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ABSTRACT The transition to highly customized, one-off production in modern manufacturing necessitates
sophisticated process monitoring to reduce waste, minimize downtime, and alleviate operator burden.
Computer Numerically Controlled (CNC) axes represent a fundamental component of automated
manufacturing and offer a universal and accessible monitoring option through power supply data.
By accurately predicting reference signals and comparing them with real-time measurements, deviations can
be used for effective model-based process monitoring and anomaly detection. This study explores the efficacy
of hybrid machine learning (ML) models in predicting reference signals for CNC axes using features derived
from a physical model. Furthermore, relevant but difficult-to-measure features such as process forces and
material removal rate (MRR) were made accessible through soft sensors. Various ML models were evaluated,
including tree-based models (e.g. random forest (RF) and gradient boosting (GB)) and deep learning (DL)
models (e.g. feed-forward neural networks (FNN), long short-term memory (LSTM) and transformers-based
models (TF)). A feature importance analysis was performed to gain a better understanding of the influencing
factors, which revealed that velocity, acceleration, process forces, spindle torque, and MRR are relevant.
Tree-based models, particularly RF and GB, have been shown to be more accurate and robust than DL
approaches, particularly when data is sparse and processes are complex. Although DL models improved with
larger data sets, their performance remained inferior to that of tree-based methods. This study emphasizes
the advantages of incorporating physical knowledge into hybrid ML models to improve model-based process
monitoring.

INDEX TERMS Machine tool, CNC, process monitoring, signal prediction, machine learning.

I. INTRODUCTION
The miniaturisation of sensors and enhanced data-processing

capabilities enabled companies to collect and analyse pro-
duction data with higher efficiency. At the same time, the
growing demand for customised products is driving the need
for greater flexibility in production [1], resulting in a shift
towards one-off production. This trend also affects individual
aspects of production, such as process monitoring. It must
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become more flexible and adaptable to produce customised
products with high quality and low cost.

Computer numerical control (CNC) milling machines are
essential for modern manufacturing, playing a pivotal role in
the production of complex components with high precision.
The functionality of machine tools is contingent upon the
accurate and precise control of their CNC axes. Consequently,
the power supply is a valuable source of data for the moni-
toring of machine tool operations providing real-time insight
into the system’s behaviour. This provides an accessible and
cost-effective option for process monitoring.

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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Conventional process monitoring methods are often based
on statistical or physical approaches [2]. Statistical methods
rely on historical data [3], while physical methods are
closely tied to fundamental scientific principles [4], [5].
They exploit physical relationships and reliably describe
machine behaviour within a defined range. Outside this
range, the underlying equations are no longer able to provide
reliable predictions. In highly dynamic environments where
system states can quickly move outside this range due
to changing conditions such as variations in workpieces,
materials, or tools, these methods reach their limits [6].

Due to promising progress in the field of ML, more
and more data-driven approaches are applied in production
engineering [7]. These have the advantage of learning from
existing data and identifying patterns. In addition, ML is
capable of describing highly complex relationships, par-
ticularly within high-dimensional data structures. However,
ML models are unable to represent states that are not
present in the training data. The integration of physical
knowledge into ML has shown promising results in real-
world applications [8], particularly in anomaly detection [9],
[10], [11].

As both physical and ML-based approaches have been
beneficial, there is a need to investigate the performance
of hybrid model structures. To address this, a physical
model for CNC axes and main spindle power supply is
derived and coupled via perturbation theory. The features
have been integrated into hybrid ML models, including RF,
GB, LSTM, TF, and FNN. The evaluation is based on their
ability to predict reference signals, with a particular focus
on a comparison of their strengths and weaknesses. The
paper is structured as follows: Section II presents a review
of the state-of-the-art in CNC milling process monitoring,
with a focus on both physical and data-driven approaches.
Section III outlines the methodology, detailing the physical
and hybrid ML models used in the study. Section IV presents
the experimental setup, followed by the results in Section V.
Section VI discusses the key findings, and Section VII
concludes with a summary of insights and directions for
future research.

Il. STATE OF THE ART
Machining processes are influenced by various physical

parameters, which, during the production, reflect a defined
machine state. By observing this state, the machining
process can be monitored; however, the question arises
regarding how this machine state can be represented based
on existing knowledge. While sensors can record the physical
parameters, the relationships between these parameters
and the actual process state remain initially unknown.
The present study explores various approaches to bridge
this gap between recorded signals and the actual process
state [2], [10]. The following section presents and evaluates
methods from recent research aimed at addressing this
challenge.
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A. PHYSICS-BASED APPROACHES

A direct approach to process monitoring is given by
observing and evaluating key influencing process factors and
their subsequent evaluation. Physics-based methods employ
well-established physical laws to model the ideal process
state via these factors. One of the critical process parameters
is represented by process force. During machining, the
force vector changes continuously [12]. Changes in process
force have proven to be a key parameter for describing
the production process [13], [14]. It has already been
demonstrated that these approaches are effective for tool wear
monitoring. Therefore, [15] is able to develop a monitoring
system based on internal machine signals. A force model was
developed using spindle current due to correlations, which is
used to define a process quality indicator. This physics-based
indicator can be continuously monitored, thereby enabling
the tracking of process quality during ongoing machining
operations. Another force-based methodology is proposed
by [4], where the calculated cutting force vector serves as
a reference for monitoring. By comparing the actual force
vector with the reference value calculated, it is possible to
identify the tool wear. However, it is imperative to conduct
predefined calibration tests to ascertain the coefficients of the
physical equations.

A model-based approach for milling process monitoring,
developed by [16], uses CAD data and the NC program to
define the ideal process state. Process forces are determined
through a force model, forming a reference for the machine’s
power values. In practice, these reference values are com-
pared with the machine’s current performance data for online
tool wear monitoring.

Another way to exploit the physical relationships between
process parameters and process states is by evaluating
specific correlations between measured values and key state
variables. For example, process forces can be indirectly
monitored by observing the spindle motor current [17]. Such
correlations can also be used to monitor tool conditions [18]
introduced a method for calculating the ‘““Current Rise
Index”. Similar to [15], current signals are monitored, and
their changes are carefully analysed.

In summary, physics-based methods play a crucial role
in process monitoring, whereby an ideal process state can
be determined using physical models or by evaluating
correlations between measured variables and target variables.
However, these methods exhibit certain weaknesses in
practical applications. Firstly, physical models must always
be calibrated through experimental trials before use, and
similarly, methods based on correlations between variables
require calibration through reference measurements. Addi-
tionally, the complexity of the mapping is limited by the
assumptions made during the modelling. A major advantage
of such methods is their straightforward interpretability and
their data efficiency. Abnormal process states often have
clearly defined causes that can be directly recognised by
experts during evaluation. The relationship between process
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parameters and process state allows causes to be reliably
inferred through experience or intuition.

B. DATA-DRIVEN APPROACHES

In contrast to physical-based approaches, data-driven meth-
ods do not rely on physical equations as their founda-
tional principles. Rather, relationships between measured
parameters are determined by analysing historical data.
Previous publications have demonstrated the utilisation of
statistical methodologies for process monitoring [3]. Data
analysis can be performed either through simple statistical
evaluations [19] or using ML-based techniques [20], [21],
[22].

Jennings and Drake present a statistically based method
for continuous process monitoring. During the machining
process, various process-dependent and measurable param-
eters are recorded on a control chart [19]. The trend of these
parameters directly reflects the state of the process. Sudden
changes that statistically deviate significantly from the ideal
process value indicate a potential error. The increasing use
of artificial intelligence and the ongoing miniaturization
of sensors have led to a growing adoption of ML-based
methods in production environments. Compared to traditional
approaches, ML models can process significantly larger
amounts of data and identify critical patterns. This trend can
also be observed in the field of process monitoring [10].
There are already numerous applications where ML models
are successfully employed.

Various studies also utilize vibration signals [20] and
acoustic signals [21] for tool condition monitoring. The
recorded data are analysed using DL or ML-based methods.
Surface anomalies can also be successfully identified through
signal analysis [22].

One example [23] is based on spindle current signals
and (DL) models. During the training phase, the network is
trained on data from error-free production. This allows the
model to learn the normal behaviour patterns of the machine.
Conversely, the model is sensitized to detect abnormal
machine states. A significant deviation of the measured data
from the training data indicates potential faults.

Another approach [17], [24] demonstrates the potential
of ML methods for the generation of reference values.
Therefore, the production process is divided into several
elemental subprocesses. A simulation provides the corre-
sponding material removal and process forces for each
subprocess, modelling the ideal state of the subprocess. Based
on the correlation between material removal and spindle
current, this study successfully used a linear regression
model to estimate spindle current as a reference for process
monitoring.

Data-driven approaches have been shown to offer certain
advantages over physics-based methods, particularly in
situations where the system under investigation cannot yet be
fully modelled physically. ML methods also excel in handling
complex relationships. Furthermore, ML models are capable
of efficiently identifying patterns in high-dimensional data
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without relying on physical fundamental equations [25].
However, it is imperative that a data set that is both sufficient
and representative is available.

C. RESEARCH QUESTIONS

The power consumption of a machine tool and its axis
has been shown to correlate with both long-term effects,
such as tool wear, and short-term process anomalies.
Consequently, it can be considered a pivotal indicator of
the process condition. The use of both physical and ML
models is imperative for the implementation of robust
process monitoring systems [8]. To develop a flexible process
monitoring system based on power signals of individual axes
requires investigation of the optimal prediction model design.
Therefore, the following research questions are addressed in
this study:

1) How to model axis and main spindle power supply
using ML and physical models, and which features are
essential for a hybrid ML model?

2) How well can different ML model architectures learn
and generate meaningful predictions from the derived
physical features?

3) How do the models perform under realistic operating
conditions?

ill. METHODOLOGY

The objective of the present article is to develop a hybrid
ML model that predicts the power absorbed by the axes of
a milling machine. The high mapping complexity of ML
models should be supported by known physical relationships.
Relevant features are derived from a physical model.
In instances where these features cannot be measured by
conventional internal sensors and are thus unobservable, the
integration of the underlying physical knowledge is facili-
tated by soft sensors. Therefore, physics-based knowledge
is integrated via features selection [26], [27] and simulation
of unobservable but relevant data [8], [28]. The proposed
approach is structured around two main components: The
development of a physical model and the integration of the
derived features into ML model structures.

A. PHYSICAL MODEL DEVELOPMENT

As presented in Section II, the power and current supplied
to a CNC axis are frequently used for process monitoring
purposes. Due to the significant academic interest in machine
tool power consumption [29], [30], [31], numerous physical
models have been proposed. Similar to process monitor-
ing, recent research has focused on ML-based prediction
approaches [32], [33]. However, due to the predominant
emphasis on total energy consumption, there is a paucity
of prediction models for energy consumed on an axis level.
As demonstrated in [34], the current supply of a CNC axis
can be derived from a dynamic system description. In order
to further enhance the quality of the physical description,
analogous to [35], the milling machine and its axis are
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FIGURE 1. Interaction between physics-based knowledge and the hybrid
ML model (style analogous to [8]).

considered as a thermodynamic system. Mass flows, such
as those of removed chips or adhering coolant, are assumed
to be much smaller than the mass of the entire system.
Consequently, these effects are neglected, and an axis system
can be described using the first law of thermodynamics. The
change in internal energy can be expressed by the following
equation:

d

—U =

dt
where %U represents the change of internal energy of an
axis system, % W represents the work, and % Q the heat flows
interacting with the system.

d d
EW+ZEQ (1)

d d

LTf chtting E Qluss
t t d
> E Winecn
d ) d
W Axis System > g Weutting
d
—_ — Wioss

dt

FIGURE 2. Heat and energy flows interacting with an isolated axis system.

As shown in Fig. 2, heat and energy flows result from:

. %Welz Temporal change in electrical energy. It is
introduced to the system in the form of electrical power

d
P= EWelect = u(?) - i(1).

. %Wcumng: Corresponds to the cutting work. Empirical
studies [36], [37], [38] show a dependence of the cutting
work on the material removal rate MRR and the cutting
force F. For simplification,

d
EWCUItng ~ c-F -MRR
is assumed.
. %Wmech: Mechanical work resulting from axis

movement.
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o (%Wloss: Losses resulting from axis movement.

. L%chtﬁng: Heat leaving the axis system as a result of
the milling process. According to [39], the cutting heat
depends on the processing parameters such as the feed
rate, the spindle rotation, the material and the tool, which
are assumed to be constant.

o ‘%QIOSS: Represents heat losses in motors, electrical
losses, and other heat losses. These are also assumed to
be constant.

Therefore, (1) results in

L0 = 2 0~ % Qe

dt = dt loss dt cutting
L W eiing — W, d + Ly
dt cutting dt mech dt loss dt el»

for heat and energy flow of an isolated axis system. If the

internal energy is set to constant,
d
—U=0
dt

follows. Assuming linear motion, the mechanical work

Winech = / Fds

can be simplified to

d W, F -x

— =F.x.

dr mech

Due to the equation of motion of structural dynamics, force
and torque can be defined as
F = mX + kx + cx,
and
M=J¢+kap + cqop.

For a linear motion, using the constants ¢j and ¢, we obtain
d

EWmeCh =c-x-¥+c- it
The same applies to rotation with the use of
d .
EWmech =M -9,
resulting in
d We o o6 2
a mech =C1 @ -@Q+C2-¢°.
If voltage is assumed to be constant and the sign function
is used to model the direction of current flow
I, ~c X, X+ x,% - sgn(y,)
+c3- Fp - MRR + c4 - sgn(x,) + cs,
where n € {x,y, z} and c1, c2, c3, ¢4, c5 € R, 2)
follows. Thus, I,, represents the current flow of axis n, with

X, as the velocity and X, as the acceleration. F), is the force
in the direction of axis n, and MRR represents the material
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removal rate. Similarly, the main spindle current supply can
be described by

Iy ~ci-¢-G+ca- g7 sgn(@)
+¢3 - Mgy - MRR + ¢4 - sgn() + cs,

where c1, ¢, c3,c4,c5 € R. 3)

B. COUPLING VIA PERTURBATION THEORY
In section III-A, the axes of the milling machine were
modelled as decoupled systems. However, in reality, coupling
through the milling tool, suboptimal axis alignment, and
other effects cause the axes to interact. To represent this
mutual influence of the different axes and the spindle, the
axis systems are coupled via perturbation theory to find an
approximate solution.

In the example of the X-axis, according to

I =~ Lo+ 8)1, Lyo+el Lo+ 851,, Igpo + O(e%)
where 0 < ¢ <« 1, the approximate solution is given by
L~ 1 - Xy - X + 2 - X2 - 5gn(ic) + ¢3 - Fx - MRR

+cq - sgn(xy) + cs

+c6 - Xy - Xy + 7 - X - sgn(Ey) + cg - Fy - MRR

+ c9 - sgn(xy)

+cro0-X; - X%+ 11 xzz -sgn(x;) + c1z - F; - MRR

+ c13 - sgn(xz)

+c1a- G- ¢+ cis- @7 sgn(@) + cig - My, - MRR

+ c17 - sgn(@). )

The same can be done for the other axes (y, z) and the main
spindle (sp).

C. FEATURE SELECTION AND MODEL STRUCTURE
In the case of 3-axis milling, the hybrid ML model structure
can be described by axis- and spindle-specific ML models

Out, = M,(In) = I, wheren € {x,y,z,5p} 5)
which map the input vector

In = [Vx, Vy, Vz, Ax, Ay, dz, @, ¢, Fy, Fy, F7, Myp, MRR]T
(6)

to the respective target Iy, Iy, I, and I,. The structure shown
in figure (3) allows mapping of complex relationships.

Since the model should represent the ideal process state,
it must be represented by the process force and the MRR.
Since these known relationships can only be learned from
the data with a great deal of effort, physical knowledge
should be infused. Therefore, a soft sensor is defined as
a software-based method that calculates the process forces
in all three spatial directions (x, y and z) as well as the
torque in the spindle’s rotational direction. The calculation
is based on the Kienzle force model, which determines the
active forces during the machining process in the cutting and
normal cutting directions using known material and process
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FIGURE 3. Hybrid ML-model structure with formulas for the infusion via
physical models and soft sensors for a given axis.

parameters [40], [41]. Using a coordinate transformation,
the calculated forces in the cutting direction can then be
converted into the tool’s movement direction [42].

If tool movement remains within the x,y plane during
the machining process, the active forces also lie within this
plane. Following [40], [41], forces per tooth in the cutting
and normal cutting directions are calculated using

Foo=b-h\ 7% ke K @)
and
Feng=b-hl," -kr11 - K. (8)

In x-y plane machining processes F, corresponds the
passive force Fj;. It can be calculated with the use of
formula [40], [41]

Foe=b-h™ Jy1-K. 9)

The parameters b and h,, describe the chip thickness and
mean width, respectively. They depend on the cutting depth
ap and width a, cutting arc angle g¢j, setting angle «, cutter
diameter D, and feed per tooth f;.

The parameters kp1.1, ke1.1, kf1.1, x, y and z are martial
specific tabulated values. b and h, can be calculated
using [40], [41]

b= 2 (10)
SIn K
and
114, 6 a, .
hy = -fz - — - sink. (11D
¥s D

The process forces in the cutting direction can be
determined using Equations (7) to (11). However, for the
input parameters of the hybrid ML models (6), the process
forces in the x, y and z directions of the machine coordinate
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system are required. Therefore, a coordinate transformation
around the z-axis

F, F,
Fy|=A-|Fe (12)
F, F,
with
cosfd sind O
A= |sinf —cosf 0
0 0 1

must be performed. 6 describes the directional angle of
the cutter’s velocity vector within the machine coordinate
system.

In addition, the MRR is determined using a voxel-based
method. Therefore, the workpiece is divided into individual
cubes with edge length /. The relative position of the tool
and workpiece is determined using control system data.
When the tool with its given geometry enters the workpiece,
the overlapping regions between are considered as removed
volume [43], [44]. By tracking the tool’s position relative
to the workpiece, the removed volume can be determined
throughout the production process. From the voxel-based
material removal simulation, the number n of removed voxels
between two measurement time points can be determined.
By multiplying this with the volume of a single voxel,
the total removed volume per second can be calculated by
formula (13). For this, the volumes at the measurement time
points #1 and t, as well as the sampling rate f must be defined.

MRR = (Vi — Vi) - f (13)

IV. EXPERIMENTAL SETUP

A. MACHINES AND DATA SETS

The data sets were recorded with a Siemens Industrial Edge
on a DMG MORI CMX 600 V milling machine (C, [45]) and
a retrofitted DECKEL MAHO DMC 60 H milling machine
(D, [46] and [47]). All relevant parameters are described
below.

References [45] and [46] are equal data sets for general
model evaluation. The first component (C;) represents a
complex part milled with a 20 mm, 10 mm, and 5 mm milling
cutter. The cutting depth a, varies from 10 to 5 mm, and
cutting width a, varies from 20 to 2.5 mm. For S235 JR the
feedrate F varies from 256 to 635mm/min, and the spindle
rotation speed S varies from 800 to 6350rpm. For AL 2007
T4 F varies from 140 to 304mm/min, and the S varies from
900 to 7600rpm. The second component (C,) was milled with
a 10 mm tool with an a, from 5 to 3mm and a, from 10 to
Smm. In case of S235 JR F varies is from 360 to 576mm/min,
and S from 2000 to 3200rpm. In case of AL 2007 T4 F varies
is from 212 to 350mm/min, and S from 2300 to 3800rpm. All
components were produced without a workpiece as an aircut
(Al, A2).

Reference [47] represents three parts (Gear G, Notch N,
Plate P) milled with a 10mm end mill and a default a,, of 6mm
and a, of 10mm. In case of S235 JR, F is 576mm/min and S
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is 3200rpm, whereas in case of AL 2007 T4, F is 350mm/min
and S is 3800rpm. Furthermore, in DAL /DSTGaP /Pa, Gp
ranges from 3 to 12mm. In DALpsF ;GsF F varies from 267 to
442mm/min and S from 2900 to 4800rpm. For S235 JR F
varies from 432 to 720mm/min and S from 2400 to 4000rpm.
All data sets extracted for use in this publication are listed in
table (1).

TABLE 1. Data sets extracted from [45], [46] and [47].

Machine Material Name of the data sets
CMX 600V [45] AL 2007 T4 | CALc,, CALc,, CALy,, CALy,
S235JR CSTc,, CST¢,, CST4, , CSTa,
DMC 60H [46) | L2007 T4 | DALc), DALy, DALy, DALy,
$235JR DSTc, , DSTc,, DSTa,, DSTy,
DALG, DALy, DALp, DALGsp, DALpsr,
DMC 60H [47] | AL 2007 T4 DALGq,, DAL,
DSTg, DSTy, DSTp, DSTgsr, DSTpsr,
S235JR DSTgy,. DSTr,,

Data processing was done in Python, where all JSON files
were converted into the Pandas.DataFrame format.
The sampling rate was reduced from 500 Hz to 50 Hz using
scipy.decimate to facilitate more efficient processing
and to minimize noise. In absence of missing values,
the necessity for interpolation was negated. Subsequently,
the input channels of vy, vy, v;, ax, ay, a;, ¢, ¢ were given.
Fy,Fy, F,, My, and MRR are calculated via formula (7) - (13)
with kej.i = 1990N /mm?, kp1y = 351N /mm?, ky, =
247N /mm? for S235 JR and kc11 = 472N /mm?, kp11 =
20N /mm?), k1.1 = 32N /mm? for AL 2007 T4.

A force measurement plate was installed in [47], allowing
a comparison between the values calculated by soft sensors
and the actual force values. To ensure that the calculated
values closely match real conditions, a material- and
machine-specific scaling factor

Fsoﬁ

Fadjusted = (14)

is introduced. It is determined through a least-squares
optimization applied to the measured and calculated time
series. As a result, sy, = 5,42 and agre; = 2, 78 are given
for the DMC data sets (see [47]).

B. EXPERIMENTAL SERIES 1

The objective of experimental series 1 is to examine the pre-
dictive capabilities of various machine learning (ML) model
architectures. To this end, experiments are conducted in a
consistent manner with data sets on CMX 600V (Experiment
1.1, 1.2 and 1.3) and DMC 60H (Experiment 1.4, 1.5 and
1.6). In order to reduce complexity and understand general
behaviour, air cut data is used in experiment 1.1 and 1.4, as the
process forces and the material removal rate can be neglected.
Consequently, the fundamental suitability of the hybrid
approach is analysed by training on component one and
tested on component two. The same components are utilised
in experiments 1.2 and 1.4 for machining aluminium. It is
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TABLE 2. Hyper/Params for the ML model architectures evaluated. A grid
search was performed to identify the optimal configurations.

Architecture Hyper/Params

Estimators: 10, 30, 60, 100

Max Depth: 10, 30, 60, 100

Leaves: 5, 10, 20, 40

Nodes: 1000, 3000, 6000, 10000
Estimators: 10, 30, 60, 100

Max Leaves: 1000, 3000, 6000, 10000
Epochs: 50

Optimizer: Adam

Learning Rate: 10~°, 1074, 1073, 1072
Layers: 1,2, 3,4

Batch Size: 64, 128, 256

Dropout: 0.1, 0.2, 0.3, 0.4

Hidden Units: 32, 64, 128, 256

Learning Rate: 1075,1074,1073, 102
Hidden Size: 32, 64, 128, 256

Attention Heads: 2, 3,4, 5

Dropout: 0.1, 0.2, 0.3, 0.4

Continuous Size: 2, 4, 8, 16

RF/ET

GB

FNN/LSTM

Temporal Fusion TF

TABLE 3. Setup and data sets of experimental series 1.

Nr. | Training Test

1.1 | CALy, CALy,
1.2 | CALc, CALc,
1.3 | CALc,, CST¢, CALc,
1.4 | DALy, DALy,
1.5 |DALc, DALc,
1.6 | DALc,, DSTc, DALc,

acknowledged that the complexity of the process increases
significantly due to the presence of process forces and the
removal of material. In experiment 1.3 and 1.6, the models
are trained on component one, which is a combination of steel
and aluminium, and tested on component two, which is solely
aluminium. The objective is to assess the performance of the
machine learning (ML) model in discriminating between the
two materials. This step is necessary in order to consider
the approach under approximate real-life conditions.

The following ML models are investigated: RF, extra tree
(ET), GB, FNN, LSTMs and TF architectures. To optimize
the models on the underlying data sets, a grid search
was carried out for each architecture, whereby the relevant
hyper-parameters were varied. The hyperparameter spaces
are shown in table (2).

C. EXPERIMENTAL SERIES 2

The focus of the second series is the investigation of
specific scenarios with increasing complexity. Therefore,
the components gear, notch and plate introduce more com-
plex tool paths. Additionally, by DALGap /GSF /Pay/PSF and
DSTGap /GSF /Pa,/PSF » the models can be confronted with yet
unknown technological parameters and thus process states.
This enlarged data basis allows a validation of the knowledge
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gained in the first series with increased complexity over
the trials. The experiments are divided into five categories
that highlight different aspects of material discrimination,
extrapolation and learning from unknown process states.
Experiment 2.1 and 2.2 are based on the previous experiments
with the goal of material differentiation. The aim is to confirm
the material differentiation based on a more diversified
training foundation. Therefore, the notch components are not
included in the training and used for testing. This is followed
by the investigation of increasing complexity by validating
the components plate and gear in experiments 2.3 and 2.4,
which are therefore not included in the training. The next
category deals with extrapolation. Trials 2.5 to 2.8 test
whether the model is capable of reliably unknown process
states. Both aluminium and steel components are included
to enable a comprehensive analysis. In experiments 2.9 and
2.10, the ability of the ML models to extrapolate to unknown
components and process conditions at the same time. For this
purpose, a validation component that was not included in the
training data is used to assess the robustness of the models in
unknown scenarios. Finally, the last two experiments focus
on learning from unknown states. Therefore, DALGa, GsF are
included in the training data set. The aim is to use the findings
from the first series of experiments to achieve more precise
and realistic modelling. This structured approach allows for
an analysis of the effects of the expanded data base and
the integration of unknown states and components into the
training process.

TABLE 4. Setup and data sets of experimental series 2.

Nr. | Training Test
2.1 |DALc,,DALc,, DALg, DALp DALy
2.2 |DSTc,,DSTc,, DSTG, DSTp DSTy
2.3 |DALc,,DALc,, DALG, DALy DALp
24 |DALc,,DALc,, DALp, DALy DALG
2.5 |DALc,,DALc,, DALG, DALp, DALy DALp,,
2.6 |DALc,,DALc,, DALG, DALp, DALy DALpsr
2.7 |DSTc,,DSTc,, DSTG, DSTp, DSTy DSTpq,
2.8 |DSTc,,DSTc,, DSTg, DSTp, DSTy DSTpsr
29 |DALc,,DALc,, DALG, DSTy DALpy,
2.10 | DALc,, DALc,, DALG, DSTn DALsr
2.11 | DALc,, DALc,, DSTp, DSTy, DALG, DALGq,, DALGsF | DALp,,
2.12 | DALc,, DALc,, DSTp, DSTy, DALG, DALGqa,, DALgsr | DALpgr

Based on the knowledge gained in experiment one, RF,
GB and the NN architectures are investigated based on the
respective hyper-parameters from table (2). In addition to
the main spindle, the X- and Z-axes are representatively
examined because of the performance correlation between the
translatory axes.

D. EVALUATION METRICS

Mean squared error (MSE) is a common metric used to
assess the performance of regression models. Calculated by
the average of the squared differences between predicted
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values (;) and measured values (y;)

1 < .

MSE = — l;(y, 7, (15)
it penalises larger errors more heavily due to the squaring
of residuals, making it sensitive to outliers. A lower MSE
indicates better model performance.

Mean absolute error (MAE) is another commonly used
metric that calculates the average of the absolute differences
between predicted values (J;) and actual values (y;):

1 n
MAE = =" |yi — 3il. (16)
&
Unlike MSE, MAE does not penalize larger errors as heavily,
making it less sensitive to outliers. It provides a more intuitive
measure of the average error magnitude. A lower MAE
indicates better predictive performance.
R? measures the proportion of variance in the dependent
variable that is predictable from the independent variables.
It is calculated as

D i — 90)?
ZL] 0i—y )2
where ¥ is the mean of the actual values. R? indicates how well
the model explains the variation in the data. An R? closer to
1 indicates that the model explains most of the variance, while
a value closer to 0 indicates poor performance.

When comparing models with different numbers of
predictors, adjusted R? is a more accurate metric. Unlike RZ,
which can increase with more predictors, Rﬁ - accounts for the
number of predictors and adjusts for the model complexity.
It is calculated as

— Ry —
R? _1_(M) (18)

R*=1- (17)

where n is the number of data points and p is the number
of predictors. Ri i helps to avoid overfitting by penalizing
models with too many variables. A higher RZ i value indicates
a model that fits the data well while avoiding unnecessary
complexity.

This study uses MSE, MAE, R?, and Ridj to evaluate
physical and hybrid ML model performance in predicting
reference signals for CNC milling. While MSE and highlights
error magnitude, MAE offers a simpler, more interpretable
view of model performance, R> measures the proportion of
variance explained by the model, and Rgdj provides insight
into model efficiency by accounting for complexity.

V. RESULTS

A. EXPERIMENTAL SERIES 1

It is generally noticeable that the GB’s average R? is in the
range of 0.4 to 0.7 on the CMX for all translatory axis,
depending on the respective test case (see Table 5-7). There
are no negative R? values except for the spindle, which
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indicates stability during training. GB often delivers better
results than the other models tested, particularly for the
spindle. RF and ET show similar behaviour and deliver robust
results. The neural network occasionally achieves results
well below the level of the tree-based methods. Negative
R? values or high errors are frequently observed in more
complex scenarios. The LSTM model often shows strongly
decreasing performance values, often even with negative
R? values and very high mean square errors. This could be
due to an insufficient amount of pure time series information.
TF models are difficult to train successfully within the
framework of classical time series regression unless large
amounts of data are available.

However, looking at the metrics of the models on the DMC,
it is noticeable that the statistical key figures are significantly
better or more robust across all R? metrics. The tree-based
methods improve significantly, especially with regard to the
spindle. Here, the R> of GB increases from almost zero
to 0.73. A similar behaviour can also be observed for the
translational axes. Here, the tree-based methods are in a range
from 0.8 to 0.97.

Experiment 1, 2 and 6 for each translatory axis and the
spindle are analysed in more detail here as representative
of the first series of experiments. As can be seen from the
results of experiment 1, good metrics are achieved for all
translatory axes of the DMC machine. This is reflected in
an R? of 0.90, which means that the model for the X-axis
is able to explain 90 percent of the variability contained in
the data, and therefore the model fits the data very well.
The situation is even better for the Z-axis, where an R? of
0.96 is achieved, which can be explained by the fact that less
variability is contained in the data here due to the process.
It is, therefore, easy for the model to learn this. The Y-axis
looks somewhat worse but still solid. Here R deteriorates to
0.88. Metrics such as MSE and MAE follow this underlying
pattern. The spindle performs worst with an R? value of 0.63,
which can be explained by the fact that the spindle has the
highest variability in its data. In experiment 2, the complexity
increases due to processing. This leads to an increase in the
variability contained in the data, which is ultimately reflected
in a slight decrease in R? and on the other matrices. The
largest delta can be seen in the Y-axis, where the metric slips
to 0.81. On the other hand, the spindle improves slightly
to 0.66, as adding further explanatory features, such as the
moment or the material removal rate, is positive for the model.
However, the MSE remains virtually unchanged. The results
from experiment 6 lead to the conclusion that the tree-based
models are able to distinguish between the materials steel
and aluminium without any problems. It can also be seen
that the spindle, as well as the Y and Z axes, have improved
in all metrics, which can be attributed to the slightly larger
data base. However, if you look at the results on the CMX
Machine, as already stated in the general impression, it is
noticeable that the models perform worse here or are unable
to find a reasonable mapping, especially for the spindle.
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TABLE 5. X-axis results of experimental series 1. The statistical values
mean (MN) and variation (VAR) are given for all evaluation metrics.

’ Machine ‘ Metric ‘ Model ‘ MSE ‘ MAE ‘ R? Rfdj ‘
RF 0.13598 |0.22933 | 0.66772 |0.66745
ET 0.10616 |0.21594 |0.73358 |0.73337
MW LSTM |0.45391 |0.44896 |-0.21024 |-
FNN 0.40361 |0.41535 |0.03526 |0.03453
GB 0.11657 |0.21246 |0.71148 |0.71125
CMX TF 0.31128 |0.37780 |0.16351 |-
RF 0.01561 |0.01731 |0.06081 |0.06094
ET 0.00614 | 0.00848 |0.02252 |0.02257
VAR LSTM |0.09945 |0.04183 |0.70437 |-
FNN 0.17721 |0.03648 |0.40915 |0.41032
GB 0.00917 |0.01031 |0.03211 |0.03219
TF 0.02494 |0.01647 |0.16850 |-
RF 0.06901 |0.14185 |0.80297 |0.80274
ET 0.04742 |0.11422 |0.86507 |0.86492
MW LSTM |0.53548 |0.31961 |-0.55114 |-
FNN 0.55557 |0.27539 |-0.70191 | -0.70370
GB 0.04214 | 0.12827 |0.87722 |0.87709
DMC TF 0.40124 |0.29160 |-0.26001 |-
RF 0.00293 |0.00589 |0.01295 |0.01299
ET 0.00132 |0.00217 |0.00457 |0.00459
VAR LSTM |0.19005 |0.01167 |1.26611 |-
FNN 0.16365 |0.01038 | 1.65843 | 1.66243
GB 0.00061 |0.00151 |0.00133 |0.00134
TF 0.11359 |0.01214 |1.24836 |-

TABLE 6. Y-axis results of experimental series 1. The statistical values
mean (MN) and variation (VAR) are given for all evaluation metrics.

’ Machine ‘ Metric ‘ Model ‘ MSE ‘ MAE ‘ R? Rgdj ‘
RF 0.19133 |0.28395 |0.47148 | 047111
ET 0.15759 |0.25888 |0.56401 |0.56370
MW LSTM |0.45703 |0.44739 |-0.32755 |-
FNN 0.28971 |0.32130 |0.13091 |0.13039
GB 0.18397 |0.27467 |0.51355 |0.51318
CMX TF 0.81201 |0.51856 |-1.16924 |-
RF 0.01089 |0.01156 |0.03304 |0.03313
ET 0.00622 |0.00762 |0.01498 |0.01503
VAR LSTM |0.06765 |0.02710 |0.55818 |-
FNN 0.00585 |0.00717 |0.07786 |0.07789
GB 0.01933 |0.01699 |0.04563 |0.04577
TF 0.68487 |0.11142 |4.59161 |-
RF 0.05268 |0.13031 |0.80771 |0.80753
ET 0.09224 |0.13865 |0.69423 |0.69386
MW LSTM |0.38312 |0.31659 |-0.25050 | -
FNN 0.34697 |0.36158 |-0.26485 | -0.26608
GB 0.04975 |0.12545 |0.81908 |0.81890
DMC TF 0.27789 |0.28249 |-0.01276 | -
RF 0.00040 |0.00179 |0.00100 |0.00101
ET 0.00724 |0.00595 |0.04222 |0.04237
VAR LSTM |0.14923 |0.05198 |0.83953 |-
FNN 0.07740 |0.03785 | 1.12612 | 1.12767
GB 0.00036 |0.00208 |0.00116 |0.00117
TF 0.08922 |0.03029 |1.30414 |-

B. EXPERIMENTAL SERIES 2

Based on the statistical key figures of the second experimental
series (see Table 9) in which the X-axis, Z-axis and SP were
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TABLE 7. Z-axis results of experimental series 1. The statistical values
mean (MN) and variation (VAR) are given for all evaluation metrics.

\Machine\Metric \Model \MSE \MAE \R2 \Rfdj \
RF 0.11016 ]0.15570 ]0.34428 |0.34372
ET 0.10305 | 0.14095 | 0.35349 | 0.35294
Mw  |LSTM [056042 [0.42092 |-2.58694 |-
ENN | 0.15645 |0.19394 |-0.22030 |-0.22101
GB 0.09034 |0.12525 | 0.40358 | 0.40309
CMX TF 0.20575 | 0.30359 |-0.45484 |-
RF 0.02097 |0.00943 | 0.26068 | 0.26128
ET 0.01477 |0.00627 |0.22962 |0.23011
vaR  |LSTM [051244 [0.04768 [6.52865 |-
FNN | 0.01266 |0.00508 |0.98827 |0.98866
GB 0.00841 |0.00401 |0.17079 |0.17114
TF 0.01139 |0.00721 |0.93701 |-
RF 0.02433 [0.07527 [0.97137 [0.97135
ET 0.03713 | 0.08316 |0.95950 |0.95945
vw | LSTM [041865 [0.26163 [0.51667 |-
FNN | 0.19959 |0.17618 |0.78021 |0.78002
GB 0.00955 | 0.05274 | 0.98870 | 0.98869
DMC TF 0.44637 | 0.26808 | 0.48298 |-
RF 0.00007 | 0.00061 |0.00013 |0.00013
ET 0.00061 |0.00161 |0.00029 | 0.00029
VAR | LSTM [001977 [0.00549 |0.01585 |-
ENN | 0.01057 |0.00457 |0.00765 |0.00764
GB 0.00002 | 0.00033 | 0.00003 | 0.00003
TF 0.02105 |0.01122 |0.03216 |-

TABLE 8. SP results of experimental series 1. The statistical values mean
(MN) and variation (VAR) are given for all evaluation metrics.

]Machine\Metrie \Model \MSE MAE \R2 \Rfdj
RF 1.62454 [0.64610 |-1.07363 | -1.07495
ET 1.15721 |0.60611 |-0.44895 | -0.44990
Mw | LSTM [6.18448 [1.24611 [-745333 |-
ENN | 1.61233 [0.67831 |-1.38319 |-1.38427
GB 0.81431 |0.48044 |-0.00274 | -0.00339
CMX TF 231552 |0.83498 |-1.96531 |-
RF 0.66732 |0.10212 | 1.14193 | 1.14365
ET 0.24333 [0.05161 |0.34964 |0.35022
vAR | LSTM [83.37464]0.73193 | 141.83464 -
ENN | 1.72008 |0.08132 |7.01307 |7.01562
GB 0.10564 |0.06336 |0.06699 |0.06711
TF 2.99619 021119 |5.10545 |-
RF 2.16597 ]0.28839 |0.68815 |0.68786
ET 447272 [0.50089 |0.35298 |0.35237
Mw ST [22.72027[1.50434 [-2.36554 |-
FNN |8.92482 |0.89852 |-0.31187 |-0.31301
GB 1.89961 |0.38663 |0.72743 |0.72719
DMC TF 7.90538 | 1.01540 |-0.12661 |-
RF 0.25342 | 0.01398 |0.00347 |0.00347
ET 0.48739 |0.03361 |0.00416 |0.00416
vaR | LSTM [233.679741.06529 [5.20776 |-
ENN | 20.67237|0.24479 [0.52922 [0.52943
GB 0.56602 |0.02614 |0.01121 |0.01122
TF 10.78772]0.27963 | 0.14364 |-

considered, the following impressions can be gathered. For
the X-axis, the GB model shows the best metrics with an
average MSE of 0.098 and an R? of 0.84. RF follows these
results with slightly worse metrics, such as an average MSE
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of 0.117 and an R? of 0.81. The neural network achieves
the worst results here with an average MSE of 0.37 and an
R? of 0.64. If we look at the Z-axis now, a similar picture
is generated. Here, too, GB performs best on average with
an MSE of 0.018 and an R? of 0.933. In comparison, the
neural network and the RF perform only slightly worse, and
the NN even performs better with an MSE of 0.02 as opposed
to 0.021. The RF achieves the best results for the spindle with
an MSE of 0.71, closely followed by the RF. On the other
hand, the neural network performs particularly poorly here
with an average MSE of 2.589, which is significantly further
away from the tree-based methods, suggesting problems with
model fitting.

TABLE 9. Results of experimental series 2 for the X- and Y-axis and SP.
The statistical values mean (MN) and variation (VAR) are given for all
evaluation metrics.

lMachine‘Metric \Model \MSE \MAE \R2 \Ri,j |
RF 0.11727 ]0.19083 |0.80623 |0.80576

MW [ENN  [0.37051 |0.27638 |0.64271 |0.64159
Xoaxis GB 0.09833 |0.21033 | 0.83868 | 0.83829
RF 0.00837 |0.00754 |0.02157 |0.02165

VAR [FNN |041640 |0.00924 |0.03895 |0.03933

RB 0.00563 | 0.00633 | 0.00928 | 0.00932

RF 0.02072 ]0.06400 ]0.91925 |0.91902

MW [FNN  [0.02009 |0.05640 |0.93254 |0.93233

7. Axis GB 0.01843 | 0.06838 |0.93314 | 0.93300
RF 0.00018 | 0.00096 | 0.00216 | 0.00217

VAR [FNN  [0.00042 |0.00060 |0.00102 |0.00102

RB 0.00036 | 0.00144 | 0.00410 | 0.00410

RF 0.70792 0.31381 [0.69432 [0.69335

MW [FENN | 2.58957 |0.36500 |-0.28009 |-0.86943

sp GB 0.83737 |0.38944 |0.55399 |0.55279
RF 0.46567 |0.06964 |0.06150 |0.06192

VAR [FNN | 1.45497 |0.03766 | 1.20035 |9.65400

RB 0.78708 |0.10793 |0.37359 | 0.37571

Experiment 4, 6, 10 and 12 for the X/Z axis and the spindle
are described as representative of the second series of trials.
These experiments are used to shed more light on the third
research question by increasing the underlying data base and
increasing the complexity in order to approximate real-life
circumstances.

The results for the x-axis show the following differences
between the models. In experiment 4, GB dominates with an
MSE of 0.027 and an adjusted R? of 0.972, closely followed
by RF, which has an MSE of 0.0288. The neural network
performs significantly worse here with an MSE of 0.144 and
an R? of 0.85. In experiment 6, on the other hand, the RF
achieves the best metrics with an MSE of 0.051. In contrast,
GB has an MSE of 0.053 and the neural network 0.069.
By a slightly larger margin, GB has the better metrics in
experiment 10. It has an MSE of 0.074 (R = 0.74), while
the RF and the neural network only achieve 0.11 (R* =0.58)
and 0.13 (R?> = 0.53), respectively. In experiment 12, the
whole thing changes again, and the RF west shows the best
performance here with an MSE of 0.04.
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Looking at the Z-axis, all models deliver good results.
In experiment 4, GB with an MSE of 0.0130 (R? = 0.9123)
and RF with 0.0131 (R?> = 0.9115) achieve similarly good
results, while the neural network falls slightly behind with
a higher MSE of 0.0161 (R* = 0.8914). In experiment 6,
GB also delivers the best result with an MSE of 0.0074
(R? = 0.9767), followed by the neural network (MSE =
0.0086; R> = 0.9729) and RF (MSE = 0.0139; R?> = 0.9561).
In experiment 10, GB also achieves the best results (MSE =
0.0081; R? = 0.9744), but the neural network (MSE =
0.0113; R? = 0.9642) and RF (MSE = 0.0207; R? = 0.9345)
are not far behind and perform well. Experiment 12 confirms
the performance of GB with an MSE of 0.0046 and an R? of
0.9854. The neural network with 0.0086 and 0.9730 and the
RF with 0.0098 and 0.9691 are also convincing, with very
low errors and high degrees of explanation. To summarise,
GB on the Z-axis delivers the most stable results overall,
closely followed by RF and the neural network, which also
achieves solid performances.
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FIGURE 4. Results of experimental series 2 for the X-axis for the metrics
MSE (left) and R (right).
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FIGURE 5. Results of experimental series 2 for the main spindle for the
metrics MSE (left) and R2 (right).

The results for the spindle show different performance
levels of the models used. In experiment 4, RF achieves the
best result with an MSE of 0.092 but with a low adjusted
R? of only 0.014, which indicates a weak fit to the data.
GB (MSE = 0.2049; R? = -1.194) and the neural network
(MSE = 1.0892; Adj. R? = -10.66) show significantly worse
results here. In experiment 6, RF with a MSE of 0.3178
(R?> = 0.8704) and GB with 0.3409 (R*> = 0.8607) show
good and comparable performance. However, the neural
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network clearly lags behind with a MSE of 2.1166 (R? =
0.1356), which indicates considerable adaptation difficulties.
In experiment 10, the RF again delivers the best results
(MSE = 0.2483; R? = 0.8986), closely followed by GB
(MSE = 0.2704; R? = 0.8896). The neural network also
shows a significantly poorer performance (MSE = 2.0537;
R?> = 0.1612), which again signals difficulties in model
fitting. In experiment 12, RF confirms its performance
(MSE = 0.2612; R*> = 0.8933), while GB lags behind with
a slightly higher error (MSE = 0.3595; R?> = 0.8535). The
neural network again achieves a significantly higher error
level in this experiment (MSE = 1.5889; R? = 0.3511).
In summary, RF shows the most robust results on the spindle
axis across these experiments, GB follows close behind,
while the neural network consistently shows difficulties in
fitting the data.

V1. DISCUSSION

In almost all series one experiments, RF, ET or GB achieve
more precise results. This is reflected in very good metrics,
i.e. low MSE, RMSE and MAE, as well as high values for
R? and R? 4» Which also only have a low delta. However,
GB often comes out as the best model architecture when
looking at the spindle. One explanation for the better
performance of these architectures could lie in the fact
that they are more robust against noise and only require a
small data base to reliably model non-linear relationships.
Furthermore, there are significantly fewer underlying hyper-
parameters, which simplifies the handling of these models,
and there is less sensitivity with regard to the hyper-
parameter configuration. The improved performance can
also be attributed to built-in data processing techniques
such as bootstrapping and subsampling, which increase data
diversity within the ensemble and improve generalisation.
In addition, tree-based models inherently perform feature
selection, making them more robust to limited data. FNN,
LSTMs and TF models performed significantly worse in
comparison. This can be recognised by the significantly
higher metrics for MSE, RMSE and MEA and the lower
values for R? and adjusted R*. This could be due to an
insufficient data base, i.e. more data is required for training.
In addition, there is a greater hyperparameter sensitivity, i.e.
FNN are more dependent on the learning rate, batch size
and so on. With LSTMs in particular, the chosen sequences
may be too short to present enough variation in the data to
learn temporal dependencies. However, the sequence length
is limited by hardware capacities. In summary, tree-based
models perform significantly better and more efficiently on
small data sets.

In the case of air-cut, R in the range 0.8-0.9 or higher
are achieved. The lack of material removal, process forces
and, thus, an uncoupled axis system lead to the reduced
complexity. This results in less complex power consumption,
which the models can map with higher precision. It is evident
that all models demonstrate superior performance on the
DMC 60H in comparison to the CMX 600 V (see figure 6).
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FIGURE 6. Comparison of model output and measurement in experiment
1.6 for the spindle on the CMX (top) DMC (bottom).

Consequently, it can be hypothesised that the calibration of
the force soft sensor exerts a substantial influence on the
models’ performance. This finding is particularly interesting,
as it suggests that this factor could also be learned from the
data. This finding underscores the value of integrating known
physical relationships through soft sensors, demonstrating a
notable model performance advantage.

As a result, the first series of experiments can answer the
first research question: How can power signals be modelled
using ML methods and physical models, and which features
are essential for predicting power data? Looking at the results,
it can be concluded that tree-based methods are better suited
to predicting the power signal than FNN or transformer
architectures under the given data. In addition, the results
(R? and MSE metrics) indicate that the features derived from
the physical description, such as speed, acceleration, process
forces, spindle torque and MRR, are sufficient to describe the
current signal. In particular, it is noticeable that speed and
acceleration, as well as the MRR during processing, have a
significant influence on the translatory axes, as can be seen
in figure 7. For the spindle, its torque is also of importance.
Thus, the second research question can be answered: Tree-
based approaches tend to outperform DL models, particularly
when data is sparse or complex.

However, the functionality of soft sensor-based hybrid
ML models is limited by the quality of their formulas.
The calculation of physical quantities within the soft sensor
system is based on Kienzle’s force model (see Section III-C).
While the model provides a useful estimate, it has certain
limitations that must be considered in practical applications.
The key parameters (kp1.1, k1.1, kf11, x, y and z) are
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FIGURE 8. Comparison of model output and measurement in experiment
2.4 for the x-axis (top) spindle (bottom).

material-dependent and empirically determined. Significant
deviations in force estimation may occur when the model is
applied to materials without correct parameters. Additionally,
the current state of the force model does not take tool wear
into account. While this is a drawback for accurate force
prediction, it is advantageous for reference signal prediction
in process monitoring. Since the model does not represent
tool wear, increasing deviations between the calculated and
measured values can be directly interpreted as potential
anomalies.

The results of the second experimental series show a
significant improvement in FNN performance. This is due
to the larger data base and the information it contains.
DL methods can therefore unfold their capabilities especially
on translatory axes. However, model performance converges
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fast on the main spindle, and tree-based methods still perform
significantly better (see figure 8). Overall, the tree-based
methods deliver the most stable results in this series of
experiments. There is a trend towards higher accuracy,
a development that is particularly attributable to the increased
data base. It can also be seen that the performance delta
between the two approaches correlates with the complexity
of extrapolation. In other words, as extrapolation becomes
more complex, the distance between the metrics increases,
and FNN performes worse in comparison. This answers the
final research question.

VII. CONCLUSION AND OUTLOOK

This study addresses the challenge of monitoring CNC
milling processes in agile production scenarios via hybrid
ML. Therefore, physical models were derived for the axes
and the main spindle. The features have been incorporated
into hybrid ML architectures. Additionally, soft sensors were
used to incorporate difficult-to-record but relevant features.

It was shown that effective modelling can be achieved
through the integration of physical knowledge, particularly
velocity, acceleration, process forces, spindle torque and
MRR. Different ML architectures demonstrated varying
predictive capabilities. Tree-based models, such as RF and
GB, were found to consistently outperform DL models
such as FNN, LSTMs and TF, particularly when data
was limited. Finally, the performance of the models was
tested under realistic and complex operational conditions.
The robust performance and adaptability of the hybrid
ML models were demonstrated. This was particularly the
case for GB and RF, even as process complexity and
variability increased. DL models improved significantly as
data availability increased, but still lagged behind the tree-
based approaches.

Future research opportunities to enhance the efficacy and
predictive performance of the hybrid ML models include
soft sensor calibration and deeper integration of the physical
knowledge into architecture and training. To investigate
generalisability, the model should be applied to a range of
production scenarios, including extreme working conditions.
Additionally, the approach should be transferred to other
milling machines, such as five-axis machining centres, and
other types of machine tools.

In order to address the challenges associated with data
availability, it is important to investigate incremental learning
approaches. The continuous integration of newly available
data could be particularly advantageous for DL. Furthermore,
physics-informed ML and active learning can enhance
the models’ ability to adapt to evolving data conditions.
Exploring data augmentation methods is also recommended
to overcome the limitations posed by small, incomplete,
or imbalanced data sets. Active learning can also be employed
to incorporate on-site employees’ expertise as an additional
knowledge source for model training.

For successful application, it is crucial to develop a
comprehensive process monitoring system that integrates

VOLUME 13, 2025



R. Strobel et al.: Hybrid Machine Learning for CNC Process Monitoring

IEEE Access

hybrid ML models and incremental learning. The monitoring
capabilities must be validated, for example with regard to the
detection of tool wear, material quality or poor processing
conditions.
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