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ABSTRACT
This article provides an analysis of the utilization of Machine Learning (ML) models in Flood Susceptibility Mapping (FSM), 
based on selected publications from the past decade (2013–2023). Recognizing the challenge that some stages of ML modeling 
inherently rely on experience or trial-and-error approaches, this work aims at establishing a clear roadmap for the deployment 
of ML-based FSM frameworks. The critical aspects of ML-based FSM are identified, including data considerations, the model's 
development procedure, and employed algorithms. A comparative analysis of different ML models, alongside their practical ap-
plications, is made. Findings suggest that despite existing limitations, ML methods, when carefully designed and implemented, 
can be successfully utilized to determine areas at risk of flooding. We show that the effectiveness of ML-based FSM models is 
significantly influenced by data preprocessing, feature engineering, and the development of the model using the most impactful 
parameters, as well as the selection of the appropriate model type and configuration. Additionally, we introduce a structured 
roadmap for ML-based FSM, identification of overlooked conditioning factors, comparative model analysis, and integration of 
practical considerations, all aimed at enhancing modeling quality and effectiveness. This comprehensive analysis thereby serves 
as a critical resource for professionals in the field of FSM.

1   |   Introduction

Annually, floods affect approximately 200 million people 
(Ritchie and Rosado 2024) and are responsible for over half of the 
damage from natural disasters in the last 50 years (Bates 2021). 
In Germany, the 2021 extreme flood caused at least 180 deaths 
and EUR 46 billion of estimated loss (Mohr et  al.  2022). The 
scale, frequency, and impact of flood events are not only in-
creasing globally but also becoming complex due to the inter-
play of climate change and uncontrolled development (Ludwig 
et  al.  2023; Tellman et  al.  2021). To mitigate flood risks, ad-
dressing hazard, vulnerability, and exposure is essential. Flood 
Hazard Mapping (FHM) encompasses various approaches to as-
sessing flood likelihood and severity. As a subsection of FHM, 

Flood Susceptibility Mapping (FSM) focuses on identifying 
flood-prone areas based on environmental and topographical 
factors. This process is supported by Flood Inventory Maps 
(FIM), which document past flood events and provide histori-
cal insights for improved flood risk assessment (Razavi-Termeh 
et al. 2025). In this study, FSM is a focal point.

The FSM is an important approach in flood management, pro-
viding vital information for planning and response (Bentivoglio 
et al. 2022). Simulation models are the basis of FSM and they 
can be categorized into four groups: physical, physics-based, 
empirical, and hybrid models (Mudashiru et al. 2021). Physical 
models use actual laboratory experiments to simulate flood-
ing (Tomiczek et  al.  2020), but they can be costly, are limited 
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in scale, require specialized equipment, and solid know-how. 
Physics-based models, such as numerical solvers, use mathe-
matical equations describing principles of fluid motion to sim-
ulate the flood dynamics; these require advanced expertise, 
tedious parameterization, and a comprehensive knowledge of 
flood-related parameters, making them complex to set up and 
utilize (Brunner 2016). Empirical models rely on statistics from 
past floods and other influential parameters such as rainfall, to-
pography, and land use. They can be classified into three types: 
statistical models, which are used for quantitative data analy-
sis; Machine Learning (ML) models, employed for data-driven 
predictions; and Multi Criteria Decision Analysis (MCDA) mod-
els, which provide experts a key role in assessing criteria and 
weights (Wang et al. 2019). Finally, Hybrid models are a combi-
nation of two or more of the former three.

Rooted in observed data, statistical models are popular for their 
simplicity and usefulness in data-scarce regions, but they strug-
gle with predicting extreme events and lacked the ability to cap-
ture underlying physical processes (Mudashiru et al. 2021). To 
compensate for the above limitations, a leapfrog is possible via 
the integration of ML-based models, grounded in the realm of 
Artificial Intelligence (AI), into FSM. Given flood modeling, an 
AI-driven model could integrate data-driven (leveraging ML) 
and knowledge-based (e.g., hydrological models) insights to cre-
ate a comprehensive model of flood susceptibility and risks for 
a particular area. ML-based models, however, belong to a sub-
set of AI focused on developing algorithms that can learn from 
and make predictions or decisions based on data (e.g., historical 
flood data, real-time data from sensors, and satellite imagery, to 
name but a few).

ML-based methods have grown in popularity due to their abil-
ity to provide accurate and efficient prediction models for both 
long-term and short-term floods (Mosavi et al. 2018). They also 
offer simplicity, speed, and reasonable accuracy; however, they 
are prone to overtraining, limited generalization, and occa-
sionally produce unreliable results. These shortcomings arise 
because ML-based models are heavily dependent on the qual-
ity of input data and contributing parameters, as well as they 
cannot fully capture the fundamental physics of flood dynam-
ics. To overcome such limitations, the researchers have in-
creasingly focused on integrating ML-based models with other 
modeling strategies like metaheuristic techniques, optimization 
algorithms, numerical analyses, and physical models (Razavi-
Termeh et  al.  2018). These hybrid approaches, categorized as 
AI-driven hybrid models, have significantly boosted the effec-
tiveness, physical interpretability, soundness, and accuracy of 
ML-based models.

Many studies have applied ML models in FSM; however, a lack 
of consensus on critical aspects such as model setup, data pro-
cessing, and model validation limits their reproducibility and 
transferability. This paper fills this gap by systematically ana-
lyzing the existing literature and presenting a detailed roadmap 
for developing ML-based FSM models. Our study addresses 
these gaps by systematically reviewing the current literature 
and providing a comprehensive framework that emphasizes the 
often-overlooked stages of data preprocessing, model develop-
ment, validation, and post-processing. Unlike previous works, 
this paper not only critically analyzes the state-of-the-art models 

but also offers guidelines and best practices to improve their ap-
plication across various geographic and contextual scenarios. 
The novelty of this paper lies in its provision of a structured 
roadmap to the development of ML models for FSM, enhanced 
by a comparative analysis of model performance across various 
geographic and contextual scenarios. This approach allows for a 
deeper understanding of ML model effectiveness and improves 
their applicability for future research and real-world implemen-
tations. All abbreviations used in this paper are listed and de-
fined in Appendix 1.

2   |   Existing Knowledge on the Application of ML 
in Flood Management

Here, to identify recent advances, emerging trends, and critical 
gaps that necessitate further investigation, we analyze recently 
published literature that explores the role of ML in advancing 
flood management techniques. Table  1 presents the key dis-
tinctions identified in flood management, synthesizing insights 
from recent reviews on the integration of ML techniques. While 
current applications of machine learning in flood management 
provide invaluable insights, several methodological gaps still 
hinder its broader utilization. Previous studies mentioned im-
portant considerations like model explainability and general-
ization. However, they often lacked an in-depth exploration of 
the methodologies to undertake these tasks. We present detailed 
procedures to address these elements, enhancing the applica-
tion of ML in flood management. We outline comprehensively 
the phases of model development, from pre-processing to post-
processing, detailing suitable methods for each stage.

3   |   Research Methodology

To find the most relevant articles to base our analysis, we 
searched Scopus, Science Direct, Web of Science, and Google 
Scholar databases for publications dealing with FSM using ML 
and statistical methodologies. We identified a total number of 
521 articles published and indexed in above-mentioned data-
bases between 2008 and 2023, using the following keywords: 
“machine learning” and [“flood susceptibility mapping” or 
“flood susceptibility” or “flood susceptibility assessment” or 
“flood prediction”]. Before 2008, there is no indexed article with 
these keywords. Figure 1a depicts the distribution of these arti-
cles across different years, illustrating both the number and per-
centage of articles published annually. The selected articles are 
published across 250 journals. To enhance clarity in representa-
tion, Figure 1b highlights only journals contributing more than 
2% of the selected articles (≥ 10 articles). However, the selection 
process included articles from a broader range of journals, in-
cluding those contributing less than 2%.

After 2013, there was a notable increase in the number of arti-
cles using ML methods for flood management, totaling 503 over 
the past decade. To select the most relevant publications, we 
used a “snowballing” strategy (Lechowska 2018), starting with 
highly cited articles and then exploring those that cite or are 
cited by these key studies. This approach narrowed the focus to 
100 innovative articles, which were analyzed in detail for their 
contributions to model types, input parameters, and evaluation 
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methods. These articles and their main characteristics are de-
tailed in the appendices of the study (Appendices 2 and 3).

4   |   Roadmap for the Construction FSM Based on 
ML

4.1   |   General Steps

Developing the ML-based model for FSM includes pre-
processing, processing, and post-processing (Table 2). The pre-
processing phase refers to data preparation for the modeling 
process, which includes data collection, study area selection, 
contributing parameters determination, feature engineering, 
data cleaning, and feature scaling (Pourzangbar et al. 2023)—
compare Section 4.2.

In the processing phase, the focus is on model development. 
After determination of the methodology for partitioning the 

dataset into training and testing subsets, the configuration, 
architecture, and training algorithm of the ML-based model 
are selected. Subsequently, hyperparameters of the ML-based 
models are determined using either conventional approaches or 
meta-heuristic algorithms. In this phase, the model is developed 
and ready to be implemented into testing and unseen datasets—
compare Section 4.3.

In the post-processing phase, the performance of the developed 
model in terms of accuracy and precision, model explainabil-
ity, and generalization is evaluated against testing and unseen 
datasets. Model explainability is assessed to elucidate the contri-
bution of conditioning factors to the overall predictions (Aydin 
and Iban 2023). Furthermore, in this phase, the performances 
of different models are compared (comparative performance), 
thereby drawing conclusions about their relative superiority 
based on accuracy and physical interpretability. Some import-
ant steps of this phase, as highlighted in Table 2, are elaborated 
in Section 4.4.

FIGURE 1    |    (a) Published articles on the application of ML-based models to FSM in different years, (b) journals with over 2% of published articles 
on FSM using ML-based models during 2013—2023. GI = Geocarto International; JEM = Journal of Environmental Management; JH = Journal of 
Hydrology; NH = Natural Hazards; RS = Remote Sensing; SERRA = Stochastic Environmental Research and Risk Assessment; STE = Science of the 
Total Environment; Wat = Water; WRM = Water Resources Management.

TABLE 2    |    Phases for developing robust and physically sound ML-based FSM (the subsections in which each subject is discussed are indicated 
between square brackets).

Pre-processing [4.2]

Data collec�on [4.2.1]

Study area [4.2.2]

Contribu�ng parameters 
[4.2.3]

Feature selec�on [4.2.4]

Data treatment [4.2.5]

Processing [4.3]

Data spli�ng [4.3.1]

Feature importance[4.3.2]

Model selec�on [4.3.3]

Model architecture [4.3.4]

Hyper-parameters [4.3.5] 

Model valida�on [4.3.6]

Post-processing [4.4]

Performance assesment 
[4.4.1]

Model explainability 
[4.4.2]

Model generaliza�on 
[4.4.3]

Compara�ve analysis 
[4.4.4]
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We incorporated a flowchart in Appendix 3: Figure A1, which 
illustrates the three phases of developing a ML-based model for 
FSM. This flowchart clearly outlines each phase, providing a 
structured overview to guide the reader through the model de-
velopment process.

4.2   |   Pre-Processing Phase

4.2.1   |   Data Collection

Existing resources for producing data required for ML-based 
model development include in situ measurements collected by 
ground-based sensors; Remote Sensing (RS) such as satellite 
imagery, Google Earth Engine, and drone-generated data; re-
construction data such as generated by numerical simulations; 
and finally, crowdsourcing and social media mining (Maspo 
et al. 2020).

In situ measurements provide highly accurate, detailed data, but 
are geographically limited and financially costly. Given flood 
modeling, field observations provide high temporal resolution 
data for parameters like precipitation and discharge, but they 
have lower spatial accuracy and are prone to damage during ex-
treme events (Ludwig et al. 2023).

RS, on the other hand, offers global coverage and is cost-
effective over time (Pourzangbar et  al.  2023) despite high 
initial costs and varying data quality that require calibration 
with in situ data. In a majority of the analyzed articles, con-
ditioning factors and flood inventory maps are derived from 
satellite imagery, including data from Landsat 8 (Operational 
Land Imager, OLI) and Sentinel-1 (Synthetic Aperture Radar, 
SAR), among others. SAR images are widely used in flood 
modeling due to their all-weather, day/night capabilities 
(Anusha and Bharathi  2020), enabling accurate mapping of 
flood extents (Hitouri et  al.  2024) and improving hydraulic 
models for better flood simulations, especially in urban areas 
(Scotti et al. 2020).

Flood inventory maps are either derived from the interpreta-
tion of digital satellite images or compiled from historical flood 
databases (Chen et al. 2019; Yu et al. 2023). Riazi et al.  (2023) 
employed Sentinel-1 SAR data to distinguish between flooded 
and non-flooded areas. Similarly, Nguyen  (2022) utilized SAR 
imagery, enhanced with the Lee filter to reduce noise, for the 
detection of flood-affected regions. Topographical data, includ-
ing Digital Elevation Models (DEMs), slope angle, aspect, and 
plain curvature, were extracted using satellite imagery. The 
Shuttle Radar Topography Mission (SRTM) has been widely 
used in various studies to generate DEM layers (Razavi-Termeh 
et al. 2023). Land-use and land-cover data, which are also im-
portant conditioning factors for flood modeling, were obtained 
through the OLI onboard Landsat satellites, accessed via Google 
Earth Engine. This satellite-derived data provides detailed in-
formation on human activities and natural landscapes that sig-
nificantly affect flood susceptibility (Ha et al. 2023; Mahdizadeh 
Gharakhanlou and Perez 2022).

Furthermore, physics-based models supply spatial and tempo-
ral data for training ML models, which are then used for pre-
dicting events like water depth and urban floods rapidly. Social 
media platforms also emerge as vital real-time data sources 
for flood management, aiding in immediate response actions, 
although their integration into ML-based FSM models is still 
in early stages but shows promise for enhancing real-time pre-
dictive capabilities. Table 3 summarizes data sources and col-
lection methods, illustrative parameters associated with these 
sources, and an assessment of the advantages and disadvan-
tages of each method.

4.2.2   |   Study Area

Study areas are conditioned by geographical, climatic, human, 
geopolitical, historical, environmental, and geological factors. 
Study areas in FSM research cover diverse climate zones from 
arid regions like Saudi Arabia and Egypt to tropical climates 
such as Vietnam and Malaysia, and temperate zones including 

TABLE 3    |    Summary of data collection sources, corresponding tools used, and remarks about their utilization in FSM.

Type of data source Data collection method Example parameters Remarks

In situ (observational data) Sensor/gauge
Field surveys

Precipitation/rainfall
Flow properties

Lithological maps
Historical flood location

High accuracy
Detailed data over long periods

Limited spatial coverage
Vulnerable to extreme events

Remote sensing Satellite imagery
Google Earth Engine

Drone
Aerial photos

Flood inventory maps
Topographical data

DEM
NDVI

Vast spatial coverage
Require in situ data for calibration

Expensive and time-consuming
Susceptible to weather conditions

Physics-based model Physics-based model
Numerical simulation

Flood maps
Flow properties

Accurate and robust
Expensive and time consuming

Crowdsourcing Social media Flood maps
Flow properties

Evacuees' behavior

Real-time data for flood maps
Difficult to analyze

Often of poor quality
Temporal and spatial 

resolution not controlled
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southern Canada and Switzerland (Figure 2). The spatial scales 
for flood modeling vary from local (covering small areas like 
towns), regional (encompassing up to 100,000 km2 such as prov-
inces), national (involving whole countries), to supra-national 
(dealing with entire continents or the globe).

Evaluation of the selected study areas has shown that certain 
intrinsic characteristics of these locations influence the quality 
of the flood analysis:

•	 Geography and topography: landscapes with varied eleva-
tions and landforms significantly condition flood-prone 
areas, as demonstrated by the diverse terrains of Maneh and 
Samalqan City (Eslaminezhad et al. 2022), and the Haraz 
watershed (Chapi et al. 2017).

•	 Historical occurrence of floods or natural disasters: histor-
ical flood data is essential for calibrating and validating 
flood susceptibility models, especially in areas known for 
severe flooding impacts (Al-Areeq et al. 2022).

•	 Climatic patterns and seasonal variation: areas that expe-
rience diverse climate conditions, especially those with 
seasonal heavy rainfall or extreme weather events, are op-
timal for analyzing how climate influences flood risk (Luu 
et al. 2021; Ullah et al. 2022) due to their broad range of data 
on climatic factors that condition flooding.

•	 Urbanization and land use: population density and land 
cover are identified as critical factors in choosing study 
areas for flood susceptibility analysis. Locations ex-
periencing changes in land use and population offer 
valuable insights into the relationship between human 
activity and the likelihood of flooding (Aldiansyah and 
Wardani 2023).

•	 Data availability: adequate and reliable data availability is 
a crucial factor; areas with extensive data collection allow 

for ML-based models which are more generalizable and re-
liable (Mohr et al. 2022). The brief duration of some events, 
for example, flash floods, makes RS tools like satellites not 
adequate. Social media mining may be an alternative in 
these cases (Costa et al. 2023).

4.2.3   |   Contributing Parameters

The input parameters for the development of ML-based models 
can be classified as follows: topographical, hydrological, envi-
ronmental, and morphological. Each of these is prepared in the 
form of raster maps with different spatial resolutions, usually the 
30 m × 30 m pixel size (Vafakhah et al. 2020). The relationship be-
tween different parameters and flood susceptibility, along with 
the value ranges of these parameters, is detailed in Table 4. The 
positive and negative correlations, ↑ and ↓ respectively, show that 
the parameter of interest may have a positive or negative correla-
tion with flood susceptibility depending on its value.

Topographical features play a critical role in the land's capacity to 
retain water. Steeper slopes can increase runoff velocity, height-
ening the risk for flash floods (El-Magd et al. 2022). The Digital 
Terrain Model (DTM) represents land elevations and shows 
that higher elevations are less flood-prone due to their natural 
distance from major water bodies, while lower areas are more 
vulnerable due to water accumulation (Deroliya et al. 2022). TRI 
and TPI measure the land's unevenness and relative elevation, 
respectively, influencing how water disperses and potentially re-
ducing flood risk in elevated or rugged terrains (Chapi et al. 2017; 
Kalantari et  al.  2017). Conversely, land curvature affects water 
flow, with convex areas (positive curvature) often seeing reduced 
flooding due to water divergence (Ha et al. 2023).

Hydrological parameters assess water movement and soil ab-
sorption to predict flood-prone areas during heavy rainfall. 

FIGURE 2    |    The study areas (marked with red spots) and their associated countries in the analyzed articles.
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TABLE 4    |    Overview of key parameters analyzed in FSM, their typical ranges, and their correlation with flood susceptibility.

Category Parameters Unit Range/attributes of parameter
Correlation 
with FSM

Topographical Slope Degree 0–80 ↑

Elevation Meter (m) −22 to 4000 ↓

Terrain Ruggedness 
Index (TRI)

m 0–871 ↑↓

Topographic Position 
Index (TPI)

m −150 to 160 ↓

Plan curvature Inverse meter (m−1) −142 to 57 ↑↓

Profile curvature m−1 −50 to 50 (concave, flat, convex) ↑↓

Hydrological Topographic Wetness 
Index (TWI)

— 0.50–27 ↑

Rainfall Millimeter (mm) 180–1025 ↑

River(stream) 
Density (Riv-Den)

Kilometer per square 
kilometer (km/km2)

0–2.574 ↑

Drainage Density 
(Drain-Den)

km/km2 0.0017–1.29 ↓

Flow Accumulation 
(FloAcc)

— 0–1.73e+07 ↑

Flow Direction 
(FlowDir)

Degree East-West-North-South-Northeast-
Northwest- Southwest-Southeast

↑↓

Environmental Land Use Land 
Cover (LULC)

— Construction-
Transportation-Residential 

areas- Mountainous-Agriculture-
Grasslands-Water bodies-Forests-

Woodlands-Barren land

↑↓

Distance to River 
(DisRiv)

m 0–10,000 ↓

Lithology — More than 26 geological units such 
as Cretaceous, Jurassic, Permian, 
Quaternary, Cambrian marine, 

Millennium rocks, to name but a few

↑↓

Soil type — Different soil types are listed, 
such as Alluvial, Gleisol, 

Kambisol, Litosol, Mediterranean, 
Podsolik, to name but a few

↑↓

NDVI — −1—1 ↓

Distance to Road 
(DisRoa)

m 0–12,806 ↑↓

Distance to Fault 
(DisFau)

m 0–14,000 ↑

Morphological Stream Power 
Index (SPI)

Square meter per 
meter times degree 

[(m2/m) degree]

6–26 ↑

Aspect Degree −1 (flat) and 0–360 ↑↓

Sediment Transport 
Index (STI)

(m2/m) degree 0–22,540 ↑
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Higher TWI values indicate potential water accumulation 
areas, highlighting flood risks. Similarly, excessive rainfall 
can surpass the capacity of drainage systems, causing rapid 
runoff and floods (Park and Lee  2020). River and drainage 
densities indicate how rivers and their networks can affect 
water flow and flood likelihood. Higher river density can 
lead to a more complex network of water paths, potentially 
increasing flood risk (Horton 1932). Increased drainage den-
sity facilitates quicker runoff, possibly heightening flood risk 
(Sajedi-Hosseini et  al.  2018). Flow accumulation (Al-Juaidi 
et  al.  2018; Meliho et  al.  2021) and direction (Nguyen  2022; 
Pham et  al.  2021) help determine potential flood paths by 
tracking how water moves across a landscape.

Environmental parameters influencing floods encompass both 
natural elements and human activities. LULC notably impacts 
flood risks by modifying surface runoff and infiltration (Brody 
et al. 2014), where urbanization increases impermeability, thus 
enhancing runoff and increasing flood risk (Eslaminezhad 
et al. 2022). Proximity to rivers increases the likelihood of riv-
erine flooding, particularly with rivers prone to overflow (Luu 
et al. 2021). Soil types (Gabriels et al. 2020), lithology, and the 
presence of vegetation (measured by NDVI) (Aldiansyah and 
Wardani  2023) are significant as they affect water absorption 
and retention, influencing how floods develop. Additionally, 
roads can alter flood dynamics by acting as barriers that either 
block or redirect water flow, thereby affecting flood susceptibil-
ity in surrounding areas (Nguyen et al. 2023). Distance to faults 
is conversely proportional to flooding susceptibility if their ac-
tivity increases and starts moving (Eslaminezhad et al. 2022).

Morphological parameters, such as SPI and STI, are used to as-
sess the erosion potential and sediment transport in watersheds. 
SPI correlates with slope angle and watershed area, indicating 
flood erosion power (Ullah et al. 2022). The aspect factor, which 
denotes the distribution of different topographical directions, 
influences slope stability by affecting water flow, solar exposure, 
and evaporation, which together impact broader hydrological 
and meteorological processes, potentially leading to landslides 
and floods (Ullah and Zhang 2020). STI helps estimate erosion 
and sedimentation rates, highlighting the dynamics of sediment 
movement influenced by terrain.

Several input parameters have consistently been recognized as 
crucial for effective FSM. Key conditioning factors in FSM in-
clude the topographic wetness index, land slope, land use and 
land cover, rainfall levels, and proximity to rivers. Notably, 
DisRiv and TWI are significant factors, being central in 61% 
and 68% of studies, respectively. These findings highlighted 
the prevailing importance of these variables in the field of 
FSM. Figure  3 illustrates the frequency of various parameters 
commonly employed in the development of ML-based models 
for flood susceptibility. Only parameters which are used more 
than five times in the analyzed articles are reported here (i.e., 
they are used at least in five different articles for the modeling 
procedure).

Diverse techniques have been employed to assess the relative 
significance of input parameters in ML-based models—compare 
Section 4.3.2. The relative importance of the 13 most important 
parameters is illustrated in Figure 4. A comparison of Figures 3 
and 4 shows an alignment between the most commonly incor-
porated input parameters in ML models and those deemed most 
critical.

4.2.4   |   Feature Selection

Including irrelevant parameters can lead to complex models that 
are more difficult to interpret and implement than those created 
using only the most essential parameters (Pourzangbar  2012); 
the identification of the most relevant parameters for the model 
development is called feature selection. Multicollinearity testing, 
which evaluates if two or more conditioning factors are highly 
correlated with each other, is one of the most common feature 
selection methods and can play a role. Testing multicollinearity 
allows the exclusion of redundant flood predictors within the 
modeling framework. for this, several criteria are commonly em-
ployed, such as Pearson's Correlation Coefficient (CC), Variance 
Inflation Factor (VIF), and condition number. Resolving multi-
collinearity issues typically involves either removing one of the 
correlated variables, combining them, or applying methods such 
as ridge regression or Principal Component Analysis (PCA). It is 
important to note that none of these tests can definitively prove 
the presence of multicollinearity, but rather provide evidence 

FIGURE 3    |    Frequency of the input parameters used in the analyzed articles for FSM (only parameters are reported here whose contribution in 
the analyzed articles is more than 5%).
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that it may be present in a model. Therefore, it is important to 
use multiple tests and to interpret the results to conclude that 
there is multicollinearity between contributing factors.

4.2.5   |   Data Treatment

Data treatment involves feature scaling techniques such as 
normalizing or standardizing the raw data, converting data to 
the appropriate format, and data cleaning (Hastie et al. 2009). 
Various methods, such as max-min normalization and z-score 
standardization, are employed to scale data types of differ-
ing magnitudes (Tabbussum and Dar  2021; Ding et  al.  2020). 
However, standardization is preferred over min-max scaling 
for its robustness against outliers. Standardization is especially 
suitable for algorithms that assume normally distributed data, 
such as Logistic Regression (LR), linear regression, and Support 
Vector Machines (SVMs). A common approach involves normal-
izing the entire dataset before splitting it into training and test-
ing groups, although this may not always yield accurate results. 
However, data normalization should be done after splitting the 
dataset into training and testing groups. Normalization parame-
ters from the training data are applied to the test data to ensure 
consistent transformation. Furthermore, normalization can af-
fect the evaluation metrics. Therefore, during evaluation, out-
puts are converted back to their original scale (de-normalization) 
to accurately assess the model's real-world effectiveness.

Data cleaning involves the process of identifying and correcting 
inaccuracies or inconsistencies in data, such as missing values, 
duplicates, outliers, or errors, to improve the quality and reli-
ability of the dataset for analysis. Outliers, which are data points 
significantly deviating from the dataset's norm, can greatly in-
fluence the analysis and model performance. Therefore, it is of 
great importance to handle outliers properly before proceeding 
with analysis and model development (Khosravi et  al. 2023). 
ML-based models developed for FSM are notably sensitive to 
outliers, which can influence the model's performance and ac-
curacy. The outliers in flood data are not inherently incorrect; 
they may represent extreme events relevant to flood modeling. 

In the case of data with extreme events, one should be careful not 
to treat extreme flood data as outliers. Outlier detection methods 
are categorized into statistical methods (based on data distribu-
tion properties), distance-based methods (identifying outliers 
using distance thresholds), density-based methods (detecting 
anomalies in low-density regions), machine learning-based 
methods (using supervised, unsupervised, or semi-supervised 
learning), and ensemble methods (combining multiple tech-
niques for better accuracy) (Pourzangbar et al. 2023). The choice 
depends on data characteristics and problem requirements. For 
more details on outlier detection methods, the reader may refer 
to (Pourzangbar et al. 2023). Outlier detection methods are not 
typically utilized directly in the preprocessing phase, though 
they are essential for handling anomalies in data. However, 
some ML-based models such as Random Forest (RF) (Razavi-
Termeh et al. 2023), Boosted Regression Trees (BRT) (Youssef 
et al. 2022), and Gradient Boosting (GB) (Aydin and Iban 2023) 
are intrinsically capable of handling outliers. Table  5 summa-
rizes the robustness degree of the ML-based algorithms and sta-
tistical indices frequently employed to treat outliers. Regarding 
the outlier robustness scale, the robustness of different models is 
categorized into four levels, represented schematically in bars. 
Each bar has four segments, where green portions indicate the 
method's capability to handle outliers. A bar with one green seg-
ment represents a model highly sensitive to outliers, whereas a 
fully green bar indicates strong robustness against outliers.

4.3   |   Processing Phase

4.3.1   |   Data Splitting

Splitting techniques are essential for optimizing model perfor-
mance through training, testing, and validation. These tech-
niques include cross-validation methods like Leave-one-out and 
K-fold cross-validation (Xie et al. 2021), sampling methods such 
as random sampling, random subsampling, and bootstrap resam-
pling (Aldiansyah and Wardani 2023), and split techniques like 
fixed ratio and proportional splits with a validation set (Khan 
et al. 2018). These methods help evaluate the robustness of model 

FIGURE 4    |    Relative importance of parameters contributed to the development of the ML-based models in the analyzed articles.
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predictions against data variations, identifying potential areas for 
improvement in model development. Table 6 provides a summary 
of different data splitting techniques, along with their definition.

4.3.2   |   Feature Importance

Feature importance assesses which factors are most influential in 
evaluating flood susceptibility. Techniques such as PCA, chi-square 
evaluation, FR, and Information Gain Ratio (IGR) help determine 
the relevance of different parameters in flood susceptibility mod-
els. IGR assesses the predictive power of factors, removing those 
with little or no influence (Quinlan 1996). FR measures the cor-
relation between flood occurrences and influencing factors, with 
values indicating the strength of this correlation. The Jackknife test 

evaluates a factor's impact on model accuracy by observing changes 
in AUROC when the factor is removed. PCA and Functional PCA 
(FPCA) reduce data dimensionality to enhance interpretability (El-
Haddad et al. 2021; Youssef et al. 2022), with PCA applied broadly 
to multivariate data and FPCA suited for data represented as func-
tions or curves. Figure 5 illustrates nine frequently methods utilized 
in the analyzed articles to determine the parameters' importance. 
RF is the most popular method since it intrinsically determines the 
inputs weights and contribution to the FSM.

4.3.3   |   Model Selection

A diverse array of ML-based and statistics-based models are em-
ployed for FSM. ML-based models include (1) Neural Network 

TABLE 5    |    Robustness degree of the frequently used ML-based models and statistical indices against outliers (Green segments indicate robustness 
to outliers; Grey segments indicate sensitivity).

Abbreviations: AdaBoost: Adaptive Boosting; B-LMT: Bagging-Logistic Model Tree; IQR: Interquartile Range; MAD: Median Absolute Deviation; REPTree: Reduced 
Error Pruning Tree; XGBoost: Extreme Gradient Boosting..
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(NN) based models, for example, ANN, that mimic biological 
NNs are capable of learning from data for tasks such as clas-
sification and regression (Pourzangbar, Losada, et  al.  2017; 
Pourzangbar, Saber, et  al.  2017); (2) kernel functions utilized 
to map input data into a higher-dimensional space, aiding lin-
ear algorithms in solving non-linear problems such as SVMs 
(Pourzangbar, Brocchini, et al. 2017); (3) tree based models such 
as M5’ model tree and Alternating Decision Tree (ADT) that 
employ decision tree structures to make predictions through a 
series of binary “if-then” decision thresholds, suitable for both 
regression and classification tasks (Afsarian et  al.  2018; Ong 
et al. 2022); (4) ensemble models such as RF and Rotation Forest 

(RoF) that combine multiple base predictive models to improve 
overall accuracy and robustness of predictions (Obregon and 
Jung 2022); (5) hybrid models such as ANFIS that merge differ-
ent types of models or model architectures to leverage strengths 
of individual models, enhancing performance and explainabil-
ity (Kurz et al. 2022).

Statistical models rely on a variety of assumptions (e.g., data dis-
tribution) and mathematical principles (e.g., regression analysis) 
to analyze relationships between input and output variables. The 
implemented statistical models for flood prediction can be cat-
egorized into regression-based such as LR, MCDA such as FR, 

TABLE 6    |    Different data splitting techniques utilized in the ML-based FSM models.

Category Method Definition

Cross-validation techniques Leave-one-out The method excludes one flood event 
at a time for validation, with the 

remaining data used for training.

K-Fold In K-Fold, cross-validation the dataset 
is divided into “K” equally sized 

subsets and “K-1” subsets are used for 
training and the remaining one for 

validation. A “K” value of 5 is chosen.

Sampling techniques Random sampling The model is trained using a random 
sample containing 70% of the data, balanced 
between flood and non-flood samples. The 

remaining 30% is used for validation.

Bootstrap resampling It involves repeatedly selecting small 
samples from a dataset with replacement, 

to improve flood prediction models. 
Train the model on each resampled 
dataset to assess the variability and 
stability of the model's predictions.

Random subsampling This method, a Monte Carlo technique, 
involves dividing a dataset randomly into 

training and testing. This is repeated 
“B” times, with each iteration creating 

distinct, non-repeating samples. Unlike 
Bootstrap, this method ensures unique 

samples in each iteration, leading to 
varied data correlations and a different 

approach to data analysis and sampling.

Fixed and proportional split techniques Fixed ratio split The dataset is split into training (70%) 
and testing (30%) datasets. This technique 

emphasizes class balance, meaning 
an equal number of flooded and non-

flooded points in each subset, ensuring 
that the model is trained and tested on a 
balanced representation of both classes.

Proportional split with validation set It divides data into 60% for training, 
20% for validation, and 20% for testing. 
The impact of varying the training data 

volume is also explored, concluding 
that a lower fraction (50%) for training 
could be ideal for allowing a larger test 
dataset and robust statistical inference.
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Bayesian such as Naïve Bayes (NB), instance-based like K-NN, 
among others. Figure 6 illustrates diverse ML configurations and 
statistical approaches used in FSM.

The selection of ML models depends on several key factors 
such as data availability, model generalization, explainabil-
ity, robustness to outliers, and performance, among others. 
Statistical models are more efficient in data-scarce regions, 
but models like RF and SVM are better for complex datasets. 
Hybrid models tend to generalize better (Section 4.4.3), while 
RF and SVM also show robustness against outliers, unlike 
linear regression and K-NN (Table  5). Model explainability 
is crucial, with tree-based models offering easier interpreta-
tion than NNs. Hyperparameter tuning, often through meta-
heuristic algorithms, plays a key role in optimizing model 
performance, as shown in Section  4.3.5. Performance varies 
depending on the dataset and study area, making it important 
to tailor model selection (Section 4.4.4). Lastly, RF and SVM 
are the most frequently used models in the literature (Table 9), 
reflecting their reliability for FSM.

4.3.4   |   Model Architecture

Various ML models demonstrate effectiveness in FSM, showing 
significant diversity and adaptability across architectures. MLP 
models, often using sigmoidal and linear functions, are efficient 
with minimal data and optimal with 3 to 10 neurons in hidden 
layers (Xie et al. 2021). Techniques like Fuzzy Adaptive Resonance 
Theory (FART) and Self-Organizing Maps (SOM) incorporate 
complex neuron structures to enhance adaptability (Andaryani 
et al. 2021), using functions such as commitment and typicality in 
FART, and larger grids in SOM. CNN models, like the Simple CNN 
and LeNet-5, vary in complexity with multiple layers, including 
convolutional and pooling layers (Zhao et al. 2020).

SVM models using the Radial Basis Function (RBF) kernel have 
shown superior accuracy over other kernels in assessing flood 
risk. Meanwhile, RF models, augmented with algorithms like 
Invasive Weed Optimization (IWO) and Slime Mold Algorithm 
(SMA), have improved prediction accuracy by adjusting the 
number of trees and their features. Additionally, Gradient 

FIGURE 5    |    Normalized usage frequencies of various models for assessing feature importance in the analyzed articles.

FIGURE 6    |    Different ML and statistical models used for FSM.

 1753318x, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jfr3.70042 by K

arlsruher Institut Für T
echnologie, W

iley O
nline L

ibrary on [02/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 of 44 Journal of Flood Risk Management, 2025

Boosting Decision Tree (GBDT) models have been effective in 
boosting the performance of weaker learners through adjust-
ments based on previous errors. These diverse ML approaches 
underline the potential for tailored and efficient FSM.

4.3.5   |   Hyper-Parameters

Hyperparameters such as learning rate, number of layers, and 
number of hidden neurons are critical for optimizing the perfor-
mance of ML models (Aydin and Iban 2023). Hyperparameter 
tuning methods can be categorized into manual and auto-
matic approaches. Manual tuning relies on expert knowledge, 
trial-and-error, or default ML package values, which, while 
effective in certain cases, become inefficient as the number 
of hyperparameters increases (Le Nguyen et  al.  2023). It is 
computationally intensive, relies on intuition, and struggles 
with complex optimization problems. To address these chal-
lenges, automatic search methods have gained prominence 
(Yang and Shami 2020). These include model-free approaches 
like Grid Search and Random Search, gradient-based optimi-
zation, Bayesian optimization (e.g., Gaussian Processes, Tree-
Structured Parzen Estimator), and metaheuristic algorithms 
inspired by natural processes (Liao et  al.  2024). Automatic 
methods offer improved efficiency and adaptability, making 
them essential for optimizing ML models, especially in complex 
applications like FSM. Below, we summarize the methodolo-
gies used in the reviewed articles for fine-tuning the hyperpa-
rameters of various ML models.

ANNs are optimized using the Levenberg–Marquardt algo-
rithm, adjusting hidden neurons based on predictor count (Xie 
et  al.  2021). MLP fine-tunes learning rates and layer configu-
rations through backpropagation. SVM balances complex-
ity and accuracy by optimizing the cost parameter (Costache 
et al. 2021). RF performance depends on the number of decision 
trees, determined via cross-validation. Bagging classifiers are 
optimized through trial and error, using AUROC as a perfor-
mance metric (Chapi et al. 2017). Metaheuristic algorithms like 
GA, Differential Evolution (DE), Particle Swarm Optimization 
(PSO), and Grasshopper Optimization Algorithm (GOA) are 
integrated with ML models to improve their predictive per-
formance by fine-tuning hyperparameters (Arora et  al.  2021; 
Sahoo et  al.  2021). Given RF models, optimization techniques 
such as IWO, SBO, and SMA have been utilized to find the most 
optimal hyperparameters (Razavi-Termeh et al. 2023). Similarly, 
the GridSearchCV method combined with cross-validation is ex-
tensively used across various tree-based classifiers and CNNs to 
identify the best hyperparameter settings for maximum accu-
racy (Liao et al. 2023; Lyu and Yin 2023). Based on the analyzed 
articles, the architecture and parameters of some main models 
are summarized in Table 7.

4.3.6   |   Model Validation

Model validation involves three essential aspects including rep-
licative validity, structural validity, and predictive validity (Xie 
et  al.  2021). These aspects evaluate a model's ability to repro-
duce input–output relationships in different geographical re-
gions (replicative), its accuracy in representing the underlying 

real-world (physical) process it is intended to simulate (struc-
tural), and its performance on unseen datasets (predictive).

To evaluate the replicative validity, techniques such as K-fold 
cross-validation and spatial cross-validation are utilized (Al-
Areeq et al. 2022). In K-fold cross-validation, the data are split 
into K folds, with one fold used for validation and the remaining 
K-1 folds used for training (Darji et al. 2023; Witten et al. 2016). 
However, spatial cross-validation evaluates the model perfor-
mance using data from a different spatial region to assess how 
well it generalizes geographically (Wang et al. 2023). Section 4.4.3 
provides a detailed discussion on model generalization. Given 
structural validity, XAI techniques like SHAP (SHapley Additive 
exPlanations) or LIME (Local Interpretable Model-agnostic 
Explanations) can provide insights into how the model's input 
features influence the model predictions (see Section  4.4.2 for 
detailed information). By providing local explanations, SHAP 
identifies key contributing factors in ML models, demonstrating 
high accuracy and revealing top contributing factors in flood 
susceptibility. Several studies highlight the value of XAI in im-
proving the interpretation of model results and fostering trust 
among stakeholders in flood-related decision-making processes 
(Pradhan et  al.  2023). Almost all the analyzed articles address 
predictive validity. Model accuracy and precision are evaluated 
using statistical metrics such as CC, RMSE, and MAE, while 
classification performance is measured using AUROC, accuracy, 
precision, recall, and the F1-score (Lyu and Yin 2023).

4.4   |   Post-Processing Phase

4.4.1   |   Performance Assessment

Performance evaluation of ML-based flood models employs var-
ious metrics specific to the nature of the task. Regression models 
utilize RMSE, CC, and MAE, which are sensitive to error mag-
nitudes, while classification models, such as those used in flood 
susceptibility, favor accuracy, recall (sensitivity), precision, F-
Score, and the Kappa index. The use of recall is crucial for high-
lighting false negatives, which are critical in flood modeling, but 
it can exaggerate model accuracy if not balanced with measures 
for false positives (Bentivoglio et al. 2022). The F1-score is ef-
fective for balancing recall and precision, assessing both false 
negatives and positives. Additionally, the Receiver Operating 
Characteristic (ROC) curve helps in evaluating model effective-
ness across different thresholds, ensuring a robust assessment of 
model performance in differentiating flood and non-flood areas.

4.4.2   |   Model Explainability

Model explainability, an important topic in XAI, deals with 
understanding how ML-based models make decisions and de-
termines the contribution level of conditioning factors to the 
overall predicted results (Aydin and Iban 2023). There are two 
well-known XAI techniques including global and local meth-
ods. Global explanations (see Section 4.3.2) give a broad un-
derstanding of the model's behavior. They answer questions 
like: “on average, which factors are most important across all 
predictions a model makes?” Some sample methods for the 
global explanation are shown in Figure 7. Local explanations 
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provide insight into individual predictions. They help to un-
derstand why a model made a specific decision for a single 
instance (at a sample-wise scale). As illustrated in Figure  7, 
two popular methods for locally explaining model decisions 
are SHAP and LIME. SHAP assigns an importance value to 
each feature for a particular prediction (Shapley 1953). LIME 
is used to explain individual predictions regardless of the ML-
based model used (Ribeiro et  al.  2016). It works by approxi-
mating the model locally and explaining why the model made 
a certain decision.

4.4.3   |   Model Generalization

Despite its importance, few studies have evaluated model 
generalization (Riazi et  al.  2023). Given generalization, semi-
supervised models often outperform supervised ones in flood 
susceptibility due to less dependence on data quality (Yu 
et  al.  2023). Furthermore, hybrid models demonstrate better 
generalization compared to standalone models.

Given standalone models, ANNs show good generalization but 
struggle with long-term predictions (Jain and Indurthy 2003). 
MLP models are more efficient and generalize better than other 
ANN types (Senthil Kumar et  al.  2005). RBF networks have 
strong generalization with fewer nodes (Rong et al. 2020), while 
CNNs benefit from batch normalization and data augmentation 
to enhance generalization (Zhao et  al.  2020). ANFIS models 
excel in long-term predictions and generalize better than non-
linear regression and ANNs (Shu and Ouarda  2008). SVMs 
are highly effective in FSM, outperforming ANNs and linear 
regressions, particularly with radial basis kernels (Mosavi 
et al. 2018). They generalize well across data dimensions and 
are robust against overfitting with limited flood data. GBDT 
and RF models tend to overfit with scarce data, making SVMs 
more reliable (Yu et al. 2023). Hybrid models, like K-NN with 
ANNs or ANN with PCA, show improved generalization (Chen 
et  al.  2019). Wavelet Neural Networks (WNNs) outperform 
ANNs in generalization (Linh et al. 2021). Ensemble Prediction 
Systems (EPSs), for example, combining ANNs and WNNs with 
techniques like genetic programming and Bayesian methods, 
enhance speed, accuracy, and generalization beyond tradi-
tional methods.

Challenges in flood modeling generalization persist, especially 
in DL (Bentivoglio et  al.  2022). Incorporating real-world data 

and pre-training strategies can improve accuracy, but chal-
lenges remain in applying these models to new domains without 
extensive retraining. Advances in mesh-based NNs, particularly 
geometric and physics-based DL, show promise. Transfer learn-
ing enhances model generalization in areas with sparse data by 
training in regions with sufficient data first (Zhao et al. 2021). 
Rong et al. (2020) mentioned that an imbalance in the number of 
flood and non-flood points is another factor impacting the per-
formance and generalization of the models.

4.4.4   |   Comparative Analysis of ML-Based Models 
Given FSM

In Section  4.3, different structures of ML-based models em-
ployed in the analyzed articles are discussed. The focus here is 
on the frequency of different ML-based and statistical models 
employed in different studies. Figure 8 illustrates the variation 
trends in various AI models over the years. It clearly shows that 
ensemble and hybrid models have gained significant popularity 
in recent years. It should be noted that the mentioned frequency 
of a model's usage does not correspond to the same number of 
separate articles, as a single article may employ a particular 
model type multiple times.

The deployment of these models across various tasks high-
lights their specific strengths and applicability. Shallow Neural 
Networks (Shallow-NN) and Basic Decision Trees (Basic-DTs) 
are favored for their simplicity and interpretability in less com-
plex scenarios. In contrast, CNNs, LSTMs, and Deep Neural 
Networks (DNNs) provide the computational power and flex-
ibility needed for handling complex, high-dimensional data. 
Advanced tree-based and kernel-based models demonstrate the 
importance of integrating sophisticated techniques to enhance 
predictive performance and handle more challenging data 
environments. Ensemble models, whether through bagging, 
boosting, or hybrid approaches, enhance predictive accuracy by 
leveraging multiple learning algorithms. Statistical models, with 
their foundational principles, provide robust and interpretable 
solutions for various predictive tasks.

The analyzed articles employ various NN-based models 62 
times. Shallow-NNs such as ANN are used for classification, re-
gression, and pattern recognition. Their architecture is simple 
with fewer layers, which makes them suitable for problems with 
straightforward data patterns. Grid-Based Neural Networks 
(Grid-NN) such as CNN handle grid-like data, such as images. 
Sequential Neural Networks (Sequential-NN) like LSTM excel 
in learning long-term dependencies in sequential data, mak-
ing them indispensable for time series analysis and natural 
language processing (NLP). DNNs with multiple hidden layers 
are used for complex feature extraction and hierarchical data 
representation.

Tree-based models are employed 36 times in the analyzed ar-
ticles, focusing on decision-making processes and rule-based 
learning. Basic-DTs and Classification and Regression Trees 
(CARTs) are used for classification tasks due to their simplicity 
and interpretability. Advanced Decision Trees (Advanced-DTs), 
like LMT and REPTree, enhance basic decision trees with com-
plex rule-based algorithms, improving accuracy and robustness.

FIGURE 7    |    Overview of XAI techniques by scope with examples for 
each method.
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Kernel-based models utilize different kernel functions to handle 
non-linear data patterns effectively. SVM-based Models (Kern-
SVM) like Weakly Labeled SVM (WELLSVM) and SVM-RBF 
are used for classification and regression, effectively handling 
scenarios with partially labeled data. Kernel-based Regression 
(Kern-Reg) and Kernel-based Classification (Kern-Class) extend 
the kernel trick to regression and classification tasks, respec-
tively, transforming input data into higher-dimensional spaces 
to enable linear separation of data.

Ensemble models, used 107 times in various articles, combine 
multiple models to improve predictive performance. Bagging-
based Ensembles (e.g., RF) enhance accuracy and prevent 
overfitting by using predictions from different data subsets. 
Boosting-based Ensembles (e.g., AdaBoost, Boosted Generalized 
Linear Model (BGLM) and Gradient Boosting Machine (GBM)) 
focus on correcting errors of previous models, reducing bias and 
variance. Forest-based Ensembles (e.g., RF, RoF) leverage the 
power of forest algorithms to build a collection of decision trees 
for improved robustness and prediction accuracy.

Hybrid models, used 102 times in the analyzed articles, in-
tegrate various ML techniques to exploit their combined 
strengths. Fuzzy Logic-based Hybrids (FL-Hyb) like FART and 
FL-NN enhance robustness by merging fuzzy logic with NNs 
and evolutionary algorithms. Tree-based Hybrids (Tree-Hyb) 
such as Naïve Bayes Tree (NBT) combine tree methods with 
statistical and evolutionary techniques for better prediction 
reliability. NN-based Hybrids (NN-Hyb) integrate NNs with 
fuzzy logic, ensemble methods, or evolutionary algorithms, 
including models like Deep Neural Network-Aquila Optimizer 
(DNN-AO) and Extreme Learning Machine-Particle Swarm 
Optimization (ELM-PSO). Weighted Average-based Hybrids 
(WAve-Hyb) like RF-SVM use weighted averages of predictions 
from different methods. Kernel-based Hybrids (Kernel-Hyb) 
combine kernel-based models with statistical, ensemble, and 
evolutionary techniques.

Statistical models, appear 74 times, employ various principles 
to provide robust solutions. Regression models, such as LR and 
GLM, predict numerical outcomes based on linear relation-
ships. Instance-based models like K-NN classify and predict 

by comparing new data to similar examples. MCDA methods, 
such as FR, facilitate decision-making by evaluating alternatives 
across multiple criteria. Bayesian methods, exemplified by NB, 
use Bayes' theorem for probabilistic classification, updating pre-
dictions as new evidence is obtained (Table 8).

Figures  9 and 10 and Table  9 highlight the relative perfor-
mance of different ML-based models. These comparisons are 
based on each study's assessment of several ML-based mod-
els against a unique dataset, leading to a ranking of models 
based on their performance. The primary metrics used for this 
comparative analysis are RMSE and ROC, which are key to 
determining the effectiveness (accuracy and precision) of the 
models. Inspection of Figure 9 reveals that in terms of overall 
performance, the RF and CNN models stand out. Specifically, 
the RF model excels in 10 different studies, while the CNN 
model is the best in five analyzed articles. This observation 
underscores their superior generalization and effectiveness in 
the field of FSM.

In Table 9, colors differentiate each category, creating a visual 
hierarchy. Accordingly, RF configuration tops the table, with 
variations such as RF-BPSO, RF-IWO, and RF-ANN being 
mentioned, and it has the highest frequency of being reported as 
superior, with a count of 13. SVM configurations follow closely, 
with types like AHP-ANP-RF-SVM and FR-SVM among oth-
ers, showing a frequency of 11. DNN, with variants such as 
Deep Neural Network-Naked Mole-Rat Algorithm (DNN-
NMRA) and Deep Neural Network-Social Spider Optimization 
(DNN-SSO), and Tree-based models like ADT and BART share 
a frequency of 8.

To ensure a fair comparison, it is essential to assess the per-
formance of ML models against the dataset used for their 
development. Figure  10 provides a comparative analysis of 
different models using different colored symbols to represent 
the performance of various models on distinct datasets. Each 
colored symbol (e.g., green circle, blue square, red triangle) 
corresponds to a specific dataset and the models evaluated 
on that dataset (details of datasets and models are available 
in Appendix  3). The size of the symbols reflects model per-
formance; the larger the symbol, the better the performance. 

FIGURE 8    |    Trends in the utilization of various ML-based models across different years in the analyzed articles.
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TABLE 8    |    Various ML and statistical model types employed in the analyzed articles, each accompanied by examples.

Configuration (no. of utilization) Model type Frequency of utilization Example(s)

Ensemble (107) Forest-Ens 38 RF, RoF

Boosting-Ens 37 AdaBoost, GBM, BRT

Others 22 EMCA, EMMean, RS-GAM, RS-MARS

Bagging-Ens 10 Bagging Ensembles

Hybrid (102) FL-Hyb 34 FART, FL-NN, FL-RF, FL-
EA, FL-NN-EA

Tree-Hyb 21 NBT, RF-GA

NN-Hyb 17 DNN-AO, ELM-PSO

WAve-Hyb 17 RF-SVM

Kernel-Hyb 13 AdaBoost-RBF, Bagging-RBF, SVR-BA

Statistical (74) Regression 23 LR, MARS

Instance-based 17 KNN

MCDA 17 FR, AHP

Others 11 Maximum Entropy

Bayesian 6 NB

NN-based (62) Shallow-NN 34 ANN

Grid-NN 13 CNN

Sequential-NN 11 LSTM/RNN

Deep-NN 4 DNN

Tree-based (36) Basic-DT 20 Classification Tree, J48 DT, CART

Advanced-DT 16 LMT, REPT, FT, CDT

Kernel-based (31) Kern-SVM 26 SVM, SVM-RBF, K-SVM, WELLSVM

Kern-Reg 4 SVR

Kern-Class 1 SVC

Abbreviations: CDT: Credal Decision Tree; EMCA: Ensemble Model Committee Averaging; EMMean: Ensemble Model to estimate Mean; K-SVM: Kernel Support 
Vector Machine; MARS: Multivariate Adaptive Regression Splines; RS-GAM: Random Subsampling-Generalized Additive Model; RS-MARS: Random Subsampling-
Multivariate Adaptive Regression Splines; SVC: Support Vector Classification.

FIGURE 9    |    The frequency of Models' superiority in the analyzed articles.
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Models closer to the bottom-left corner demonstrate supe-
rior performance, with lower RMSE and higher ROC values. 
Figure  10 shows that combining model types (tree-based, 

NN-based, Fuzzy, and Kernel-based) with optimization al-
gorithms (PSO, WCA), bagging, or boosting significantly 
improves performance. Specifically, Bagging-LMT and RF 

FIGURE 10    |    Comparative performance of various ML-based models implemented into various datasets.

TABLE 9    |    Superiority frequency of different model configurations.

Models' configuration Model's types Frequency

RF RF, RF-BPSO, RF-IWO, RF-ANN 13

SVM SVM, AHP-ANP-RF-SVM, FR-SVM, SVM-RBF, SVR-FA, 
WELLSVM, WoE-SVM, MDA-CART-SVM, PLS-SEM-SVM

11

DNN DNN, DNN-NMRA, DNN-SSO, WNN, MLP-WCA, PSO-ELM 8

Tree based ADT, BART, CDT-FT, ERT, QPSO-CDT, RSub-REPTree, NBT 8

ANFIS ANFIS-GA, ANFIS-ICA, ANFIS-GOA, ANFIS-PSO, MONF-EG-PSO 7

Boosting ensembles BRT, CatBoost, DB, XGBoost, LightGBM, SGB 7

CNN CNN, SCNN 6

Bagging ensemble Bagging KNN-SVM-LMT, Bagging Tree, BFT, Bagging-GA, 
Bagging-LMT, RC-RBF, Dagging ANN-SVM-RF

6

LSTM LSS-LSTM, LSTM-ED, LSTM, STA-LSTM 4

DBN DBN-ELM-PSO, DBP-GA 3

Adaptive Boosting AHP-AdaBoost, AdaBoost 3

Logistic Regression LR, FR-LR 3

Note: Shading from green to red indicates model usage frequency, from most to least frequent.
Abbreviations: BFT: Bagging Functional Tree; CDT-FT: Credal Decision Tree-Functional Tree; DB: Deep Boost; DBN: Deep Belief Network; DBP: Deep belief network 
with Back Propagation algorithm; ERT: Extremely Randomized Tree; ICA: Imperialistic Competitive Algorithm; LSS-LSTM: Local Spatial Sequential Long Short-Term 
Memory; LSTM-ED: Long Short-Term Memory based Encoder-Decoder; MDA: Multivariate Discriminant Analysis; MONF-EG-PSO: Metaheuristic Optimization 
and Neural Fuzzy inference-Evolutionary Genetic-Particle Swarm Optimization; PLS-SEM: Partial Least Square-Structural Equation Model; QPSO-CDT: Quantum 
Particle Swarm Optimization-Credal Decision Tree; RSub: Random Subsampling; SGB: Stochastic Gradient Boosting; STA-LSTM: Spatio-Temporal Attention Long-
Short Term Memory; WCA: Water Cycle Algorithm.
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among tree-based models, hybrid SVM-EA and ANFIS-EA 
for fuzzy and kernel-based models, and hybrid DNN-EA for 
NN-based models demonstrate superior performance based 
on RMSE and ROC.

Table  10 presents a comparative analysis of ML models based 
on accuracy, interpretability, computational efficiency, and ro-
bustness. Shallow NNs and basic decision trees offer high in-
terpretability and computational efficiency but have moderate 
accuracy, making them suitable for simple patterns, while their 
low robustness makes them prone to overfitting. Deep learning 
models (e.g., CNNs, LSTMs) provide high accuracy and robust-
ness, excelling in complex, high-dimensional data, but require 
significant computational resources and lack interpretability. 
Advanced tree-based models balance accuracy and efficiency, 
performing well on structured data and resisting noise with 
pruning, though their interpretability depends on tree depth 
and complexity. Kernel-based models are highly accurate for 
classification and regression, capturing complex relationships, 
but are computationally expensive, sensitive to hyperparam-
eters, and difficult to interpret. Ensemble and hybrid models 
improve predictive performance and robustness by combining 
multiple models, mitigating individual weaknesses. Statistical 
models are efficient and interpretable but may struggle with 
high-dimensional data, limiting their application in complex 
machine-learning tasks.

5   |   Practical Considerations

5.1   |   Data Considerations

Data scarcity remains a major challenge, particularly in regions 
with limited computational resources and technical expertise. 
This issue arises from technical constraints, especially during 
extreme weather events, such as malfunctioning ground-based 
instruments, inadequate spatial and temporal coverage, and 
limitations of RS tools (Mohr et al. 2022). To address these is-
sues, crowdsourcing, data augmentation, and data fusion are 
suggested. Alternative data sources like social media can pro-
vide supplementary insights when traditional methods are lack-
ing (Costa et  al.  2023). Data augmentation helps address data 
scarcity by artificially expanding training datasets, enhanc-
ing the performance of predictive models. Techniques such as 
geometric transformations (rotating, flipping, altering image 
patches) improve model accuracy, especially when real-world 

data are limited (Guo et al. 2022; Madhuri et al. 2021). FSM re-
lies on data from multiple sources, leading to discrepancies in 
spatial–temporal resolutions. For instance, DTMs typically have 
higher resolution than rainfall data. To manage these discrep-
ancies, data fusion integrates multiple data sources, ensuring 
consistent spatial and temporal dimensions, which is crucial in 
the pre-processing phase (Islam et al. 2023).

5.2   |   Model Development

5.2.1   |   Physical Relevance of the Conditioning Factors

It is crucial that the conditioning factors in the ML models 
not only contribute to the model's accuracy but also contrib-
ute mechanistically to the system being modeled. This means 
that a parameter should only be excluded if it has no significant 
impact on the model's accuracy and reliability, or physical rel-
evance. Removing a factor solely for the purpose of enhancing 
accuracy is generally not advisable, especially if that parameter 
is physically important to the mechanisms being modeled. This 
approach is in line with the principles of physics-informed ML, 
where the integration of data and physical laws is essential to 
ensure that the model is not only accurate but also physically 
meaningful (Carleo et al. 2019).

5.2.2   |   Contributing Parameters in the Development 
of ML-Based Models

Inspection of Figures 3 and 4 (Section 4.2.3) reveals that some 
important parameters are neglected in the FSM procedure in the 
analyzed articles. Some of these parameters are as follows:

•	 Reservoir existence: reservoirs may(not) play multifaceted 
roles in flood control by reducing flood peaks and intercept-
ing sediment (Li and Xu 2023). Hence, their existence may 
affect flood susceptibility and should be considered in the 
modeling process.

•	 Prior condition in river basins: catchment precondi-
tions, specifically soil wetness measured by Antecedent 
Precipitation Index (API) values, are important for de-
termining flood occurrence and magnitude (Mohr 
et al. 2022). Therefore, these preconditions should be con-
sidered in FSM.

TABLE 10    |    Comparative analysis of ML models based on accuracy, interpretability, computational efficiency, and robustness.

Models' configuration Accuracy Interpretability Computational efficiency Robustness

Shallow-NN and Basic-DT Moderate High High Low

Deep-NN High Low Low High

Advanced-DT High Moderate Moderate High

Kernel-based High Low Low Moderate

Ensemble models Very high Low to moderate Moderate Very high

Hybrid models Very high Low Low Very high

Statistical models Moderate High High Moderate
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•	 Snow melting: precipitation, including rainfall and snow-
fall, is the most important climate parameter for hydrologi-
cal processes and flood risk assessment (Chapi et al. 2017). 
In glacial or nival regions like North and Central Europe, 
flood intensity has decreased due to reduced spring snow-
melt from global warming. However, the frequency and 
intensity of flood events are increasing under a warming 
climate, with snowmelt floods being a significant contrib-
utor (Zhou et al. 2021).

•	 Meteorological conditions such as temperature and humid-
ity: temperature anomalies due to atmospheric blocking 
and high solar insulation play a significant role in creating 
extreme precipitation and subsequent flooding (Madhuri 
et al. 2021). These factors are among the often-neglected pa-
rameters in FSM.

•	 Infrastructures influence on flood modeling: recent studies 
highlight the significant impact of infrastructure on flood 
risk and resilience. However, many flood models overlook 
changes in infrastructure, landscape occupation, and flood 
protection measures, which can directly affect flood risk.

•	 Morphological evolution: traditional hydrological mod-
els struggle to capture dynamic river changes caused by 
erosion and human activities, impacting flood behavior 
(Chau and Lee  1991). Infrastructure developments and 
climate change further exacerbate flood risks (Ludwig 
et al. 2023). Many models use static parameters, though 
flood conditions evolve over time. AI-based models like 
LSTM and RNN offer potential solutions but require ex-
tensive data. Given limited post-flood data, researchers 
may rely on social media and historical sources for quali-
tative insights.

•	 Debris and sediment contribution to flood risk: debris accu-
mulation worsens floods by obstructing rivers and streets 
(Mohr et al. 2022). Its inclusion in flood risk analysis is cru-
cial, as it affects flood susceptibility. Methods such as ana-
lytical models, GIS techniques, and numerical simulations 
have been used to study debris transport, but lack robust 
benchmark data (Valero et  al.  2024). Integrating debris 
effects into flood models, with validation through social 
media data, is needed.

5.2.3   |   Model Overfitting

Overfitting occurs when a model, while performing well on 
training data, shows diminished effectiveness on test and un-
seen data. If the training data set is too small, it may not repre-
sent all possible scenarios, leading the model to overfit to this 
limited data. The complex structure of a ML-based model often 
enhances its performance; however, this can lead to overfitting 
(Bentivoglio et al. 2022). To avoid overfitting, it is important to 
feed the ML-based models with processed data and select the 
most appropriate configuration for the model of interest.

5.2.4   |   Trade-Off Analysis

Trade-off analysis focuses on finding an optimal balance 
between model complexity and factors like computational 

efficiency, accuracy, and data availability. While complex 
models offer higher accuracy, they demand more resources 
and time, whereas simpler models are more efficient but less 
accurate. This balance remains a central consideration in the 
evolving field of ML (Andaryani et al. 2021). Only a few of the 
analyzed articles included discussions on trade-off analysis. 
While CNNs are known for their high accuracy and efficient 
predictions, they are resource-heavy, demanding significant 
computational power for training (Zhao et  al.  2020). Liao 
et al. (2023) proposed the utilization of clustering methods in 
CNNs to enhance training efficiency and overall performance. 
Andaryani et al. (2021) found that MLP with a sigmoidal ac-
tivation offers better accuracy than a linear one, though the 
latter is faster. Models like FART and SOM need large datasets 
due to their complexity.

5.3   |   Value of the Decisions Produced by AI

The integration of digitalization and AI in knowledge production 
and management raises concerns about the value of truth gener-
ated by these tools. Ethical issues persist, particularly regarding 
responsibility gaps in AI-driven decisions (Matthias 2004). This 
is especially critical in AI-based flood emergency management, 
necessitating collaboration with ethics and philosophy experts 
to address human-centered challenges.

5.4   |   Limitations of the Current Study and Future 
Directions

This contribution reviews ML models for FSM, focusing on riv-
erine and urban flooding. However, the review does not address 
other flooding types, such as coastal flooding, or areas like flood 
inundation mapping, vulnerability modeling, and risk assess-
ments. Additionally, climate change effects, vulnerability types, 
force-induced models, evacuee behavior, and physics-informed 
machine learning models were not part of our analysis.

While this review focuses on ML models for FSM, future re-
search should explore hybrid approaches integrating ML with 
hydrological models (e.g., HEC-RAS) to enhance predictive 
accuracy and generalization. Combining physics-based simu-
lations with data-driven ML techniques can address challenges 
such as data scarcity, regional adaptability, and process inter-
pretability. Additionally, while we analyze the performance of 
ML-hybrid models, further studies should compare their per-
formance against ML-hydrological hybrids to assess robustness 
across diverse conditions.

6   |   Summary and Conclusions

This article investigates the utilization of machine learning mod-
els in FSM by examining a 100 articles from the last decade, reveal-
ing the potential of machine learning in predicting flood-prone 
areas. There is no universal consensus on ML model develop-
ment for FSM, leading to variations in model selection, hyperpa-
rameters, and data preprocessing. The optimal approach depends 
on data quality, generalizability, and interpretability. This study 
systematically reviews successful ML applications, highlighting 
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their strengths, limitations, and applicability. We compare ML 
models in terms of performance, interpretability, and usage 
trends. To address overlooked aspects, a Practical Considerations 
section outlines common limitations and solutions. While this 
study does not introduce new algorithms, it provides novel in-
sights by evaluating existing techniques, identifying gaps, and 
recommending best practices for feature selection, model optimi-
zation, and a structured roadmap for the utilization of ML-based 
models to map flood susceptibility. These contributions serve as a 
foundation for future research and practical applications.

We recognized the need to bridge the gap between technical 
sophistication and real-world applicability. To address this, we 
have included a discussion in Section 5 on the practical limita-
tions of FSM, emphasizing resource constraints and limitations 
in available resources, data accessibility, model generalizabil-
ity, and ethical AI considerations. These factors are crucial for 
ensuring that ML models remain interpretable, actionable, and 
adaptable to diverse contexts, including resource-constrained 
settings.

The main conclusions drawn from this analysis are as follows:

	 1.	 Various conventional data sources, including in  situ 
measurements, RS, numerical data, along with emerging 
sources like social media, may be utilized to refine FSM 
models, each with its benefits and limitations.

	 2.	 The quality and efficacy of ML-based FSM models are 
profoundly affected by the specific characteristics of the 
study area, such as geography, historical floods, climate, 
urbanization, and data availability.

	 3.	 The parameters identified as critical for FSM are topo-
graphic wetness index, slope, land use and cover, rain-
fall, and distance to rivers, with distance to river and 
topographic wetness index being particularly significant. 
These findings underscore the importance of these varia-
bles in flood susceptibility.

	 4.	 Techniques like IGR and random forest assess factors 
strongly correlated with flood susceptibility. Elevation 
and slope are highlighted as both highly crucial and com-
monly used parameters in ML-based FSM models.

	 5.	 The research reveals diverse ML and statistical models 
for FSM, such as NNs, SVM, tree-based, ensemble, and 
hybrid models, each with unique strengths for complex 
flood prediction tasks. The dominant trend is toward the 
use of ensemble and hybrid models due to their accuracy 
and versatility in FSM, with NNs being the most com-
mon. The integration of optimization algorithms, bag-
ging, or boosting with other model types enhances their 
performance.

	 6.	 Data collection challenges during extreme weather 
include equipment failures and data coverage gaps. 
Solutions like crowdsourcing, data augmentation, and 
data fusion improve data quality and model training.

	 7.	 In ML models, especially for physical systems like FSM, 
factors should enhance accuracy and have a mechanistic 
role. Excluding parameters should consider both their 
impact on accuracy and physical relevance, aligning 

with physics-informed ML principles for meaningful 
models.

	 8.	 Traditional hydrological models fail to account for 
dynamic river changes due to erosion and human ac-
tivities. The ML-based flood models should capture 
temporal morphological changes despite data collection 
challenges.

	 9.	 Current flood models need to integrate debris dynamics 
for accurate risk assessment. The gap in utilizing ML 
models for large debris transport studies highlights the 
need for incorporating debris effects into flood mod-
els, with social media data offering a novel validation 
approach.

	10.	 Digitalization and AI's synergy raises challenges in 
knowledge value and ethics, highlighting a responsibility 
gap in AI-driven decisions, necessitating ethical specialist 
engagement.
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Appendix 1

Nomenclature

Abbreviation Definition

Acc Accuracy

AdaBoost Adaptive Boosting

ADT Alternating Decision Tree

Advanced-DT Advanced Decision Tree

AHP Analytical Hierarchy Process

AI Artificial Intelligence

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Network

API Antecedent Precipitation Index

AUROC Area Under Receiver Operating Characteristic

BA Bat Algorithm

Bagging-Ens Bagging-based Ensemble

Basic-DT Basic Decision Tree

BFT Bagging Functional Tree

BGLM Boosted Generalized Linear Model

B-LMT Bagging-Logistic Model Tree

B-LMT Bagging-Logistic Model Tree

Boosting-Ens Boosting-based Ensemble

BPNN Back Propagation Neural Network

BPSO Binary Particle Swarm Optimization

BRT Boosted Regression Tree

CART Classification And Regression Tree

CatBoost Categorical Boosting

CC Pearson's Correlation Coefficient

CDT Credal Decision Tree

CDT-FT Credal Decision Tree-Functional Tree

CNN Convolutional Neural Network

DB Deep Boost

DBN Deep Belief Network

DBP Deep belief network with Back Propagation 
algorithm

DE Differential Evolution

DEM Digital Elevation Model

DisFau Distance to Fault

DisRiv Distance To River

DisRoa Distance to Road

DL Deep Learning

DLNN Deep Learning Neural Network

DNN Deep Neural Network

DNN-AO DNN-Aquila Optimizer

Abbreviation Definition

DNN-NMRA Deep Neural Network-Naked Mole-Rat 
Algorithm

DNN-SSO Deep Neural Network-Social Spider 
Optimization

Drain-Den Drainage Density

DT Decision Tree

DTM Digital Terrain Model

EA Evolutionary Algorithm

ELM Extreme Learning Machine

EMCA Ensemble Model Committee Averaging

EMMean Ensemble Model to estimate Mean

EPS Ensemble Prediction System

ERT Extremely Randomized Tree

FART Fuzzy Adaptive Resonance Theory

FHM Flood Hazard Mapping

FID Flood Inventory Data

FIM Flood Inundation Mapping

FL Fuzzy Logic

FL-Hyb Fuzzy Logic-based Hybrid

FloAcc Flow Accumulation

FlowDir Flow Direction

Forest-Ens Forest-based Ensemble

FPCA Functional Principal Component Analysis

FR Frequency Ratio

FSM Flood Susceptibility Mapping

GA Genetic Algorithm

GB Gradient Boosting

GBDT Gradient Boosting Decision Tree

GBM Gradient Boosting Machine

GOA Grasshopper Optimization Algorithm

Grid-NN Grid-based Neural Networks

GRU Gated Recurrent Units

ICA Imperialistic Competitive Algorithm

IGR Information Gain Ratio

IQR Interquartile Range

IWO Invasive Weed Optimization

Kern-Class Kernel-based Classification

Kernel-Hyb Kernel-based Hybrid

Kern-Reg Kernel-based Regression

Kern-SVM SVM-based model

K-NN K-Nearest Neighbors

K-SVM Kernel Support Vector Machine

LightGBM Light Gradient Boosting Machine
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Abbreviation Definition

LIME Local Interpretable Model-Agnostic 
Explanations

LMT Logistic Model Tree

LR Logistic Regression

LSS-LSTM Local Spatial Sequential Long Short-Term 
Memory

LSTM Long Short-Term Memory

LSTM-ED Long Short-Term Memory based 
Encoder-Decoder

LULC Land Use Land Cover

MAD Median Absolute Deviation

MAE Mean Absolute Error

MARS Multivariate Adaptive Regression Splines

MCDA Multi-Criteria Decision Analysis

MDA Multivariate Discriminant Analysis

ML Machine Learning

MLP Multi-Layer Perceptron

MONF-EG-PSO Metaheuristic Optimization and Neural Fuzzy 
inference-Evolutionary Genetic-Particle Swarm 

Optimization

MSE Mean Squared Error

NB Naïve Bayes

NBT Naïve Bayes Tree

NDVI Normalized Difference Vegetation Index

NGBoost Natural Gradient Boosting

NN Neural Network

NN-Hyb Neural Network-based Hybrid

NPR Negative Predictive Rate

PCA Principal Component Analysis

PLS-SEM Partial Least Square-Structural Equation Model

PPR Positive Predictive Rate

PSO Particle Swarm Optimization

QPSO-CDT Quantum Particle Swarm Optimization-Credal 
Decision Tree

RBF Radial Basis Function

REPTree Reduced Error Pruning Tree

RF Random Forest

Riv-Den River (Stream) Density

RMSE Root Mean Square Error

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

ROF Rotation Forest

RS Remote Sensing

RS-GAM Random Subsampling-Generalized Additive 
Model

Abbreviation Definition

RS-MARS Random Subsampling-Multivariate Adaptive 
Regression Splines

RSub Random Subsampling

SBO Satin Bowerbird Optimization

SCNN Simple CNN

Sequential-NN Sequential Neural Network

SGB Stochastic Gradient Boosting

SGD-WOE Stochastic Gradient Descending-Weights Of 
Evidence

Shallow-NN Shallow learning NNs

SHAP Shapley Additive Explanations

SMA Slime Mold Algorithm

SOM Self-Organizing Map

SPI Stream Power Index

STA-LSTM Spatio-Temporal Attention Long Short-Term 
Memory

STI Sediment Transport Index

SVC Support Vector Classification

SVM Support Vector Machine

SVR Support Vector Regression

SWARA Stepwise Weight Assessment Ratio Analysis

TPI Topographic Position Index

Tree-Hyb Tree-based Hybrid

TRI Terrain Ruggedness Index

TWI Topographic Wetness Index

VIF Variance Inflation Factor

WAve-Hyb Weighted Average-based Hybrid

WCA Water Cycle Algorithm

WELLSVM Weakly Labeled SVM

WNN Wavelet Neural Network

WOE Weight Of Evidence

XAI Explainable AI

XGBoost Extreme Gradient Boosting
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Appendix 4

Flowchart

FIGURE A1    |    Phases and steps involved in developing a machine learning-based model for flood susceptibility mapping, including pre-processing, 
processing, and post-processing stages.
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