KIT | KIT-Bibliothek | Impressum | Datenschutz

Robust Partial-Label Learning by Leveraging Class Activation Values

Fuchs, Tobias; Kalinke, Florian ORCID iD icon 1
1 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)

Abstract:

Real-world training data is often noisy; for example, human annotators assign conflicting class labels to the same instances. Partial-label learning (PLL) is a weakly supervised learning paradigm that allows training classifiers in this context without manual data cleaning. While state-of-the-art methods have good predictive performance, their predictions are sensitive to high noise levels, out-of-distribution data, and adversarial perturbations. We propose a novel PLL method based on subjective logic, which explicitly represents uncertainty by leveraging the magnitudes of the underlying neural network's class activation values. Thereby, we effectively incorporate prior knowledge about the class labels by using a novel label weight re-distribution strategy that we prove to be optimal. We empirically show that our method yields more robust predictions in terms of predictive performance under high PLL noise levels, handling out-of-distribution examples, and handling adversarial perturbations on the test instances.


Volltext §
DOI: 10.5445/IR/1000182134
Veröffentlicht am 04.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 17.02.2025
Sprache Englisch
Identifikator ISSN: 0885-6125, 1573-0565
KITopen-ID: 1000182134
Verlag Springer-Verlag
Serie Computer Science - Machine Learning
Nachgewiesen in arXiv
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page