KIT | KIT-Bibliothek | Impressum | Datenschutz

Local and nonlocal homogenization of wave propagation in time-varying media

Döding, Christian; Verfürth, Barbara ORCID iD icon

Abstract:

Temporal metamaterials are artificially manufactured materials with time-dependent material
properties that exhibit interesting phenomena when waves propagate through them. The propagation of electromagnetic waves in such time-varying dielectric media is governed by Maxwell’s equations, which lead to wave equations with temporal highly oscillatory coefficients for the electric and magnetic fields. In this study, we analyze the effective behavior of electromagnetic fields in time-varying metamaterials using a formal two-scale asymptotic expansion. We provide a mathematical derivation of the effective equations for the leading-order homogenized solution, as well as for the first- and second-order corrections of the effective solution. While the effective solution and the first-order correction are governed by local material laws, we reveal a nonlocal constitutive relation for the second-order corrections. Special attention is also paid to temporal interface conditions through initial values of the homogenized equations. The results provide a mathematically justified framework for the effective description of wave-type equations of time-varying media, applicable to models in optics, elasticity, and acoustics.


Volltext §
DOI: 10.5445/IR/1000182110
Veröffentlicht am 03.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 05.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000182110
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 23 S.
Serie CRC 1173 Preprint ; 2025/22
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Schlagwörter homogenization, asymptotic expansion, Maxwell equations, wave equation, temporal metamaterial, time-varying media
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page