediction System
AUROC Area Under Receiver Operating Characteristic ERT Extremely Randomized Tree
BA Bat Algorithm FART Fuzzy Adaptive Resonance Theory
Bagging-Ens Bagging-based Ensemble FHM Flood Hazard Mapping
Basic-DT Basic Decision Tree FID Flood Inventory Data
BET Bagging Functional Tree FIM Flood Inundation Mapping
BGLM Boosted Generalized Linear Model FL Fuzzy Logic
B-LMT Bagging-Logistic Model Tree FL-Hyb Fuzzy Logic-based Hybrid
B-LMT Bagging-Logistic Model Tree FloAcc Flow Accumulation
Boosting-Ens Boosting-based Ensemble FlowDir Flow Direction
BPNN Back Propagation Neural Network Forest-Ens Forest-based Ensemble
BPSO Binary Particle Swarm Optimization FPCA Functional Principal Component Analysis
BRT Boosted Regression Tree FR Frequency Ratio
CART Classification And Regression Tree FSM Flood Susceptibility Mapping
CatBoost Categorical Boosting GA Genetic Algorithm
cC Pearson's Correlation Coefficient GB Gradient Boosting
CDT Credal Decision Tree GBDT Gradient Boosting Decision Tree
CDT-FT Credal Decision Tree-Functional Tree GBM Gradient Boosting Machine
CNN Convolutional Neural Network GOA Grasshopper Optimization Algorithm
DB Deep Boost Grid-NN Grid-based Neural Networks
DBN Deep Belief Network GRU Gated Recurrent Units
DBP Deep belief network with Back Propagation ICA Imperialistic Competitive Algorithm
algorithm IGR Information Gain Ratio
DE Differential Evolution IQR Interquartile Range
DEM Digital Elevation Model IWO Invasive Weed Optimization
DisFau Distance to Fault Kern-Class Kernel-based Classification
DisRiv Distance To River Kernel-Hyb Kernel-based Hybrid
DisRoa Distance to Road Kern-Reg Kernel-based Regression
DL Deep Learning Kern-SVM SVM-based model
DLNN Deep Learning Neural Network K-NN K-Nearest Neighbors
DNN Deep Neural Network K-SVM Kernel Support Vector Machine
DNN-AO DNN-Aquila Optimizer LightGBM Light Gradient Boosting Machine
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Abbreviation Definition Abbreviation Definition
LIME Local Interpretable Model-Agnostic RS-MARS Random Subsampling-Multivariate Adaptive
Explanations Regression Splines
LMT Logistic Model Tree RSub Random Subsampling
LR Logistic Regression SBO Satin Bowerbird Optimization
LSS-LSTM Local Spatial Sequential Long Short-Term SCNN Simple CNN
Memory . .
Sequential-NN Sequential Neural Network
LSTM Long Short-Term Memory . . .
SGB Stochastic Gradient Boosting
LSTM-ED Long Short-Term Memory based . . . .
Encoder-Decoder SGD-WOE Stochastic Gradient pescendlng-Welghts of
Evidence
LULC Land Use Land Cover .
Shallow-NN Shallow learning NNs
MAD Median Absolute Deviation " .
SHAP Shapley Additive Explanations
MAE Mean Absolute Error . .
SMA Slime Mold Algorithm
MARS Multivariate Adaptive Regression Splines .
SOM Self-Organizing Map
MCDA Multi-Criteria Decision Analysis
SPI Stream Power Index
MDA Multivariate Discriminant Analysis . .
STA-LSTM Spatio-Temporal Attention Long Short-Term
ML Machine Learning Memory
MLP Multi-Layer Perceptron STI Sediment Transport Index
MONF-EG-PSO Metaheuristic Optimization and Neural Fuzzy SvC Support Vector Classification
inference-Evolutionary Genetic-Particle Swarm hi
Optimization SVM Support Vector Machine
MSE Mean Squared Error SVR Support Vector Regression
NB Naive Bayes SWARA Stepwise Weight Assessment Ratio Analysis
NBT Naive Bayes Tree TPI Topographic Position Index
NDVI Normalized Difference Vegetation Index Tree-Hyb Tree-based Hybrid
NGBoost Natural Gradient Boosting TRI Terrain Ruggedness Index
NN Neural Network TWI Topographic Wetness Index
NN-Hyb Neural Network-based Hybrid VIF Variance Inflation Factor
NPR Negative Predictive Rate ‘WAve-Hyb Weighted Average-based Hybrid
PCA Principal Component Analysis WCA Water Cycle Algorithm
PLS-SEM Partial Least Square-Structural Equation Model WELLSVM Weakly Labeled SVM
PPR Positive Predictive Rate WNN Wavelet Neural Network
PSO Particle Swarm Optimization WOE Weight Of Evidence
QPSO-CDT Quantum Particle Swarm Optimization-Credal XAl Explainable Al
Decision Tree XGBoost Extreme Gradient Boosting
RBF Radial Basis Function
REPTree Reduced Error Pruning Tree
RF Random Forest
Riv-Den River (Stream) Density
RMSE Root Mean Square Error
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
ROF Rotation Forest
RS Remote Sensing
RS-GAM Random Subsampling-Generalized Additive

Model
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Appendix 4

Flowchart

Considering the following criteria:
« Geography and topography

|« Data availability
¢ |« Climaticpattems Select study area
: |« Urbanization and Land use
o « Flood occurrance history l Key categories are:
s Collect conditiong | | * :‘°F(’j°9’a9h'°a'
o « Hydrological
) : factors « Environmental
8 « Morphological
= :
S : Utilize: P
@ : |*Sentinel-1 SAR Spesity fised
@ |*Historical flood maps locations
S j Approaches:
‘; A « Multicollinearity testing
I : « Principal Component Analysis
2 parameters « Variance Inflation Factor
L K Apply: l « Correlation Coefficient
| = Outlier detection
¢ |« Scaling (normalizing or standardizing) =—— Implement data
|« Data cleaning treatment
i | » Missing values handling
: Various methods include: I
« Cross-validation (e.g. K-Fold)
« Sampling (e.g. random sampling) —_— Split data
« Fixed ratio split
/\ « Proportional split l Main methods are:
- « Information Gain Ratio
> Specify features' « Random forest
D importance « Bayesian models
8 Chooss ones « Tree-based models
o K . l « Jackknife test
o « Kernel-based
= « Tree-based L | Select model
- « Neural Network-based architecture
9V « Ensemble l
8 Hyid * Approaches:
_‘cﬁ Optimize « Metaheuristic algorithms
o hyperparameters * State-of-the-art
1 « Trial-and-error
L Category (example method):
« Replicative (K-fold cross-validation) Validate
« Structural (XAl, e.g. SHAP) | developed model
« Predictive (RMSE, ROC)
(@)
7] Different indices including:
8 « Statistical indices (e.g. CC or RMSE) —= Assess
8 « Classification indices (e.g. ROC) performance
S
5 |
- Interpret the XAl techniques are:
@ P « Local (e.g. SHAP or LIME)
o model « Global (e.g. Information Gain)
z Evaluate the model given: [
17} « New and unseen data Evaluate model
_‘:5 « Data of other geographical region generalization
Q_/ « Utilize transfer learning

FIGUREA1 | Phasesandstepsinvolved in developinga machine learning-based model for flood susceptibility mapping, including pre-processing,
processing, and post-processing stages.
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