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Abstract

Despite several decades of study, the origin of ultra-high-energy cosmic rays (UHECRs)—ionized
nuclei from outer space bombarding the Earth’s atmosphere at energies above 1017 eV—remains
a key open question in astroparticle physics. Their enormous energies, exceeding by orders
of magnitude those achievable in the most powerful human-made particle accelerators,
are indicative of the most violent and extreme processes in our universe. Since their flux
is extremely low, UHECRs can only be detected indirectly by measuring the extensive air
showers (EAS) of secondary particles they produce when interacting with an air nucleus.
Consequently, the energy, arrival direction and mass composition must be inferred from
the signals that EAS produce in large ground-based detectors such as the Pierre Auger Ob-
servatory. In particular, the mass composition is of utmost importance, as it would help to
constrain astrophysical scenarios explaining the origin and sources of these extremely ener-
getic particles. One of the most mass-sensitive EAS observables is the number of muons pro-
duced in the shower, which can be directly sampled by underground segmented scintillator
detectors, such as the Underground Muon Detector (UMD) of the Pierre Auger Observatory.

In this work, we present a measurement of the muon content of air showers within the en-
ergy range 1017.5 eV to 1018.9 eV using the Underground Muon Detector (UMD) of the Pierre
Auger Observatory. We revisited and improved the existing procedure for reconstructing
the lateral distribution function (LDF) of muons at the individual event level. The likelihood
model used to fit the LDF was extended to account for detector effects—such as detector
noise, inefficiency, and corner-clipping muons—by introducing probabilistic models with
physical motivation. In addition, we developed a novel data-driven method to quantify and
correct for corner-clipping muons—inclined muons that can generate signals in adjacent
segments, leading to overcounting. Previously, this effect was addressed solely through sim-
ulations; in this work, we demonstrate how it can be studied and corrected using data. The
framework developed here, both for the likelihood model and the corner-clipping correction,
is generally applicable to any type of segmented detector.

The muon content measured in this work was compared to air shower simulations to
infer the mass composition. The energy-dependent trend of the inferred mass is consistent
with that observed using another mass-sensitive observable—the depth of shower max-
imum, Xmax—indicating a transition from heavy to light elements from 1017.5 eV up to
∼ 1018.4 eV, where a break toward heavier elements is observed. However, the absolute
mass is systematically heavier than that predicted from Xmax. This discrepancy between the
inferred mass from these two observables has been observed in other experiments and is
interpreted as a muon deficit in simulations. This suggests that current hadronic models
used to simulate air showers—tuned to LHC data and extrapolated to higher energies—do
not consistently reproduce all aspects of EAS. We find that the discrepancy between the
inferred mass of the two observables remains relatively constant with energy up to 1018.4
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eV but gradually increases beyond that point. Although the number of events above 1018.4

eV is still low, our results suggest that the muon deficit may become more pronounced at
these energies, providing valuable insights for model builders seeking to improve hadronic
interaction models.



Zusammenfassung

Trotz mehrerer Jahrzehnte der Forschung bleibt der Ursprung der kosmischen Strahlen mit
ultrahohen Energien (UHECR) – ionisierte Atomkerne aus dem Weltraum, die mit Energien
über 1017 eV auf die Erdatmosphäre treffen – eine zentrale, offene Frage in der Astroteilchen-
physik. Ihre Energien liegen um mehrere Größenordnungen über den Werten, die in den
leistungsstärksten, von Menschen geschaffenen Teilchenbeschleunigern erreichbar sind. Die-
se deuten auf die gewaltigsten und extremsten Prozesse in unserem Universum hin. Da ihr
Fluss extrem gering ist, können UHECR nur indirekt nachgewiesen werden, indem man die
ausgedehnten Luftschauer (EAS) sekundärer Teilchen misst, die sie bei der Wechselwirkung
mit einem weiteren Teilchen in der Atmosphäre erzeugen. Folglich können die Energie, die
Ankunftsrichtung und die Massenkomposition aus den Signalen der EAS abgeleitet wer-
den, die in großen bodengebundenen Experimenten wie dem Pierre-Auger-Observatorium,
gemessen werden. Insbesondere die Massenkomposition ist von größter Bedeutung, da sie
helfen könnte, astrophysikalische Szenarien zur Erklärung des Ursprungs und der Quellen
dieser extrem energiereichen Teilchen einzugrenzen.

Eine der massensensitivsten EAS-Observablen ist die Anzahl der im Schauer erzeug-
ten Myonen, die direkt mit unterirdischen, segmentierten Szintillationsdetektoren gemessen
werden kann, wie dem Untergrund Myonen Detektor (UMD) des Pierre-Auger-Observatoriums.
In dieser Arbeit präsentieren wir eine Messung des Myonengehalts von Luftschauern im
Energiebereich von 1017.5 eV bis 1018.9 eV unter Verwendung des UMD des Pierre-Auger-
Observatoriums. Wir haben das bestehende Verfahren zur Rekonstruktion der lateralen Ver-
teilungsfunktion (LDF) der Myonen pro Einzelereignissen überarbeitet und verbessert. Das
für die Anpassung der LDF verwendete Wahrscheinlichkeitsmodell wurde erweitert, um
Detektoreffekte – wie Detektorrauschen, Ineffizienz und randstreifende Myonen – durch die
Einführung physikalisch motivierter probabilistischer Modelle zu berücksichtigen. Darüber
hinaus haben wir eine neuartige, datenbasierte Methode zur Quantifizierung und Korrektur
von randstreifende Myonen – geneigte Myonen, die Signale in benachbarten Segmenten
erzeugen und so zu einer Überzählung führen können, entwickelt. Bisher wurde dieser Ef-
fekt ausschließlich durch Simulationen behandelt; in dieser Arbeit zeigen wir, wie er mit
experimentellen Daten untersucht und korrigiert werden kann. Das hier entwickelte metho-
dische Konzept ist, sowohl für das Wahrscheinlichkeitsmodell als auch für die Randstreifen-
Korrektur, allgemein auf jede Art von segmentierten Detektoren anwendbar.

Der in dieser Arbeit gemessene Myonengehalt wurde mit Luftschauer-Simulationen
verglichen, um die Massenkomposition zu bestimmen. Der energieabhängige Verlauf der
abgeleiteten Masse ist konsistent mit dem einer anderen massensensitiven Observablen –
der Tiefe des Schauermaximums, Xmax – und zeigt einen Übergang von schweren zu leichten
Elementen im Bereich von 1017.5 eV bis etwa 1018.4 eV, wo eine Abweichung hin zu schwere-
ren Elementen auftritt. Die absolute Masse ist jedoch systematisch schwerer als diejenige, die
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aus Xmax vorhergesagt wird. Die Diskrepanz zwischen der aus beiden Observablen abgelei-
teten Masse wurde auch in anderen Experimenten beobachtet und wird als Myonendefizit
in Simulationen interpretiert. Dies deutet darauf hin, dass die derzeitigen hadronischen
Modelle zur Simulation von Luftschauern – die mit LHC-Daten kalibriert und auf höhere
Energien extrapoliert wurden – nicht alle Aspekte der EAS konsistent wiedergeben. Wir
stellen fest, dass die Diskrepanz zwischen den aus beiden Observablen abgeleiteten Massen
bis 1018.4 eV relativ konstant bleibt, darüber hinaus jedoch allmählich zunimmt. Obwohl die
Anzahl der Ereignisse über 1018.4 eV noch gering ist, legen unsere Ergebnisse nahe, dass sich
das Myonendefizit bei diesen Energien weiter verstärken könnte, was wertvolle Einblicke
für Entwickler von Modellen liefert, die hadronische Wechselwirkungsmodelle verbessern
möchten.



Resumen

A pesar de varias décadas de estudio, el origen de los rayos cósmicos de ultra-alta energía
—núcleos ionizados provenientes del espacio exterior que bombardean la atmósfera terrestre
con energías superiores a 1017 eV—sigue siendo una de las principales cuestiones abiertas
en la física de astropartículas. Sus enormes energías, que superan en órdenes de magnitud
a las alcanzadas en los aceleradores de partículas más potentes construidos por el ser hu-
mano, son indicativas de los procesos más violentos y extremos de nuestro universo. Dado
que su flujo es extremadamente bajo, los rayos cósmicos de ultra-alta energía solo pueden
detectarse de manera indirecta mediante la medición de las extensas cascadas atmosféricas
de partículas secundarias que producen al interactuar con un núcleo del aire. Por lo tanto,
su energía, dirección de llegada y composición en masa (esto es, qué especie nuclear es la
que generó la lluvia de partículas) deben inferirse a partir de las señales que los cascadas at-
mosféricas generan en grandes detectores terrestres, como el Observatorio Pierre Auger. En
particular, la composición en masa es de gran importancia, ya que permitiría restringir los es-
cenarios astrofísicos que explican el origen y las fuentes de estas partículas extremadamente
energéticas.

Uno de los observables más sensibles a la composición en masa en las cascadas atmos-
féricas es el número de muones producidos en la cascada, los cuales pueden ser medidos
directamente mediante detectores subterráneos segmentados de centelleo, como el Detector
de Muones Subterráneo (UMD, por sus siglas en inglés) del Observatorio Pierre Auger. En
este trabajo, presentamos una medición del contenido de muones en las cascadas atmos-
féricas dentro del rango de energía de 1017.5 eV a 1018.9 eV utilizando el UMD del Obser-
vatorio Pierre Auger. Revisamos y mejoramos el procedimiento existente para reconstruir
la función de distribución lateral de los muones a nivel de evento individual. El modelo
de verosimilitud utilizado para ajustar la distribución lateral fue ampliado para incluir los
efectos del detector—como el ruido, la ineficiencia y los muones corner-clipping—mediante la
introducción de modelos probabilísticos con una motivación física. Además, desarrollamos
un novedoso método basado en datos para cuantificar y corregir la presencia de muones
corner-clipping—muones inclinados que pueden generar señales en segmentos adyacentes,
dando lugar a un sobreconteo. Hasta ahora, este efecto se abordaba únicamente mediante
simulaciones; en este trabajo, demostramos cómo puede estudiarse y corregirse utilizando
datos experimentales. El marco metodológico desarrollado aquí, tanto para el modelo de
verosimilitud como para la corrección del efecto corner-clipping, es aplicable en general a
cualquier tipo de detector segmentado.

El contenido de muones medido en este trabajo se comparó con simulaciones de cascadas
atmosféricas para inferir la composición en masa. La tendencia de la composición en función
de la energía es consistente con la observada utilizando otro observable sensible a la masa
del primario—la profundidad atmosférica del máximo de la cascada, Xmax—indicando una
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transición de elementos pesados a ligeros desde 1017.5 eV hasta aproximadamente 1018.4 eV,
donde se observa un cambio hacia elementos más pesados. Sin embargo, la masa absoluta
inferida es sistemáticamente más pesada que la predicha a partir de Xmax. Esta discrep-
ancia entre la composición inferida a partir de ambos observables ha sido observada en
otros experimentos y se interpreta como un déficit de muones en las simulaciones. Esto
sugiere que los modelos hadrónicos actuales utilizados para simular los cascadas atmos-
féricas—calibrados con datos del LHC y extrapolados a energías más altas—no reproducen
de manera consistente todos los aspectos de las cascadas. Encontramos que la discrepancia
entre ambos observables se mantiene relativamente constante con la energía hasta 1018.4

eV, pero aumenta gradualmente más allá de ese punto. Aunque el número de eventos por
encima de 1018.4 eV sigue siendo bajo, nuestros resultados sugieren que el déficit de muones
podría volverse más pronunciado a estas energías, proporcionando información valiosa para
el desarrollo y mejora de los modelos de interacciones hadrónicas.
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Chapter 1
Introduction

Particles of extraterrestrial origin are constantly bombarding our atmosphere. This cosmic
beam is composed of several types of particles, both neutral and charged, spanning various
orders of magnitude in energy. Some of them are ionized nuclei with tremendous amounts
of energy, which can reach macroscopic energies of up to 1020 eV. These so-called ultra-high-
energy cosmic rays (UHECRs) are of particular interest. On one hand, their very existence
challenges our understanding of acceleration mechanisms for charged particles and suggests
that they must be accelerated in the most violent and extreme processes in our universe. On
the other hand, they can reach energies far beyond those achievable in the most powerful
human-made particle accelerators, providing a unique opportunity for particle physicists to
study particle interactions in an otherwise inaccessible energy region.

Despite being known for more than half a century, fundamental questions such as their
origin, mass composition, and acceleration mechanisms are still not entirely understood.
Their detection is challenging because UHECRs are very rare: they exhibit a steeply falling
energy spectrum, with a flux of approximately 10 particles per km2 per day at 1017 eV. At
1020 eV, their flux decreases to 1 particle per km2 per century. In practice, such a low flux
means that for energies above ∼ 1015 eV, cosmic rays can only be indirectly measured by
observing the extensive air showers (EAS) they produce when interacting with air nuclei.
These showers, which can cover an area of tens of km2 at the highest energies, are detected
by large ground-based arrays of detectors.

Determining the mass composition (i.e., their nuclear mass A) of these particles as a
function of energy is of utmost importance to disentangle between astrophysical scenarios
for the origin and acceleration of cosmic rays that can fit equally well the existing data. The
two main mass-sensitive observables from EAS are the atmospheric depth where the shower
reaches its maximum development, Xmax, and the number of muons Nµ (see Chapter 2). To
interpret their measurements in terms of the nuclear mass, data has to be compared to
expectations from air shower simulations of different nuclear species. These simulations, in
turn, depend on hadronic models that extrapolate accelerator data to the highest energies,
leading to large systematic uncertainties.

Since Xmax is linked to the better-understood electromagnetic component of extensive
air showers (EAS), its interpretation is less influenced by uncertainties in hadronic models,
making it the most reliable and widely used observable for composition studies. However,
its measurement is constrained by lower statistics, as it necessitates dedicated fluorescence
telescopes, which can only operate during moonless nights with favorable weather condi-
tions.

In contrast, the muonic component of air showers can be measured with higher statistics
using shielded muon detectors, such as the Underground Muon Detector (UMD) at the Pierre
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2 CHAPTER 1. INTRODUCTION

Auger Observatory, or by analyzing highly inclined air showers, where the majority of the
electromagnetic component is absorbed in the atmosphere, utilizing unshielded detectors
[1, 2]. However, interpreting these measurements is more challenging due to the greater
uncertainty associated with muons, as they originate from the hadronic component of the
shower, which is more susceptible to model uncertainties.

Several experiments have reported that the composition inferred from muon measure-
ments consistently suggests a heavier composition, which does not align with the com-
position predicted from Xmax observations, indicating that these two observables are not
consistently reproduced by current hadronic models. This discrepancy has led to the hypoth-
esis of a muon deficit in simulations, giving rise to the so-called muon puzzle, a topic that
has generated substantial research in recent years (see Ref. [3] for a comprehensive review).
Resolving or further constraining this puzzle would not only make it possible to use muons
as a mass composition estimator with larger datasets and improved statistical significance,
providing insight into astrophysical scenarios for ultra-high-energy cosmic rays (UHECRs),
but it would also enhance our understanding of hadronic physics at energies far beyond
those achievable in man-made accelerators, making a significant contribution to the field of
particle physics.

Key aspects of the muon puzzle remain unresolved. The energy threshold at which the
muon deficit begins, its energy dependence, and the extent of the deficit are still unclear.
Additionally, although many experiments report a muon deficit in their data, this is not the
case to all of them [3, 4]. In this context of uncertainty, further measurements are essential
to clarify the situation. In this work, we present a measurement of the muon content of air
showers in the energy range 1017.5 eV < E < 1018.9 eV with the UMD of the Pierre Auger
Observatory.

The muon content in this work is obtained on an event-by-event basis by fitting a
muon lateral distribution function (LDF) through a maximum likelihood maximization
(log-likelihood minimization). In Chapter 4, we begin by optimizing the existing detector
likelihood, extending it to account for effects that can bias the muon estimator of a segmented
detector like the UMD. These effects include detector noise, inefficiency, and corner-clipping
muons. The inclusion of these effects, which are common to any segmented detector, is
achieved using suitable probabilistic models that depend on parameters that are physically
motivated, easy to interpret, and measurable in the laboratory with standard instrumenta-
tion.

For the UMD case, corner-clipping muons are the dominant effect. These are inclined
muons that can generate signals in adjacent segments, leading to overcounting. In Chapter 5,
we present a data-driven method to quantify and correct for the corner-clipping effect. This
approach allows the effect, which until now could only be characterized through simulations,
to be quantified and accounted for using data for the first time.

In Chapter 6, we assess how the improvements developed in the previous chapters
impact the LDF reconstruction using both data and full detector simulations, particularly
how these improvements compare to the existing reconstruction procedure. Additionally,
we introduce a method to fit the core position, which improves the quality of the fit for
showers that land very close to a detector.

The evolution of the muon content with energy is presented and discussed in Chapter 7.
We interpret the measurements in terms of mass composition and discuss their energy-
dependent trends. Moreover, we assess the compatibility of these results with the inferred
composition from Xmax measurements and provide an estimate on the muon deficit. We
compare our results—both the absolute number of muons, using the so-called z-scale, and
the shape of the LDF—to other experiments and previous results reported by the UMD.



Chapter 2
Cosmic rays

Despite being known to humanity for more than 70 years, several key aspects of ultrahigh-
energy cosmic rays (UHECRs)—ionized nuclei bombarding the Earth’s atmosphere with
energies above E ∼ 1017 eV—remain a mystery. The astrophysical sources, as well as the ac-
celeration and propagation mechanisms, and mass composition of these extremely energetic
particles —whose energies exceed by orders of magnitude those achieved in human-made
accelerators— are still not entirely understood. Given their extremely low flux, UHECRs can
only be detected indirectly by observing Extensive Air Showers (EAS)—cascades of billions
of secondary particles generated when a UHECR interacts with the atmosphere. As a result,
the energy, arrival direction, and primary mass of UHECRs must be inferred by analyzing
the signals produced by EAS in large ground-based detectors.

In this chapter, we summarize the current knowledge on UHECRs. In Section 2.1, the
UHECR energy spectrum observed at Earth is presented, and its main features are dis-
cussed. The currently accepted acceleration and propagation mechanisms, as well as po-
tential sources for UHECRs, are presented in Section 2.2. The main features of EAS are
presented in Section 2.3, whereas the muon puzzle—the discrepancy between the observed
and expected number of muons in EAS—is introduced in Section 2.4.

2.1 Energy spectrum at Earth

The energy spectrum of cosmic rays (CRs) at Earth spans from ∼ 109 eV up to 1020 eV, cov-
ering approximately eleven decades in energy. The differential flux over this large energy
range decreases steeply and can be well described by broken power laws, dΦ

dE ∝ E−γ, with
the spectral index γ varying between 2.6 and 3.3 in different energy ranges. The energies
at which the spectral index changes are significant, as they give rise to features in the spec-
trum associated with variations in the elemental composition of the cosmic-ray beam. In
turn, these changes in mass composition are directly related to modifications in the sources,
acceleration, and/or propagation mechanisms of CRs. Thus, understanding the features in
the all-particle spectrum requires a comprehensive picture of the underlying astrophysical
scenario in which cosmic rays are accelerated and propagated.

The differential flux of the all-particle CR spectrum, as measured by several experiments,
is shown in Fig. 2.1. The steeply falling flux is multiplied by E2.6 to flatten the spectrum
and reveal more clearly discontinuities in the spectral index. Three main features are visible
which are named in analogy to the anatomy of a human leg: (i) the softening at Eknee ∼ 4×
1015 eV, known as the knee; (ii) another softening, dubbed the second knee, at E2nd knee ∼ 1017

3
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Figure 2.1: Scaled all-particle flux as measured by several experiments. Figure extracted from
Ref. [6]

eV; and (iii) a hardening, referred to as the ankle, at Eankle ∼ 5× 1018 eV. Lastly, a strong flux
suppression is visible for energies greater than 4× 1019 eV.

Although significant advances in the understanding of CRs have been made in the last
few decades, the origin of the features of the all-particle spectrum is still not entirely under-
stood. The current consensus is that CRs up to the knee are of galactic origin, accelerated
through a first-order Fermi mechanism (Section 2.2.1) in supernova remnants (SNRs) (Sec-
tion 2.2.2), whereas those above the ankle are of extragalactic origin. Although this idea has
long been proposed—since the Larmor radius of a particle with energies above the ankle
is larger than the size of the galaxy—it was only recently confirmed by the observation of
a large-scale dipolar anisotropy, pointing outside the galactic plane, in the arrival direction
of cosmic rays with E > 8× 1018 eV by the Pierre Auger Observatory [5]. The transition be-
tween galactic and extragalactic CRs is thus expected to occur within the energies of ∼ 1015

eV to ∼ 1018.5 eV, although the details of how this transition occurs is still a matter of debate.
The flux of cosmic rays below∼ 1014 eV is high enough to be detected directly by balloon-

or satellite-based detectors in the upper atmosphere (or even outside it). These devices not
only allow for the measurement of cosmic ray energy but also for the determination of its
nuclear type, enabling the measurement of a flux discriminated by element. Some examples
of this kind of experiments are PAMELA [7], CREAM [8] and AMS [9].

Due to their low flux, cosmic rays with energies greater than ∼ 1014 eV can only be de-
tected indirectly by observing extensive air showers (EAS)—cascades of billions of secondary
particles generated when a CR interacts with the atmosphere (Section 2.3). As a result, the
energy, arrival direction, and primary mass (or, more precisely, the natural logarithm of the
nuclear mass) of CRs must be inferred by analyzing the signals produced by EAS in large
ground-based detectors. This can be achieved by measuring the radiation produced as the
shower particles interact with the atmosphere, notably Cherenkov or fluorescence emission,
using dedicated telescopes; or by detecting the footprint of air showers on the ground with
surface detectors, which are comprised of arrays of water-Cherenkov or scintillator detec-
tors. Historically, air shower experiments focused on only one of these detection techniques,
employing either telescopes or surface detectors. State-of-the-art experiments, such as the
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Telescope Array [10] in the Northern Hemisphere and the Pierre Auger Observatory [11]
in the Southern Hemisphere, use hybrid designs that combine large surface detectors with
fluorescence telescopes, leveraging the benefits of both techniques. Details on the the Pierre
Auger Observatory and its reconstruction techniques are given in Chapter 3.

2.2 Acceleration, propagation and potential sources of UHECRs

2.2.1 Diffusive shock acceleration

The most commonly accepted acceleration mechanism for cosmic rays is through diffusive
shock acceleration, also known as first-order Fermi acceleration. In this mechanism, a particle
interacts multiple times with a shock front, like the ones generated in a supernova explosion,
gradually gaining energy in each interaction by a constant fractional amount, leading to a
stochastic multiplication process. The interaction with the shock front occurs as the particle
moves back and forth across the shock front, interacting with magnetic irregularities with
the plasma. If the shock front moves with a velocity vshock, the average energy gain ∆E by a
particle after one interaction can be shown to be [12]

∆E
E

=
4
3

β, (2.1)

where E is the energy of the particle before the interaction and β = vshock/c, with c the
speed of light. The fact that the energy gain is of first order in β gives this process the name
of first-order Fermi acceleration1. After n interactions, the energy of a particle with initial
energy E0 is

En = E0(1 +
4
3

β)n. (2.2)

In turn, Eq. (2.2) can be rearranged to obtain the number of encounters needed to reach an
energy En:

n =
ln(En/E0)

ln(1 + 4β/3)
. (2.3)

Not all particles remain in the acceleration process indefinetely. If pesc is the escape proba-
bility of a particle in one interaction, it follows that the probability of remaining is 1− pesc.
Thus, the probability of remaining in the acceleration region after n interactions is (1− pesc)n.
Therefore, we can obtain the number of particles with energies E > En as

N(E > En) =
∞

∑
m=n

(1− pesc)
m =

(1− pesc)n

pesc
. (2.4)

Substituing Eq. (2.3) into Eq. (2.4) and simplifying the expression, we obtain

N(E > En) ∝
1

pesc

(
E
E0

)−γ

, (2.5)

where γ = − ln(1−pesc)
ln(1+4β/3) . In this way, a power-law spectrum is obtained, as observed for

cosmic rays.

1Fermi initially conceived diffusive acceleration through magnetized plasma in interstellar clouds [13], which
led to a fractional gain per encounter ∆E

E ∝ β2. Since the energy gain scales with β2, this process is known as
second-order Fermi acceleration. Since β << 1, this mechanism is significantly less efficient compared to first-
order mechanisms, and the required confinement time to reach cosmic-ray energies would be impractically
long. Therefore, although it also leads to a power-law spectrum, first-order Fermi acceleration is currently the
standard process invoked for cosmic-ray acceleration.
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Figure 2.2: Hillas plot, in which potential sources are placed organized dependending on their
magentic field B and size R. The dashed lines indicate the lower limits for cosmic accelerators
of protons at the knee (∼ 1015 eV), ankle (∼ 1018.5 eV) and the GZK suppresion (∼ 1019.6 eV).
Figure extracted from Ref. [15]

2.2.2 Potential sources

As discussed in the previous section, the widely accepted mechanism for cosmic-ray ac-
celeration is the gradual acceleration through the diffusive shock mechanism. To identify
which objects could serve as cosmic accelerators, and the maximum energy to which cosmic
rays could be accelerated through this process, Hillas introduced a useful approach [14]. A
necessary condition for a particle to be accelerated in an astrophysical object of size R and
magnetic field B is that it remains confined within the object. If the Larmor radius of the
particle exceeds R, the particle escapes. Thus, an estimate of the maximum energy a cosmic
ray of charge Z can reach is obtained by equating its Larmor radius to the size of the object:

Emax ∝ ZBR. (2.6)

In Fig. 2.2, an adapted version of the so-called Hillas plot is shown, where various as-
trophysical objects are organized in the B− R plane to assess their viability as cosmic-ray
sources. The dashed lines indicate the location in the plane of a source capable of accelerat-
ing protons to different energies at which characteristic features of the all-particle spectrum
are observed. A source lying below a given line is ruled out as a candidate for producing
protons at that energy. Heavier nuclei with charge Z can reach energies up to Z times higher
than protons within the same sources. As observerd in Fig. 2.2, there are several candidates
for ultra-high-energy (UHECRs) cosmic rays with energies E & 1018 eV. For multiple reasons,
supernova-remnants (SNRs) are currently accepted as the most likely sources for galactic
cosmic rays [16]. However, SNRs cannot explain the highest energies cosmic rays above
the ankle, which are of extragalactic origin. Active galactic nuclei (AGNs) and gamma-ray
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bursts (GRBs) are promising candidates for extragalactic sources of the the highest-energy
cosmic rays.

2.2.3 Propagation

While propagating from their sources to Earth, cosmic rays can interact with cosmic mag-
netic fields, which affect their direction and arrival time but not their energy or composition.
Additionally, interactions with the cosmic background can influence all these properties.
Regarding deflections in magnetic fields, since the Larmor radius of a charged particle is
inversely proportional to its charge and directly proportional to its momentum (which,
in the relativistic regime, is approximately its energy, p ≈ E), it follows that lighter, less
charged particles (e.g., protons) experience less deviation than heavier, more highly charged
nuclei (e.g., iron). Likewise, higher-energy particles undergo smaller deflections compared
to low-energy particles. For this reason, detecting light particles at the highest energies is
crucial, as they can trace back to their sources, paving the way for charged-particle astron-
omy. However, current composition-sensitive observables indicate an increasingly heavier
composition at the highest energies. Therefore, achieving mass discrimination at the event
level is of paramount importance. To address this, the Pierre Auger Observatory, the world’s
largest cosmic-ray observatory, has recently undergone an upgrade aimed, among other
goals, at detecting this (presumably subdominant) light component at the highest energies
(see Chapter 3).

The main energy losses at the highest energies come from interaction of cosmic rays with
photons from the cosmic microwave backogrund (CMB). For protons, the main processes
are photo-pion production and electron-positron pair production (also called Bethe-Heitler
process). Photopion production occurs when the interaction with the CMB produces a ∆
resonance, leading to pion production. One possible channel is

p + γCMB → ∆+ → p + π0, (2.7)

leading to a neutral pion carrying approximately 10-20% of the initial energy of the
proton, contributing significantly to the energy loss.

The π0 decays promptly into two gamma rays (π0 → γ + γ). Thus, if protons were
dominant at ultra-high energies, a diffuse flux of ultra-high-energy cosmogenic gamma rays
(∼ 1018 eV) would be expected on Earth as a product of proton propagation. The obser-
vation of such a gamma-ray flux on Earth would favor a proton-dominated composition
at the highest energies. However, the predicted flux is small, and no direct observation of
ultra-high-energy gamma rays has yet been achieved, allowing only upper limits on the
integral flux to be obtained. Leading observatories, such as the Pierre Auger Observatory,
are currently reaching the exposure necessary to rule out whether such a flux exists.

Another channel is
p + γCMB → ∆+ → n + π+, (2.8)

which results in a charged pion. Since the neutron β-decays into a proton, the final state
leads to a proton with an effective energy loss, similarly to Eq. (2.7). The pion decays into a
muon which, in turn, decays into a positron. All these decays lead to neutrinos. Therefore,
in addition to the ultra-high-energy gamma ray flux predicted from Eq. (2.7), a diffuse flux
of cosmogenic high-energy neutrinos is also expected in a proton-dominated scenario.

In addition to photopion production, protons can lose energy through electron-positron
pair production, given by the process

p + γCMB → p + e+ + e−. (2.9)
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Figure 2.3: Left: Energy loss length for pair production and photo-pion production as a function
of proton energy. The cosmological energy loss, produced by the adiabatic loss due to the expan-
sion of the Universe is also shown as a green line. Taken from Ref. [17] Right: Energy of a proton
as a function of its propagation distance. Beyond ∼ 100 Mpc, all protons converge to energies
below 1020 due to (mainly) photo-pion energy losses. From Ref. [20]

The energy loss length, defined as xloss =
1
E

dE
dX , for photo-pion and pair production as a

function of proton energy is depicted in the left panel of Fig. 2.3. The threshold energy for
pair production is E ∼ 2× 1018 eV [17], where its loss length drops down to ∼ 1000 Mpc.
The threshold of the photo-pion production is Eth ∼ 1020 eV [17], and above this threshold,
it becomes the dominant process, with a loss length of ∼ 10− 100 Mpc. As a result, the
distance traveled without significant energy loss shortens considerably. If ultra-high-energy
protons must travel cosmological distances, their flux above this energy should therefore be
suppressed, giving rise to the so-called Greisen, Kuzmin, and Zatsepin (GZK) suppression
[18, 19]. Furthermore, this also implies that if cosmic rays with energies E > Eth are observed,
their sources must lie within a distance l . xloss, defining the so-called GZK horizon. Indeed,
in the right panel of Fig. 2.3, the mean energy of a proton with various initial energies is
shown as a function of its propagation distance. For proton sources beyond ∼ 100 Mpc,
the proton energy falls below 1020 eV due to energy losses from photo-pion production,
regardless of its initial energy. Whether the observed suppression in the UHECR spectrum
is caused by the GZK effect or due to the sources reaching their maximum acceleration is
still a matter of debate.

For nuclei with A > 1, although photo-pion2 and pair production are still possible,
photo-disintegration, where a nucleus absorbs a photon and splits into smaller parts in its
deexcitation, becomes the dominant process, given by

XA + γCMB → XA−k + k, (2.10)

Three main processes contribute to photodisintegration of nuclei upon interaction with
CMB photons, namely, the Giant Dipolar Resonance (for photon energies of ε ∼ 8− 30 MeV),
the Quasi Deuteron process (ε ∼ 20− 150 MeV) and the Baryonic Resonance (ε ∼ 150 MeV)
[21].

The concept of GZK horizon (an effective distance below which sources with E > Eth
must lie), initially conceived for protons, can be extended to heavier nuclei considering. Re-
markably, and by coincidence, the effective suppresion due to energy loss effects (assuming
a power-law injection spectrum) is similar for proton and iron [12].

2Being a sub-dominant process for heavy nuclei, the expected flux of γ rays and neutrinos is consequently
smaller than the one predicted in a proton-dominated scenario.
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2.3 Extensive Air Showers

Due to their low flux, the detection of cosmic rays with energies above ∼ 1014 eV relies
on observing the showers of particles they generate when interacting with the atmosphere,
known as extensive air showers (EAS). Therefore, in order to infer the main properties of the
primary cosmic rays, a profound understanding of the processes involved in the generation
of EAS is necessary. In this section, we discuss the relevant aspects of air shower physics.

The particles within an EAS can be broadly categorized into three components: the elec-
tromagnetic component, consisting of photons, electrons, and positrons; the hadronic compo-
nent, composed mainly of pions, protons, antiprotons, and neutrons; and the muonic compo-
nent, consisting of muons and antimuons originating from the decay of hadrons (primarily
charged pions) and, to a lesser extent, from the electromagnetic component through pho-
tonuclear interactions. Since muons can travel long distances before decaying, they can reach
the ground and be detected, serving as a probe of the hadronic component.

The main processes involving the electromagnetic component are Bremsstrahlung (e→
e+ γ) and pair production (γ→ e+ + e−), while photonuclear interactions with atmospheric
nuclei are subdominant. Neglecting the latter, Heitler developed a simplified yet useful
model to gain insight into the electromagnetic cascade [22]. The left panel of Fig. 2.4 illus-
trates a purely electromagnetic shower, i.e., one initiated by a photon or an electron3. A
primary photon of energy E0 reaches the atmosphere and undergoes pair production. After
travelling a characteristic splitting length d = λem ln 2, where λem is the radiation length
in the medium, the electrons produces a photon through Bremsstrahlung4. Again, after
transversing d, photons undergo pair production and electrons undergo Bremsstrahlung,
generating a multiplicative process. In each split, we assume the energy of each particle
is divided equally: electrons lose half of their energy through Bremsstrahlung, and those
produced via pair production carry half of the photon’s energy. Thus, after n interactions, the
shower energy is distributed equally among all particles. After n generations, the number
of particles N, the energy per particle En, and the trasversed matter X are given by:

Nn = 2n,
En = E0/2n,
Xn = n d.

(2.11)

The multiplication stops when the energy per particle reaches a critical energy ξem = 84
MeV at which ionization losses becomes dominant for electrons, causing the shower to start
dying out. The generation nc at which the critical energy is reached is obtained by equating
En = ξem, yielding nc = ln(E/ξem)/ ln 2. By inserting nc in the expressions of Eq. (2.11), the
values at the maximum shower development are obtained:

Nmax = E0/ξem,
Xmax = λem ln(E0/ξem).

(2.12)

Remarkably, although the number of electrons is overestimated (in reality, there are more
photons than electrons, as multiple photons can be emited through Bremmsstrahlung), this
simplified model correctly predicts that Nmax ∝ E0 and Xmax ∝ ln E0, in agreement with
cascade theory and detailed Monte Carlo simulations.

The Heitler model was extended to hadronic-initiated cascades by Mathews in Ref. [23],
giving rise to the so-called Heitler-Mathews model. Let us first assume the simplest case,

3We refer to both electrons and positrons generically as electrons.
4d is the distance after which the electron looses half of its energy by radiation, as needed by Heitler’s

assumption that electrons lose half of their energy in each generation.
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Figure 2.4: Schematics of a purely electromagnetic shower (left) and a hadron-initiated shower
(right) in the framework of the Heitler and Heitler-Mathews models, respectively. Figure ex-
tracted from Ref. [23]

i.e., a proton primary of energy E0. The situation is illustrated in the right panel of Fig. 2.4.
In this case, the atmosphere is divided into layers of d = λI ln 2 , where λI ∼ 120 gcm−2

is the interaction length of pions in air. After each generation, a number of Nmult pions are
produced, of which α are charged and α− 1 are neutral, yielding Nch = αNmult and N0 =
(α− 1)Nmult. The quantity Nmult is known as multiplicity. The neutral pions decay promptly
to two photons via π0 → γ + γ, fueling the electromagnetic cascade. These photons are then
treated with the Heitler framework described before for electromagnetic showers. On the
other hand, the charged pions interact again after traversing d, generating a multiplicative
process. Assuming that the energy is evenly distributed among all particles, the energy per
particle in the generation n is given by En = E0/Nn

mult. The total number of charged pions
at this point is Nπ± = Nn

ch. This process continues until the energy per particle falls below
a critical energy ξ, where the decay of charged pions becomes dominant over interaction.
The generation ndec at which this occurs is obtained by equating En = ξ, which leads to
ndec =

ln(E0/ξ)
ln Nmult

. At this point, we assume all charged pions decay into muons. Therefore, we
obtain Nµ = Nndec

ch as the number of muons in the shower, which can be written as

Nµ =

(
E0

ξ

)β

, (2.13)

with β = ln(αNmult)
ln Nmult

. In the simplified model of Mathews, α = 2/3 and Nmult = 15, which gives
β ≈ 0.85. When fitted with detailed Monte Carlo simulations, it is found β ≈ 0.87− 0.93.

It is also intructive to write the energies carried away by the hadronic (Ehad) and electro-
magnetic cascade (EEM) at a given generation n:

Ehad =

(
2
3

)n

E0,

EEM =

[
1−

(
2
3

)n]
E0.

(2.14)

After n ≈ 6, about 90% of the initial energy is carried away in the electromagnetic cascade
and lost through ionization losses in the atmosphere [12]. This energy dissipated in the
atmosphere is relevant, as it can be used to infer the shower energy in a nearly calorimetric
way through the use of fluorescence telescopes (see Section 3.2).

If only the photons produced in the first interaction via the π0 → 2γ decay are consid-
ered, an estimate of the Xmax of the electromagnetic component of proton showers can be
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derived assuming an electromagnetic cascade from a photon with energy E0/(2Nmult) (the
factor 2 accounts for the two photons) using Eq. (2.12) [12]:

Xp
max ≈ λp + Xγ

max(E0/(2Nmult)) = λp + λem ln
(

E0

2Nmultξem

)
, (2.15)

where λp is the interaction length of protons in air, which needs to be added since the
photons originate in the first interaction.

To extend the model to nuclei with mass A > 1, the superposition model is invoked, in
which a nucleus with energy E0 and A nucleons is considered as A independent nucleons,
each with energy E0/A. This approach is motivated by the fact that the binding energy of
∼ 5 MeV per nucleon is much smaller than the typical interaction energies involved in air
showers. Thus, the number of muons NA

µ and depth of shower maximum XA
max for a nucleus

with mass A and energy E0 are estimated by substituing E0 with E0/A and mutliplying by
A in Eq. (2.13), and by substituing E0 with E0/A in Eq. (2.15):

NA
µ = A

(
E0/A

ξ

)β

= A1−β

(
E0

ξ

)β

, (2.16)

XA
max = λp + λem ln

(
E0/A

2Nmultξem

)
= Xp

max − λem ln A. (2.17)

From Eq. (2.16) and Eq. (2.17), it follows that both the number of muons and the depth
of the shower maximum are mass-sensitive observables.

The Heitler-Mathews model provides a framework to convert measurements of Xmax
and Nµ to the mean logarithmic mass. Rearranging Eq. (2.16) and Eq. (2.17), we get

〈ln A〉 = ln 56
〈ln NA

µ 〉 − 〈ln Np
µ 〉

〈ln NFe
µ 〉 − 〈ln Np

µ 〉
, (2.18)

〈ln A〉 = ln 56
〈XA

max〉 − 〈X
p
max〉

〈XFe
max〉 − 〈X

p
max〉

. (2.19)

Commonly, experiments do not measure the total number of muons in an air shower but
rather a quantity that is proportional to it, in which case Eq. (2.16) and Eq. (2.18) still holds.
In the context of this work, this quantity is the muon density lateral distribution evaluated
at a reference distance of 450 m from the shower core, ρ450. In Chapter 6, we revisit and
improve the method to fit the muon density lateral distribution.

Lastly, although the simplified models described above provide conceptual insight into
the main features of EAS, full Monte Carlo codes are available to simulate air showers
and are widely used by various observatories to interpret their measurements. The most
commonly used are CORSIKA [24], AIRES [25], and CONEX [26]. These codes implement
different hadronic models. The most common high-energy hadronic models are EPOS-LHC
[27, 28], QGSJetII-04 [29], and SIBYLL [30], referred to as post-LHC models since they are
tuned to LHC measurements, whereas the most popular low-energy models include UrQMD
[31] and FLUKA [32].

2.4 Mass composition and the Muon Puzzle

The determination of the mass composition of UHECRs is particularly relevant, as several
astrophysical scenarios—differing in their assumed mass composition—can equally well
explain the existing data. For example, to explain the mass composition and all-particle
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spectrum observed above the ankle, different scenarios can be invoked, namely, a maximum-
rigidity or a photodisintegration scenario. A maximum-rigidity scenario implies that the
suppression of the spectrum is due to sources reaching their maximum acceleration limit.
Different nuclear species can be accelerated up to a maximum energy proportional to their
charge (Eq. (2.6)), and their flux is subsequently suppressed beyond this limit. The suppres-
sion of the all-particle flux is thus interpreted as the maximum energy achieved by a heavy,
strongly charged component. On the other hand, a photodisintegration scenario suggests
that heavy nuclei are accelerated at the sources to energies beyond the GZK limit and un-
dergo photodisintegration during their journey to Earth. In this framework, the suppression
is a consequence of propagation effects, and the presence of a light component in the highest-
energy cosmic-ray flux results from photodisintegration reactions. In both cases, a mixed
composition is required within this energy range, disfavouring the long-standing paradigm
of a proton- or helium-dominated flux at the highest energies. In reality, a combination of
both scenarios can occur, with a predominance of the maximum-rigidity scenario, as sug-
gested by the latest combined fit to Xmax distributions and energy spectrum measurements
from the Pierre Auger Observatory [33].

The conversion of air shower observables into the mean logarithmic mass, 〈ln A〉, relies
on EAS simulations (see Section 2.3). These simulations, in turn, depend on hadronic models
that extrapolate accelerator data into unexplored regions of phase space, particularly at
the highest energies and in the forward region. As a result, the inferred composition is
strongly model-dependent. A comprehensive understanding of EAS is therefore essential for
interpreting mass composition measurements from UHECR observatories, thereby bridging
the fields of UHECR research and high-energy particle physics.

The two main shower observables sensitive to the primary mass are Xmax and Nµ. Since
Xmax is associated with the better-understood electromagnetic component of EAS, its in-
terpretation is less affected by hadronic model uncertainties, making it the most reliable
and widely used observable for composition studies. However, its measurement is limited
by poorer statistics, as it requires dedicated fluorescence telescopes that operate only on
moonless nights with favorable weather conditions (Section 3.2).

On the other hand, the muonic component of air showers can be sampled with high
statistics using shielded muon detectors, such as the Underground Muon Detector of the
Pierre Auger Observatory, or by analyzing very inclined air showers, where most of the
electromagnetic component is attenuated in the atmosphere, with unshielded detectors [1, 2].
However, its interpretation is subject to greater uncertainties, as muons originate from the
hadronic component of the shower, which is more strongly affected by model uncertainties.

Furthermore, several experiments have reported that the inferred composition from
muon measurements (Eq. (2.18)) is systematically heavier and not compatible with the com-
position predicted from Xmax observations (Eq. (2.19)). This discrepancy has led to the in-
terpretation of a muon deficit in simulations (equivalently, a muon surplus in data), giving
rise to the so-called muon puzzle, which has been the subject of intense study in recent years
(see Ref. [3] for a recent and extensive review). Solving or further constraining this puzzle
will not only enable the use of muons as a mass composition estimator, with larger datasets
and higher statistical significance to constrain astrophysical scenarios for UHECRs, but will
also shed light on hadronic physics at energies far beyond those achieved in human-made
accelerators, making a significant contribution to particle physics.

Several key features of the muon puzzle are still to be understood. The energy at which
the muon deficit begins, as well as its energy dependence and magnitude, remains unclear.
Moreover, although a large number of experiments report a deficit, this is not true for all of
them [3, 4]. In this uncertain scenario, more measurements—preferably conducted over a
wide energy range with the same energy scale—are needed to provide a clearer picture. In



2.5. SUMMARY 13

this work, we present a muon measurement within the energies 1017.5 eV < E < 1018.9 eV.
In Section 7.6, we compare the muon content obtained in this work with that expected from
Xmax measurements and assess the discrepancy between them. Our results are compared
with other muon measurements from different observatories in Section 7.8.

2.5 Summary

In this chapter, the main aspects related to high- and ultra-high-energy cosmic rays were
outlined. We presented the energy spectrum of cosmic rays at Earth and its main features
in Section 2.1. The acceleration mechanisms, potential sources, and propagation effects in
the extragalactic medium were discussed in Section 2.2. Diffusive shock acceleration via a
first-order Fermi mechanism—the currently widely accepted and most commonly invoked
acceleration process for cosmic rays—was described in Section 2.2.1. Within this acceleration
mechanism, potential sources were identified using the so-called Hillas diagram (Fig. 2.2)
in Section 2.2.2. Propagation effects, notably the interaction of cosmic rays with the cosmic
microwave background and its implications for protons and nuclei, were discussed in Sec-
tion 2.2.3. The main features of extensive air showers, produced upon the interaction of a
cosmic ray with the atmosphere, were presented in Section 2.3. Two simple models were
introduced to provide insight into air shower development: the Heitler model for electro-
magnetic showers and the Heitler-Mathews model for hadronic showers. In particular, we
showed that both Xmax and Nµ are two mass-sensitive obervables that can be used to infer
the mass composition of cosmic rays. Lastly, the inconsistency between the mass composi-
tion inferred from Xmax and muon measurements —leading to the interpretion of a muon
deficit in simulations— was presented in Section 2.4.
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Chapter 3
The Pierre Auger Observatory

The Pierre Auger Observatory, located in Malargüe, Argentina, is the largest facility dedi-
cated to the detection and study of ultra-high-energy cosmic rays (UHECRs). Successfully
operating for more than 20 years, it was a pioneer in its hybrid design, observing air showers
both with a Surface Detector (SD)—a large ground-based array of water-Cherenkov detec-
tors (WCDs)—and a Fluorescence Detector (FD), a set of 24 telescopes overlooking the SD
array.

Operating nearly 100% of the time, the SD measures the footprint of shower particles
on the ground, and its vast surface ensures unprecedented exposure and statistics. The
FD, with a duty cycle of approximately 15%, operates only during moonless nights with
favorable weather conditions, providing a quasi-calorimetric and nearly model-independent
estimate of the shower energy. It also measures the depth of the shower maximum, the most
reliable and widely used mass-sensitive observable. By cross-calibrating the SD and FD, the
complementary benefits of both detectors become evident, allowing for energy estimation
of air showers with high statistics and low systematic uncertainties. The main characteristics
and data reconstruction procedure of the SD are presented in Section 3.1, while the main
features of the FD are described in Section 3.2

In its second phase of operation, the Observatory recently underwent a major upgrade,
known as AugerPrime, to enhance its sensitivity to the primary mass. The main compo-
nents of this upgrade are presented in Section 3.3, with a more detailed discussion of the
Underground Muon Detector, as it is the primary detector used in this thesis.

3.1 The Surface Detector

The Surface Detector (SD) consists of an array of 1660 water-Cherenkov detectors (WCD)
ordered in three nested triangular grids with spacing of 1500 m (SD-1500), 750 m (SD-750)
and 433 m (SD-433). The SD-1500 covers an area of 3000 km2 and provides an energy thresh-
old for air-showers of 1018.5 eV whereas the SD-750 comprises an area of 23.5 km2 with an
energy threshold of 1017.5 eV. Lastly, the SD-433 encloses a smaller area of 1.9 km2 and is
suitable for air-showers of energies above 1016.5 eV. A sketch of the SD array is shown in
Fig. 3.1.

3.1.1 SD station and trigger system

Each WCD, referred to as a SD station, consists of a cylindrical tank with a top surface area
of 10 m2, filled with highly purified water up to a height of 1.2 m and enclosed by a diffusely
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Figure 3.1: Layout of the Pierre Auger Observatory. Black dots indicate the position of the water-
Cherenkov detectors of the Surface Detector. The 30◦ azimuthal field of view of each of the 24
FD telescopes across the four sites is displayed with blue lines (see Section 3.2).

reflective liner. The water volume is monitored from above by three 9-inch photomultiplier
tubes (PMTs), which detect Cherenkov light generated as charged particles traverse the
water. Each PMT produces two signals, both of which are time-stamped using GPS with
an absolute accuracy of approximately 12 ns. The signals are digitized at a rate of 40 MHz
with 10-bit resolution by Flash Analog-to-Digital Converters (FADCs). The low-gain signal is
directly extracted from the PMT anode, whereas the high-gain signal originates from the final
dynode and undergoes amplification, making it about 32 times stronger than the low-gain
signal, thereby extending the overall dynamic range. Each station operates independently,
powered by a solar energy system that supplies electricity to both the PMTs and the station’s
electronics. A photograph of a SD station is shown in Fig. 3.2.

The data acquisition of the SD relies on a hierarchical set of triggers, ranging from the
station level to the array level [34]. The first and second-level triggers, referred to as T1
and T2, respectively, are generated locally at each station. Two T1 triggers, designed to
function in a complementary manner, are implemented in the station electronics. The first
trigger, known as T1-Threshold (T1-Th), is primarily sensitive to muons and is activated
when all three PMTs exceed a predefined threshold. The second trigger, referred to as Time-
Over-Threshold (T1-ToT), is designed to be more sensitive to electromagnetic particles. It
is triggered when at least two PMTs surpass a lower threshold within a minimum time
window.

All T1-ToT triggers are promoted to the T2 level, whereas T1-Th triggers are only pro-
moted if all three PMTs exceed a higher threshold. The WCDs continuously transmit the
timestamp and type of T2 triggers to the central data acquisition system (CDAS) of the Ob-
servatory, which scans for air-shower events by identifying spatial and temporal correlations
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Figure 3.2: Picture of a WCD indicating its most relevant components. Taken from Ref. [35].

Figure 3.3: Possible T4 configurations (with addition of all the symmetry transformations of a
triangular grid). The left (right) panel shows the 3ToT (4C1) trigger. Taken from Ref. [36].

between them. If such correlations are detected, a third-level trigger, referred to as T3, is is-
sued to the participating stations (which, by definition, have T2 triggers) as well as adjacent
stations (which may have either T1 or T2 triggers). These station then respond sending their
data for permanent storage.

The next set of triggers is applied offline to the stored T3 data. The fourth-level trigger,
known as T4, serves as the physics trigger and is designed to select genuine air showers
while filtering out background T3 events caused by random coincidences between stations.
Two configurations qualify as T4, as shown in Fig. 3.3. The 3ToT condition requires three
neighboring stations, arranged in a triangular pattern, to pass the T2-ToT trigger. In contrast,
the 4C1 condition requires four neighboring stations, with no specific requirements on the
type of T2 trigger. In both configurations, the timing of the participating stations must be
consistent with a shower front propagating at the speed of light

Lastly, a fiducial trigger, known as 6T5, is applied with the goal of ensuring that the air
shower is well contained within the array, thereby guaranteeing a reliable reconstruction of
the impact point of the shower on the ground. This trigger requires that the station with the
largest signal be surrounded by a set of working (i.e., non-broken) stations.
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3.1.2 SD reconstruction

In this section, we summarize the main aspects of the SD reconstruction procedure, which
is thoroughly described in Ref. [37].

The first step of the reconstruction consists of estimating the signal deposited by the
shower particles in each station. To this end, in each time bin, the trace of every working
PMT is averaged (the high gain is used if it is not saturated, otherwise the low-gain trace
is used). The charge generated in the station is obtained by integrating the average trace
between the start and stop times of the signal, previously determined using only the high-
gain channel, and converted into units of Vertical Equivalent Muon (VEM), the mean charge
deposited by a vertical muon in the tank. The VEM is obtained for each PMT in every station
by constantly recording the charge generated by background particles, from which muons
generate a distinguishable peak.

The geometry of the shower, namely the impact point of the shower xc on the ground—the
so-called shower core—and its arrival direction â, is estimated through an iterative proce-
dure. An initial estimate of xc is obtained as the signal-weighted center of mass of the partic-
ipating stations, known as the barycenter of the event. Then, â, anchored at the barycenter,
is estimated by fitting a shower plane front propagating at the speed of light to the start
times of the signals from the three neighboring stations with the highest average signal. At
this stage, accidental stations that are not part of the event but are triggered by background
particles coinciding with the shower front are identified by requiring a delay relative to the
shower front that is not within [−2 µs,+1 µs] and are subsequently discarded. Using these
initial values, a more refined estimate of â is obtained by fitting a time model that accounts
for the curvature of the shower front. The radius of curvature is left as a free parameter if
enough stations are available; otherwise, it is fixed to a parameterized value obtained from
events where it could be reliably fitted.

The next step involves determining the shower size, defined as the expected signal S(ropt)
at an optimal distance ropt. This is obtained by fitting a lateral distribution function (LDF),
which describes the fall-off of station signals as a function of the distance to the shower axis,
using a log-likelihood minimization. For the case of the Surface Detector (SD) of the Pierre
Auger Observatory, the LDF model corresponds to a modified Nishimura-Kamata-Greisen
(NKG) function, given by

S(r) = S(ropt)

(
r

ropt

)β ( r + rs

ropt + rs

)β+γ

, (3.1)

where rs = 700 m is fixed, S(ropt) is a free parameter, and β and γ are fixed to data-driven
parameterized values unless enough stations with appropiate spacing are available. The
core position xc, intially estimated as the barycenter, is also left free during the LDF fit. The
optimal distance is chosen to minimize the uncertainty due to incomplete knowledge of the
true shape of the LDF, and depends mainly on the grid type and spacing between detectors
[38]. For the SD-1500, this corresponds to ropt = 1000 m, wheras for the SD-750 is ropt = 450
m. Thus, the shower size estimators are referred to as S(1000) (S(450)) for the SD-1500
(SD-750) arrays. In Fig. 3.4, an example LDF fit for an event is displayed.

Lastly, the zenith angle dependence of the shower size needs to be removed, as an identi-
cal shower arriving from an inclined direction traverses a larger amount of atmosphere than
a vertical one, producing smaller signals in the WCDs due to atmospheric attenuation. To
this end, an attenuation correction fatt(θ) is derived using the Constant Intensity Cut (CIC)
method [39, 40], allowing the shower size S(ropt) of a shower arriving at a zenith angle θ to
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Figure 3.4: Example of an LDF fit of the SD. Taken from Ref. [11].

be converted into Sθref , the shower size it would have produced had it arrived at a reference
angle of θref, via

Sθref =
S(ropt)

fatt(θ)
. (3.2)

The reference angle is chosen to coincide with the median of the zenith angle distribution
of the data: 38◦ for the SD-1500 (covering a range of 0◦ ≤ θ ≤ 60◦) and 35◦ for the SD-750
(ranging from 0◦ ≤ θ ≤ 55◦). The attenuation-corrected shower sizes are then S38 and S35
for the SD-1500 and SD-750 arrays, respectively.

The attenuation-corrected shower sizes are used to estimate the shower energy through
calibration with the FD, which provides a quasi-calorimetric measurement of the shower
energy (see Section 3.2). Using high-quality events independently reconstructed by both the
SD and FD, the SD observables S38 and S35 are related to the FD energy EFD via a calibration
curve given by

EFD = A (S38/VEM)B , (3.3)

where A and B are fit parameters obtained through a log-likelihood minimization procedure
[41]. The correlation between the SD energy estimators (S38 and S35) and the FD energy,
along with the corresponding fits to Eq. (3.3), are displayed in Fig. 3.5. In this way, the S38
and S35 obtained with the SD, which operates with a nearly 100% duty cycle, can be used to
estimate the shower energy even when the FD is not operational.

3.2 The Fluoresence Detector

The FD consists of 24 telescopes arranged across 4 sites (Los Leones, Los Morados, Loma
Amarilla, and Coihueco; see Fig. 3.1) overlooking the SD array. Operating nearly 15% of the
time, during moonless nights with favorable weather conditions, the FD measures the longi-
tudinal development of air showers with energies greater than 3× 1018 eV by detecting the
fluorescence light emitted by nitrogen molecules, which are excited by the shower particles
as the shower develops through the atmosphere. Each site is comprised of 6 independent
telescopes, each providing a field of view of 30◦ × 30◦ in both azimuth and elevation, giving
each site a 180◦ azimuthal field of view.
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Figure 3.5: Correlation between the SD energy estimates, S38 and S35, and the FD energy. The
correlation with the SD estimate N19 used for air showers with θ > 60◦ and the FD energy is
also shown. Lines indicate fits to Fig. 3.5. Taken from Ref. [42].

Figure 3.6: Left: Skematich view of an FD telescope and its main components. Right: Picture of
an FD camera and its 440 PMTs. Taken from Ref. [43]

The main elements of the detection system of an FD telescope are a circular aperture,
a mirror and a camera composed of a matrix of 440 photomultiplier tubes (PMTs), known
as pixels, located on the focal surface of the mirror. The camera pixels are arranged in a
matrix of 22 rows by 20 columns. Additionally, an UV filter is used to reduce background
and enhance the signal-to-noise ratio. A skematich view of an FD telescope and a picture of
its camera are shown in Fig. 3.6.
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Figure 3.7: Example of an air-shower event as seen by the camera of an FD telescope taken
from Ref. [43]. Left: The pattern of activated PMTs with its timing color-coded. Right: Time-
dependendent signals of the participating pixels. Each pixel reaches its maximum signal at
different times as the shower develops.

The flux of fluorescence photons produced by the shower, entering through the aperture,
is reflected in the mirror and focused on the telescope camera, producing a time-dependent
profile in the signals of the PMTs, as displayed in Fig. 3.7. Utilizing the timing of the PMT
signals in the FD telescopes, the shower geometry is reconstructed. If measurements from the
SD tanks are available, they are also included to improve the shower geometry estimation.

Then, the time-dependent signals of the FD pixels are projected onto the shower axis,
and a profile of the energy deposition of the shower particles per slant depth (dE/dX) as a
function of the slant depth X is obtained. This profile is fitted with a Gaisser-Hillas function:

fGH(X) =

(
dE
dX

)
max

(
X− X0

Xmax− X0

)(Xmax−X0)/λ

e(Xmax−X)/λ, (3.4)

where
(

dE
dX

)
max

is the maximum energy deposition, X0 and λ are shape parameters, and
Xmax is the depth of the shower maximum.

Since approximately 90% of the shower energy is transferred into the excitation of air
molecules, the integral of the profile is used as an estimator of the shower’s calorimetric
energy. The final estimate of the shower energy is obtained by applying a correction of
∼ 10% to account for the so-called invisible energy—the energy carried away by neutrinos
and muons that cannot be detected by the fluorescence light technique. A three-dimensional
schematic view of a hybrid event, along with its energy deposition profile and its fit to
Eq. (3.4) , is shown in Fig. 3.8.

Lastly, three high-elevation telescopes, known as High-Elevation Auger Telescopes (HEAT),
are also operative in Coihueco [45]. The larger inclination of HEAT, covering an elevation
from 30◦ to 58◦, allows to measure showers of lower energies that develop at a higher alti-
tude. Overlooking the SD-750 array, it extended the energy of high-quality hybrid events
down to 1017.2 eV.

3.3 AugerPrime

As discussed in Chapter 2, having sensitivity to the primary mass on an event-by-event
basis is crucial for disentangling astrophysical scenarios for sources and acceleration mecha-
nisms of UHECRs. To enhance its sensitivity to the primary mass, the Observatory recently
underwent an upgrade known as AugerPrime, which includes several enhancements, such
as the installation of scintillator and radio detectors on top of the WCDs, the replacement
of the WCD electronics, the addition of a small photomultiplier tube to the WCDs, and the
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Figure 3.8: A three dimensional view of a hybrid event (upper panel) and its longitudinal profile
together with its fit to Eq. (3.4) (lower panel). Taken from Ref. [44].

deployment of the Underground Muon Detector (UMD). In this section, we briefly describe
each of these components of AugerPrime, focusing on the UMD, as it is the main detector
used in this thesis.

3.3.1 Surface Scintillator Detector

As part of the AugerPrime upgrade, each Surface Detector (SD) station was equipped with
a Scintillator Surface Detector (SSD), placed above the existing water-Cherenkov detector.
This addition enhances the ability to distinguish between the electromagnetic and muonic
components of extensive air showers, improving mass composition measurements.

The SSD consists of two scintillator modules with a total detection area of 3.8 m2, built
from extruded polystyrene strips. These strips contain wavelength-shifting (WLS) fibers,
which guide the light produced when charged particles traverse the detector to a single
PMT for signal detection. The SSD’s response differs from that of the WCD: while the SSD is
equally sensitive to both electromagnetic and muonic particles, the WCD has a higher sensi-
tivity to muons. By combining the signals from both detectors, the separate contributions of
these components can be estimated [46, 47].

3.3.2 Small photomultiplier tube and upgraded electronics

The WCDs are being upgraded to enhance their dynamic range and overall performance. A
key improvement is the addition of a small photomultiplier tube (SPMT), the Hamamatsu
R8619-22, which has a diameter of less than 30 mm—significantly smaller than the ∼23
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cm standard PMTs. This new SPMT will allow the SD stations to accurately measure large
signals that would otherwise saturate the existing PMTs, improving the capability of the
detector to record events occurring closer to the shower axis [48, 49].

Additionally, the electronics of the WCDs are being upgraded. The original unified board
(UB), which has six channels, a 40 MHz sampling frequency, and a 10-bit ADC, is being
replaced by an upgraded unified board (UUB). This new board features 10 channels, a
higher sampling frequency of 120 MHz, and a 12-bit ADC, accommodating the additional
signals from the SPMT and scintillator detectors, also enabling communication with the
radio and underground muon detectors. With these enhancements, the dynamic range of the
SD stations will be extended to match the upper limits of the scintillator detectors, ensuring
both systems saturate at approximately the same distance from the shower axis—around 250
m for showers with energies of ∼ 1020 eV. Furthermore, the increased sampling rate of the
UUB will lead to finer digitization of the detector signals, enhancing the overall performance
of the WCDs.

The operation of the WCDs with the UBs is known as Phase 1 of the Observatory, whereas
the current operation with UUBs is referred to as Phase 2.

3.3.3 Radio detector

Coherent radio emission in the frequency band 30–80 MHz also occurs as the shower devel-
ops through the atmosphere, primarily due to the deflection of electrons and positrons in
the geomagnetic field. A time-dependent negative charge excess present in the air shower
also contributes, but subdominantly. As radio emission stems from the electromagnetic com-
ponent of air-showers, it potentially provides an alternative way to access to Xmax and to
the calorimetric energy of the shower.

Part of the AugePrime upgrade includes integrating radio detection to enhance its sensi-
tivity to the nuclear mass particularly for inclined air showers, as these produce large radio
footprints that can be detected with sparsed arrays of radio antennas. This technique has
been validated by the Auger Engineering Radio Array (AERA) [50, 51].

Unlike the Fluorescence Detector (FD), which operates only on moonless nights, the new
Radio Detector (RD) will have an almost 100% duty cycle, ensuring continuous data collec-
tion. This feature, combined with its low cost, makes radio detection a valuable addition
to AugerPrime. The RD will be particularly effective in the zenith angle range of 65◦ to
85◦, where the SSD upgrade is less effective, providing improved mass composition mea-
surements. With its deployment recently finished, the RD consists of dual-polarized Short
Aperiodic Loaded Loop Antennas (SALLAs) installed on each SD-1500 station and triggered
by the corresponding SD station [52].

3.3.4 Underground Muon Detector

The Underground Muon Detector (UMD) is part of the low-energy enhancement of the
Observatory known as Auger Muons and Infill for the Ground Array (AMIGA) [53] and is
being deployed in the SD-750 and SD-433 arrays. It consists of an array of plastic scintillator
muon counters buried 2.3 m underground near a WCD. The UMD operates in slave mode
with the WCD, relying on the latter to provide the trigger for data acquisition. The soil above
the detector absorbs the electromagnetic component of air showers and imposes an energy
cut of ∼ 1 GeV for vertical muons. Each UMD station comprises three modules, made of 10
m2 of plastic scintillator, giving a total active area of 30 m2 per station. A scheme of a UMD
station is shown in Fig. 3.9.

A UMD module is divided into 64 strips, each measuring 400 cm in length, 4 cm in width,
and 1 cm in thickness, with embedded wavelength-shifting (WLS) optical fibers connected to
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Figure 3.9: Scheme (left) and photograph of the deployment (right) of a UMD station.

Figure 3.10: Left: Picture of the 64 optical fibers arranged before coupling to the SiPM array. Right:
Photograph of UMD module under construction before closing the PVC casing. Both pictures
were extracted from Ref. [54].

an array of 64 silicon photomultipliers (SiPMs). These strips are organized into two identical
panels of 32. The fibers converge into a central dome between the panels, which houses
the SiPM array and electronics. To ensure protection from environmental factors and soil,
modules are enclosed in a PVC container before being buried. A picture of a UMD module
under construction is shown in Fig. 3.10.

Scintillator strips and optical fibers

The detection mechanism of the scintillator detector relies on fluorescence light emission.
The scintillator bars used in the UMD are manufactured at the Fermi National Accelera-
tor Laboratory [55] and made of commercial Dow Styron 663W polystyrene, doped with
fluorescent chemicals PPO (2,5-diphenyloxazole) and POPOP (1,4-bis(5-phenyloxazole-2-
yl)benzene) in weight fractions of 1% and 0.03%, respectively. The strips are further coated
with a 0.25 mm polystyrene reflective layer containing 12% TiO2, which helps prevent pho-
ton loss. The purpose of the doping materials is to enhance photon production when a
charged particle passes through the strip. When a charged particle traverses the scintillator,
the base polystyrene emits ultraviolet photons, which would be attenuated within a few
millimeters if no doping materials were present. These photons are absorbed and re-emitted
by the first dopant (PPO), which has a longer attenuation length. Subsequently, the second
dopant (POPOP) absorbs the ultraviolet photons and re-emits light at approximately 420 nm.
A simplified scheme showing the processes inside the scintillator is shown in the upper-left
panel of Fig. 3.11.
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Figure 3.11: Upper left: Simplified scheme of the processes inside the material of a UMD scintil-
lator strip. Upper right: Scheme of a strips with a WLS fiber. Lower panel: Detail of a WLS fiber
utilized in the detector. The upper-left and lower figures were taken from Ref. [54], whereas the
upper-right was extracted from Ref. [56].

With these doping materials, photons can travel between 5 and 25 cm along the strip
before being absorbed. Since the strips are 4 m long, optical fibers are required to efficiently
transport these photons to a photomultiplier. To this end, the Saint-Gobain BCF-99-29AMC
multi-clad WLS fibers are used. Blue photons generated in the scintillator are absorbed, re-
emitted as green photons (λ ∼ 500 nm), and transported by the fiber over several meters to
the SiPM. Schemes showing the scintillator and fiber are displayed in Fig. 3.11.

Silicon photomultipliers (SiPMs)

SiPMs (Silicon Photomultipliers) are solid-state detectors composed of arrays of avalanche
photodiodes (APDs) connected in series with a resistor, with each APD-resistor tandem
known as a cell. These micro-cells are arranged in a parallel configuration, as shown in the
left panel of Fig. 3.12. The SiPM used in the UMD is the HAMAMATSU S13361-2050NE-08,
consisting of 1584 cells. These cells are operated in Geiger mode, where a reverse voltage is
applied to the diodes, larger than the breakdown voltage, to initiate the avalanche process.
When a photon strikes a cell, it triggers an electron-hole pair, and the electric field accelerates
these carriers, leading to multiplication (avalanche) and generating an electric current. The
process is quenched by the resistor to prevent it from becoming self-sustaining. The output
signal at the SiPM anode that results from the triggering of a single cell is known as a
photon-equivalent (PE) signal, and the number of triggered cells in a SiPM is referred to
as the number of PEs. A set of PE signals from a UMD SiPM measured at the laboratory is
displayed in the right panel of Fig. 3.12.

Modes of acquisition

In order to increase the dynamic range of the UMD, two complementary modes of operation
are implemented in the modules: the binary mode (sometimes also known as counter mode)
and the analog-to-digital converter (ADC) mode (sometimes also referred to as integrator or
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Figure 3.12: Left: Simplified scheme of a SiPM composed of n cells. Adapted from Ref. [57]. Right:
Photo-equivalent signals measured at the laboratory. Taken from Ref. [54]

calorimetric mode). These modes operate simultaneously and measure the same particles. A
schematic of the electronics chain of the two working modes can be found in Fig. 3.13.

The binary mode, designed for sampling low muon densities, relies on detector segmen-
tation and processes each of the 64 SiPM signals independently. The output of each SiPM is
processed by a dedicated channel in one of two 32-channel application-specific integrated
circuits (ASICs), in this case, CITIROCs manufactured by WEEROC. A channel consists of
a pre-amplifier, fast shaper, and discriminator, whose output signal is sampled at 320 MHz
(3.125 ns sample time) with a Field-Programmable Gate Array (FPGA) into a 6.4 µs-long
trace of 2048 bits. In each bit, a "1" or "0" is recorded depending on whether the discrimina-
tor signal was above or below the discriminator threshold, which is set at 2.5 PEs to reject
most of the SiPM dark noise [58, 59]. Muons typically generate sequences of seven or eight
consecutive"1"s in the trace, whereas detector noise ("1"s caused by spurious light emission
in the scintillator or background particles) generate mostly patterns of three or fewer consec-
utive"1"s. Thus, muons in each bar are identified as a sequence of four or more consecutive
"1"s, a condition known as muon pattern [59]. A simulated example of the response of one
channel to a single muon is shown in the left panel of Fig. 3.14. The total number of bars
exhibiting a muon pattern, k, is used to estimate the number of muons in each module and
reconstruct the lateral distribution function of muons in this mode. In Chapter 4, we re-
visit the reconstruction procedure for this mode and propose new probabilistic models that
extend and improve the existing likelihood to account for effects such as corner-clipping
muons, detector noise, and inefficiency.

On the other hand, the ADC mode, designed for high muon densities, treats the module
as a whole independent of detector segmentation. In this mode, the 64 SiPM signals are
summed and subsequently amplified with high- and low-gain amplifiers. The amplified
signals are digitized with two ADCs at a sampling time of 6.25 ns, producing two waveforms
of 1024 samples. The number of muons is then obtained by dividing the charge of these
signals by the mean charge of a single vertical muon. Although the ADC mode is not used to
analyze and produce high-level physics results in this thesis, it is considered in Appendix I to
analyze the overall long-term performance of the detector and validate its expected behavior
regarding fiber attenuation.
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Figure 3.13: Schematics of the electronics of the two acquisition modes of the UMD. From Ref.
[54].

Figure 3.14: Simulated signal of a single-muon as seen by the binary (left) and ADC (right) mode.
From Ref. [60].

Engineering array and current status

During the engineering array of the UMD, the muon detectors used multi-anode PMTs as
photodetectors [61]. With this prototype, first physics results were published with one year
of acquisition, spanning from October 2015 to October 2016, revealing a muon deficit within
1017.3 eV < E < 1018.3 eV, ranging from 38% to 50% depending on the hadronic model used
[62]. After several considerations, PMTs were replaced by SiPMs for the final design of the
detector, as described above. Since then, UMD modules have been deployed in the SD-750
and SD-433 arrays at varying paces, with deployment still ongoing. Currently, the entire SD-
433 array and half of the SD-750 array are fully operational with UMDs. The results obtained
in this thesis with the final design of the UMD operating with SiPMs will be compared to
those obtained with the engineering array in Section 7.7.

3.4 Summary

In this chapter, the main components of the Pierre Auger Observatory were introduced. The
key aspects of the Surface Detector were discussed in Section 3.1, while those of the Fluores-
cence Detector were summarized in Section 3.2. The recent upgrade, known as AugerPrime,
which aims to enhance the Observatory’s sensitivity to the nuclear mass of primary particles,
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was described in Section 3.3. The Underground Muon Detector, a central component of this
thesis, was presented in greater detail in Section 3.3.4.



Chapter 4
Accounting for detector effects in the
single-detector likelihood

A segmented detector like the UMD is affected by several factors that, if not accounted for,
can bias the analysis of its signal. Such effects are pile-up, inefficiency, corner-clipping muons
and detector noise.

Probability distributions to model the signals of a segmented detector, and the corre-
sponding estimators of the number of muons, accounting only for pile-up, were developed
in Refs. [63, 64]. In previous analyses of the UMD, the bias introduced in this estimators by
the remaining effects, being the corner-clipping muons the most important, was parameter-
ized with simulations to correct for them in data.

In this chapter, we extend the probability distributions of the signal of a segmented
detector to take into consideration detector inefficiency, corner-clipping muons and detector
noise. We do so by modeling each of these effects with easy probablistic models, which in
turn depend on parameters that can be measured in the laboratory. In this way, the influence
of the detector simulations in the data analysis is minimized while providing a transparent,
easy-interpretable and more realistic model for the signal of a segmented detector.

This chapter is organized as follows: in Section 4.1 we present the probabilistic models
and the necessary modifications to the existing likelihoods to account for detector ineffi-
ciency, noise, and corner-clipping muons. We additionally perform toy Monte-Carlo sim-
ulations to assess the accuracy of the new distributions and the performance of the new
estimators. In Section 4.2, we discuss how to apply the formality derived in the previous
section to the particular case of the Underground Muon Detector of the Pierre Auger Obser-
vatory. Finally, in Section 4.3, we compare two methods to calculate an uncertainty interval
for the expected number of muons in a detector making use of the new likelihoods.

4.1 Single module likelihood

During an air shower event, several strips can be activated in a module. The number of
activated strips k is the main raw observable from which an estimator of the number of
impinging muons has to be constructed. At this point it is necessary to make a distinction
between expected and actual number of impinging muons. A module of area A located at a
shower plane distance r in an air shower event of zenith angle θ has a number of expected
muons given by

µ = ρ(r)A cos(θ), (4.1)

29
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where ρ(r) is the muon lateral distribution function (MLDF) evaluated at r. The actual
number of impinging muons Nµ in a given module fluctuates as a Poisson variable with
parameter µ. Note that Nµ is an integer number, while µ is a real number. A probability dis-
tribution for the observable k can be related to Nµ or µ, depending on which parameter one
is interested in estimating. In mathematical terms, we write P(k|Nµ) or P(k|µ), respectively.
Obtaining such distributions is the first, fundamental step of any reconstruction procedure,
as for a given measured k, they corresponds to the likelihood of the parameter Nµ or µ. We
will refer to such distributions as the single-module or single-detector likelihoods .

In order to get an accurate distribution for k it is necessary to account for several effects
that are characteristic of any segmented counter, such as

• Pile-up. This is caused by muons transversing the same scintillation bar in the event,
leading to undercounting.

• Corner-clipping muons. These are inclined muons that activate two neighboring bars,
leading to overcounting1. The activation of the bars can be produced by the same
muon or by knock-on electrons generated by ionization of the soil as the muon travels
though it. This source of bias is correlated with the shower geometry: inclined events
are more affected by these muons than more vertical ones. Also, for a given zenith
angle, the effect is larger for modules that are more perpendicular to the shower axis,
see Fig. 4.1.

• Detector inefficiency. Some muons, especially those hitting far from the SiPM, may
not produce enough photons to generate a muon pattern, giving rise to muon under-
estimation. From laboratory measurements, an efficiency of ∼ 98.5% was established
for a UMD scintillation bar [60].

• Detector noise. Even when no particles hit a strip, a muon pattern can be found in
its binary trace. This is caused by the optical fiber-scintillation bar system, which can
produce spontaneous light emission. Although the counting strategy defining a muon
pattern was chosen to reject most of this noise, it is not possible to eliminate this irre-
ducible source of background entirely [59]. However, the impact of this overcounting
effect is rather small: a single strip has a probability of 0.1% of being activated by noise
in a 6.4 µs trace, which translates into a probability of 5% of having one bar activated
in a 64-strip module.

In the following sections, we will propose suitable probabilistic models to gradually
include these effects until a final expression for P(k|Nµ) and P(k|µ) is achieved.

4.1.1 Pile-up

We start by considering only the pile-up effect, meaning that no corner-clipping muons
are considered and a 100%-efficient, noise-free detector is assumed. Such idealized case
was studied in Refs. [63–65]. For illustrative purposes, it is helpful to follow the analogy
presented in Ref. [66], in which the problem of counting particles in a segmented detector
is compared to a "ball in boxes" experiment. In this analogy, the balls represent the number
of particles Nµ and the boxes the number of segments ns (ns=64 for the UMD modules).
One experiment consists of assigning each ball (particle) a random box (segment). After one
realization, each box can be either occupied (one or more ball inside, which corresponds to a
strip with a muon pattern in its trace) or empty (no balls in the box, corresponding to a strip

1We note that a muon can pass through two neighboring bars but activate only one of them, or very rarely
none. In this work, we use the term "corner-clipping" only to refer to muons that do activate adjacent bars.
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Figure 4.1: Geometry of the shower as seen by a UMD module.

with no pattern). The total number of occupied boxes then corresponds to the total number
of segments on, k. Finally, we recall that Nµ is a realization of a Poisson experiment with
mean µ.

Under these conditions, the probability distribution of k for a fixed Nµ was derived in
Ref. [64]. The corresponding distribution for fixed µ was found in Ref. [63]. They are given
by

P(k|Nµ) = L(Nµ) =

(
ns

k

)
S(Nµ, k)

k!

nNµ
s

(4.2)

P(k|µ) = L(µ) =
(

ns

k

)
e−µ(eµ/ns − 1)k (4.3)

where S(Nµ, k) is the Stirling number of second kind given by

S(Nµ, k) =
1
k!

k

∑
j=0

(
k
j

)
(−1)k(k− j)Nµ .

For a given k, equations 4.2 and 4.3 represent the likelihood of Nµ and µ respectively. Thus,
maximum likelihood estimators can be obtained by maximizing those expressions for fixed
k. For µ we have

µ̂ = −ns ln(1− k/ns). (4.4)

For Nµ, no analytical expression can be obtained. A good approximation to the maximum
likelihood estimator was obtained in Ref. [64]:

N̂µ
∼=

ln(1− k/ns)

ln(1− 1/ns)
. (4.5)

Note that the two estimators are very similar as −ns ∼= 1
ln(1−1/ns)

. Also note that they are
not defined for saturated modules (k = ns).

It is interesting to analyze the expected bias for the estimators in this simple case. We
consider here the case of µ̂ as an analytical expression is available. Furthermore, this is the
more relevant case as it links the MLDF model (Eq. (4.1)) to the observed k, which is partic-
ularly important for MLDF fitting. However, we stress that the bias of N̂µ is qualitatively
similar and all the conclusions extracted for µ̂ will be valid for N̂µ as well. We recall that the
bias of an estimator is defined as
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B[µ̂](µ) = E[µ̂]− µ, (4.6)

where E[µ̂] is the expected value of the estimator, given by

E[µ̂] = −nsE[ln(1− k/ns)], (4.7)

and, in turn,

E[ln(1− k/ns)] =
ns−1

∑
k=0

ln(1− k/ns)
P(k|µ)
C(µ)

= hns(µ), (4.8)

where P(k|µ) is given by Eq. (4.3) and C(µ) = ∑ns−1
k=0 P(k|µ) is a normalization factor so

that P(k|µ)
C(µ) adds to 1 in the range 0 ≤ k ≤ ns − 1. This is necessary since µ̂ is defined only up

to k = ns − 1 while P(k|µ) is defined up to k = ns. In this way, calculation of the expected
bias reduces to numerically computing hns(µ). We can write Eq. (4.6) as

B(µ) = −nshns(µ)− µ. (4.9)

The relative bias is given by

b(µ) = B(µ)/µ =
−nshns(µ)− µ

µ
. (4.10)

In Fig. 4.2 the relative bias is shown as function of µ for different number of segments ns.
It is important to highlight that the bias is never actually zero. The overall bias decreases as
the number of segments increases. This is expected since an ideal Poisson counter, for which
a null bias is awaited, can be thought as a segmented counter in the limit ns → ∞. For a fixed
ns, the qualitative behaviour of the bias is the same: the bias is minimum for small µ (more
formally, when µ � ns), regime in which the segmented counter resembles the most to an
ideal Poisson counter, and increases until it reaches a maximum at µmax (this maximum is
not visible in the Figure for ns = 128 and ns = 256) above which it drops rapidly as the
probability of saturation P(k = ns|µ) becomes increasingly important.

Following the criterion adopted in Ref. [63], we define the saturation value µsat as the
value of µ such that the probability of saturation is 0.01. Mathematically, P(k = ns|µsat) =
0.01, which yields

µsat = −ns ln(1− 0.011/ns).

The saturation values for ns = 32 and ns = 64 are shown as vertical dashed lines in Fig.
4.2. Note that µsat is a proxy of µmax. Naturally, µsat increases with ns, which simply reflects
the fact that a counter with more segments allows to measure larger values of µ before
saturation.

From now on, unless explicitly stated, a segmentation of ns = 64 will be assumed, since
it corresponds to the UMD case. We will refer to this bias of the pile-up estimator as an
intrinsic or segmentation bias, to stress that even in the most simple model of our detector,
when no other sources of bias are considered, there is an irreducible bias in the estimators
arising only from the segmentation of the detector.
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Figure 4.2: Relative bias of µ̂ (Eq. (4.10)) as a function of the true value µ for different segmenta-
tions ns. Dashed vertical lines represent the saturation value (eq. 4.1.1).

4.1.2 Corner-clipping muons

The distributions of eqs. 4.2 and 4.3 were obtained under the assumption that each particle
can activate only one strip. However, corner-clipping muons can activate two neighboring
bars. In addition, a strip that was activated due to a corner-clipping muon can also be hit
by a different muon during the event. In other words, corner-clipping signals can pile-up
with "real", single-muon signals. Therefore, we can think that the overall result of the corner-
clipping effect is to increase the number of effective particles. Following the "ball in boxes"
analogy, whenever a module is affected by corner-clipping muons, we have an effective,
larger number of balls to distribute in the boxes2.

In order to account for this, we model the corner-clipping effect as a binomial process.
This means that we assume that the number of muons that produce overcounting ncc is a
binomial variable with Nµ trials and pcc success probability. Here, pcc is the single-muon
corner-clipping probability, namely, the probability of one muon to activate two neighbor-
ing bars. As discussed in Section 4.1, pcc is expected to depend on the zenith angle of the
shower and the relative orientation of the module wrt the shower axis3, pcc = pcc(θ, ∆φ). In
Chapter 5 we present a method to obtain pcc in a data-driven way. The effective number of
particles Neff is then

Neff = Nµ + ncc. (4.11)

Since Nµ ∼ Poisson(µ), it follows that ncc ∼ Poisson(µ× pcc) and E[Neff] = µ(1 + pcc).
We will assume Neff ∼ Poisson(µeff) with µeff = µ(1 + pcc). Although not formally true,
since Nµ and ncc are not independent, we will show that this assumption provides a simple
working model for our purposes. We investigate the difference between this assumption
and the true, more complicated distribution for Neff in Appendix A. Thus, by making the
substitutions

2Another way of thinking it is that the number of balls is not actually the number of particles, but the number
of muon patterns, and now a muon is allowed to generate two muon patterns.

3More accurately would be to parameterize pcc in terms of the zenith and the azimuth angles of the muon,
θµ and φµ respectively. However, this information is not accesible in real data, so we make the approximation
θµ ∼ θshower and φµ ∼ φshower.



34CHAPTER 4. ACCOUNTING FOR DETECTOR EFFECTS IN THE SINGLE-DETECTOR LIKELIHOOD

Nµ −→ Neff

µ −→ µeff,
(4.12)

the probability distributions of eqs. 4.2 and 4.3 can be modified to take into consideration
the corner-clipping effect:

P(k|Nµ) = L(Nµ) =
Nµ

∑
ncc=0

(
ns

k

)
S(Nµ + ncc, k)

k!

nNµ+ncc
s

× P(ncc) (4.13)

P(k|µ) = L(µ) =
(

ns

k

)
e−µ(1+pcc)

(
eµ(1+pcc)/ns − 1

)k
, (4.14)

where

P(ncc) =

(
Nµ

ncc

)
pncc

cc (1− pcc)
Nµ−ncc

is the probability of having ncc corner-clipping muons. Note that in the transition from
Eq. (4.2) to Eq. (4.13) we need to weight for the probability of a given ncc, P(ncc), and to
sum over all the possibilities, from no corner-clipping muons (ncc = 0) to all of the muons
producing overcounting (ncc = Nµ). The maximum likelihood estimator for µ is now given
by

µ̂ =
−ns

1 + pcc
ln(1− k/ns). (4.15)

Inspired in Eq. (4.15), the approximate estimator for Nµ of Eq. (4.5) is modified accord-
ingly:

N̂µ
∼=

1
(1 + pcc)

ln(1− k/ns)

ln(1− 1/ns)
. (4.16)

The effect of incorporating pcc is shown in Figs. 4.3 and 4.4. As visible in Fig. 4.3, when
pcc 6= 0, P(k) is shifted towards larger values, meaning that when a module is affected
by corner-clipping muons, a greater number of activated bars is expected. Naturally, this
translates into the likelihoods, as depicted in Fig. 4.4: for the same number of observed
activated bars, the estimators for Nµ and µ are displaced towards lower values when pcc 6= 0.

In Fig. 4.5, the relative bias of the estimator µ̂ of eq. 4.15 is shown as function of µ
for different pcc values. It is apparent that the effect of the corner-clipping is to lower the
maximum number of µ that can be sampled by the detector before saturation. In other words,
µsat decreases with pcc. Indeed, calculating µsat using eq. 4.14 now yields

µsat = −
ns

1 + pcc
ln(1− 0.011/ns). (4.17)

4.1.3 Detector efficiency

A similar reasoning than the one presented in the previous section can be applied to take the
detector inefficiency into account in the single-module likelihood. By including the detector
inefficiency in the model, we allow a new possible outcome to the injection of a single muon
in the detector. When a muon hits the detector, one out of three outcomes may occur: (i) it
remains undetected with probability pI, (ii) it produces overcounting with probability pcc or
(iii) it activates a single strip with probability 1− pI − pcc. Thus, when injecting Nµ muons,
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Figure 4.3: Probability distribution of k for Nµ = 30 (left) and µ = 30 (right). Black curves
correspond to the case pcc = 0 (eqs. 4.2 and 4.3) and magenta curves correspond to pcc = 0.15
(eqs. 4.13 and 4.14).

the joint probability of having nI undetected muons and ncc corner-clipping muons is given
by a multinomial distribution with Nµ trials

P(nI , ncc|Nµ) =
Nµ!

nI !ncc!
(

Nµ − nI − ncc
)
!
pnI

I pncc
cc (1− pI − pcc)

Nµ−nI−ncc . (4.18)

The effective quantities are then

Neff = Nµ + ncc − nI

µeff = µ(1 + pcc − pI),

which leads to the following distributions

P(k|Nµ) = L(Nµ) = ∑
nI ,ncc

(
ns

k

)
S(Nµ + ncc − nI , k)

k!

nNµ+ncc−nI
s

× P(nI , ncc|Nµ) (4.19)

P(k|µ) = L(µ) =
(

ns

k

)
e−µ(1+pcc−pI)

(
eµ(1+pcc−pI)/ns − 1

)k
, (4.20)

where the sum in Eq. (4.19) goes over all (nI , ncc) such that nI + ncc ≤ Nµ. The maximum
likelihood estimators are obtained by making the substitution (1 + pcc) −→ (1 + pcc − pI)
in Eqs. 4.15 and 4.16:
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Figure 4.4: Likelihood of Nµ (left) and µ (right) for an observed value of k = 22. Black curves
correspond to the case pcc = 0 (eqs. 4.2 and 4.3) and magenta curves correspond to pcc = 0.15
(eqs. 4.13 and 4.14). Dashed lines are the corresponding maximum likelihood estimators.

Figure 4.5: Relative bias of µ̂ as a function of the true value µ for different pcc values.

µ̂ =
−ns

1 + pcc − pI
ln(1− k/ns) (4.21)

N̂µ =
1

(1 + pcc − pI)

ln(1− k/ns)

ln(1− 1/ns)
. (4.22)
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Note that if pI = 0, the distributions and estimators obtained in the previous section
are recovered. In order to test the validity of the distributions of Eqs. 4.19 and 4.20, and
the perfomance of the estimators of Eqs. 4.21 and 4.22, a toy Monte-Carlo experiment was
performed. It consisted of the following steps:

• For testing Eq. (4.20) and Eq. (4.21) we consider a fixed µ, and the number of muons
Nµ was sampled from a Poisson distribution with parameter µ. To test Eq. (4.19) and
Eq. (4.22) , Nµ was fixed.

• The number of corner-clipping and undetected muons, nI and ncc, were sampled from
the multinomial distribution of Eq. (4.18). The number of muons that activated a single
bar is given by n1 = Nµ − nI − ncc.

• For each of the n1 + ncc muons, a strip was assigned by sampling a random integer
between 1 and 64.

• For each of the ncc muons, a neighboring strip was randomly chosen. If the initial
strip was in a border of the detector (strips 1, 32, 33 or 64), only one neighboring bar is
available and the possibility of not activating a bar was taken into account.

• Finally, the total number of bars k is obtained and Eqs. 4.21 and 4.22 can be evaluated
and compared to the true µ or Nµ, respectively.

This procedure was repeated 10000 times for various values of µ and Nµ.
In Fig. 4.6 the distribution of k obtained by the Monte-Carlo simulation for several Nµ

values is compared to Eq. (4.19) for pI = 2% and pcc = {0%, 15%}. As discussed later,
these correspond to realistic values for the UMD. The same comparison is observed using
an extreme (unrealistic) value of pI = 80% in Fig. 4.7, only for the purpose of testing the
model in a different region of the phase space. In all cases, a perfect agreement between the
simulation and the expected distribution is observed.

The same analysis for various values of µ can be found in Figs. 4.8 and 4.9. A very good
agreement between the simulation and Eq. (4.20) for all µ is seen in Fig. 4.8. For the extreme
case of pI = 80%, some discrepancy between the model and the Monte-Carlo experiment is
observed when pcc 6= 0, particularly for small values of µ (lower panel of Fig. 4.9). The fact
that this discepancy exists for the distributions of µ and not for Nµ is due to the distribution
of Eq. (4.19) being exact4. As mentioned in the previous section, for Eq. (4.20) to be exact,
Neff needs to be Poissonian with mean µeff, which is not formally true (see Appendix A).
Nevertheless, we stress that for realistic values of pI and pcc for the UMD this proves to be a
useful model.

Interestingly, when pcc = 0 (upper panel of Fig. 4.9), a perfect agreement between the
simulation and the expected distribution is apparent. It can be shown that in this particular
case, Neff do follow a Poisson distribution with parameter µ(1− pI) and therefore Eq. (4.20)
is exact. More generally: if N ∼ Poiss(µ) and K ∼ Binom(n = N, p), then M− = N − K ∼
Poiss(µ(1− p)) but M+ = M + K 6∼ Poiss(µ(1 + p)), which explains why when pcc = 0
Eq. (4.20) is exact but when pI = 0 and pcc 6= 0 is not. See Appendix A for details.

The relative bias of the estimator of Eq. (4.21) as function of µ obtained in the simulation
is displayed in Fig. 4.10. The bias gradually increases with µ until a maximum around ∼ 5%
is reached, above which the bias monotonically decreases due to detector saturation, as ex-
pected according to what was dicussed in Section 4.1.1. Also corresponding to expectations,

4A priori, the only difference between the distibution and the simulation in this case may arise only from
border effects since strips in the edges only posses one neighbor. This effect is taken into account in the simulation
but not in the model. This however proves to be negligible considering the excellent agreement between the
model and the Monte-Carlo experiment.
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Figure 4.6: Distribution of the number of triggered bars k with pI = 2% for different Nµ as
obtained by the toy Monte-Carlo experiment and by Eq. (4.19). Upper plot corresponds to pcc = 0
and lower to pcc = 15%.
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Figure 4.7: Distribution of the number of triggered bars k with pI = 80% for different Nµ as
obtained by the toy Monte-Carlo experiment and by Eq. (4.19). Upper plot corresponds to pcc = 0
and lower to pcc = 15%.

the effect of having pcc 6= 0 is to shift this maximum towards smaller values of µ. In Fig. 4.11,
the same analysis for Eq. (4.22) is presented, showing the same behaviour.

4.1.4 Detector noise

As mentioned in Section 4.1, a muon pattern can be found in the binary trace of a strip
in the absence of particles. This phenomenom, leading to overcounting, is produced by
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Figure 4.8: Distribution of the number of triggered bars k with pI = 2% for different µ as obtained
by the toy Monte-Carlo experiment and by Eq. (4.20). Upper plot corresponds to pcc = 0 and
lower to pcc = 15%.
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Figure 4.9: Distribution of the number of triggered bars k with pI = 80% for different µ as
obtained by the toy Monte-Carlo experiment and by Eq. (4.20). Upper plot corresponds to pcc = 0
and lower to pcc = 15%.

spontaneous light emission in the scintillator-fiber system and constitutes an irreducible
source of background noise.

A strip that was activated due to noise can subsequently be activated by a muon. In other
words, a noise signal can pile up with single-muon signals. Hence, we can treat this effect as
increasing the number of effective particles to be distributed in the segments of the detector.
We can write the number of effective particles as

Neff = Nµ + ncc − nI + n0,
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Figure 4.10: Bias of estimator of Eq. (4.21) as function of µ for pcc = {0%, 15%}. The upper
pannel corresponds to pI = 2% and the lower to pI = 80%.

where n0 is the number of bars activated due to noise in the detector during the event.
Defining the noise probability pn as the probability of a single strip to have a muon

pattern produced by noise in a 6.4 µs-long trace, it follows that n0 follows a binomial distri-
bution with ns trials and pn success probability. For P(k|Nµ) we can write:

P(k|Nµ)=
ns

∑
n0=0

∑
nI ,ncc

(
ns

k

)
S(Nµ + ncc − nI + n0, k)

k!

nNµ+ncc−nI+n0
s

P(nI , ncc|Nµ)P(n0). (4.23)

We note that n0 is fundamentally different than the previous cases as it does not correlates
with Nµ: even when Nµ = 0, and hence ncc = nI = 0, n0 can be non-zero. This implies that
P(k|Nµ = 0) = P(k|µ = 0) = Binom(ns, pn). Furthermore, for this reason, there is no µeff
such that the substitution µ −→ µeff leads to P(k|µ). Thus, a different strategy needs to be
considered.

To derive a distribution for a fixed µ, it is necessary to follow the reasoning in Ref. [63]
that allowed to obtain Eq. (4.3). For this purpose, we consider pcc = pI = 0 as they can be
straightforwardly included later by substituing µ −→ µ(1 + pcc − pI).
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Figure 4.11: Bias of estimator of Eq. (4.22) as function of Nµ for pcc = {0%, 15%}. The upper
pannel corresponds to pI = 2% and the lower to pI = 80%.

Since the number of muons impinging in the detector fluctuates as a Poisson with pa-
rameter µ, the number of muons m hitting a single bar fluctuates as a Poisson with mean
µ/ns. Thus, the probability of a single bar to be hit by one or more muons is given by
pµ = P(m ≥ 1) = 1− P(m = 0) = 1− e−µ/ns . If we assume a perfectly efficient detector,
then pµ constitutes the success probability of a bar to be activated by muons in an event.
Therefore, P(k|µ) = Binom(ns, pµ), which leads to Eq. (4.3).

In addition to being hit by muons, a bar can be activated due to noise. Consequently, p =
p(muons) + p(noise)− p(muons and noise) = pµ + pn− pµ pn = (1− e−µ/ns)(1− pn) + pn.
Therefore,

P(k|µ) = L(µ) = Binom(ns, (1− e−µ/ns)(1− pn) + pn). (4.24)

We note that, as expected, P(k|µ = 0) = Binom(ns, pn).
The new maximum likelihood estimator is given by

µ̂ =

{
0 k ≤ ns pn

− ns
1+pcc−pI

ln
(

1− k/ns−pn
1−pn

)
ns pn ≤ k < ns

(4.25)
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Figure 4.12: Left: Maximum likelihood estimator for µ as function of k for different noise proba-
bilities. Right: µmin as function of pn. In all cases, pcc = pI = 0.

where we have included pI and pcc. We observe that when pn = 0 the previous estimator
is recovered. The expression for N̂µ is obtained by replacing −ns −→ 1/(ln(1− 1/ns)) in
Eq. (4.25).

We note that there is a kmin = ns pn such that if k ≤ kmin then µ̂ = 0. This is necessary
to be explicitly written in Eq. (4.25) because otherwise would yield µ̂ < 0. It is relevant to
highlight that kmin is the expected value of the noise distribution Binom(ns, pn). In other
words, if k is less than the expected number of activated bars due to noise, nothing can be
said about µ. Therefore, the consequence of including the detector noise in the model is
the appearance of a detection limit µmin. A criteria based on the probability of activating
k > kmin only due to muons can be adopted to define a minimum value µmin that can be
measured by the detector. We define such criteria by requesting the probability of activating
a single bar due to muons to be larger than due to noise, i.e., pµ > pn. Thus, we define µmin
in the limiting case pµ|µmin = pn. We obtain

µmin = − ns

1 + pcc − pI
ln(1− pn). (4.26)

In the left panel of Fig. 4.12, the estimator of Eq. (4.25) as function of k for different
values of pn is displayed, in which the increasing behaviour of kmin with pn is apparent. The
minimum µmin as function of pn is shown in the right panel of the same Figure.

To assess the accuracy of the distributions of 4.23 and 4.24, a new step was added to the
Monte-Carlo simulation described in Section 4.1.3. It consisted of sampling the number of
bars activated due to noise n0 from a binomial distribution with ns trials and pn probability.
Then, a random integer for each of the n0 bars was assigned to obtain the strip id. In Fig. 4.13,
the distributions of Eqs. 4.23 and 4.24 are compared to the simulation results for pn =
{0%, 10%} and various values of Nµ. In order to focus on the impact of pn, pI and pcc were
set to 0. The agreement between the simulation and the model is evident. As expected, for a
fixed Nµ, the distribution is shifted towars larger values of k when pn 6= 0. The same analysis
for µ is displayed in Fig. 4.14, leading to the same conclusions.

Lastly, the bias of the estimator of Eq. (4.25) as function of µ is shown for different values
of pn in Fig. 4.15. Again, the values of pI and pcc were set to 0 to study the influence of pn
alone. Vertical arrows show the corresponding µmin for each pn. A new feature is visible,
namely, an increase in the bias for µ < µmin. As already discussed, the detector becomes
insensitive to µ below this limit.
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Figure 4.13: Distribution of the number of triggered bars k as obtained by the Monte-Carlo
simulation and by Eq. (4.23) for pn = 0% (upper panel) and pn = 10% (lower pannel). In both
cases, pcc = pI = 0.
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Figure 4.14: Distribution of the number of triggered bars k as obtained by the Monte-Carlo
simulation and by Eq. (4.24) for pn = 0% (upper panel) and pn = 10% (lower pannel). In both
cases, pcc = pI = 0.

4.2 Application to the UMD case

In the preceding sections, the detector inefficiency, corner-clipping muons and detector noise
were included in the single-module likelihood. The key idea was to treat these effects as
increasing or decreasing the number of effective particles in the detector. In this way, the
distributions and estimators derived in Refs. [63, 64] for an idealized 100% efficient, noise-
free detector that is not affected by corner-clipping muons, could be extended to include
these effects.
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Figure 4.15: Bias of µ̂ (Eq. (4.25)) as function of µ for different pn values obtained by the Monte-
Carlo simulation. Vertical arrows indicate the minimum µ (Eq. (4.26)) for each pn. Values of pcc
and pI were set to 0.

It is relevant to stress that all the formality derived is generally valid to any kind of
segmented detector. The only ingredients that are needed are the single-particle inefficiency
and corner-clipping probability, pI and pcc respectively, and the detector noise probability
pn. We highlight that all these probabilities can be measured in the laboratory. For instance,
pI and pcc could be obtained by using a muon telescope to trigger the acquisition in the
detector. Thus, the probabilities could be computed using the fraction of muon triggers that
were followed by the activation of 0, 1 or 2 (neighboring) bars. Furthermore, if the telescope
is able to reconstruct the trajectory of the muon, the dependence of these probabilites with
the zenith angle of the muon could be determined.

For the UMD, the efficiency of a single bar5 for mostly vertical muons was found to
be ∼ 98.5% [60]. Due to the increased track length, the efficiency is expected to be further
increased for more inclined muons. Therefore, we neglect this effect and use pI = 0%.

For the pcc, there is no measurement available. We present in Chapter 5 a data-driven
way to estimate this probability.

The detector noise was charaterized during the development phase of the UMD. How-
ever, the value of pn for the UMD is not reported directly. Instead, in Ref. [59], it is reported
that the probability of activating only one bar in a module due to noise is 5%. Therefore,
we can obtain pn by requesting Binomk=1(ns, pn) = 5%, which yields pn = 0.1%. Such a
small value leads to a very small correction in the likelihood and in the estimators. Thus, for
practical purposes, we set pn = 0%.

Considering these approximations, the expressions that will be used from now on for
the likelihoods and estimators are reduced to the ones derived in Section 4.1.2.

5We note that this is not strictly what is assumed in the model we developed as this measurement was done
with a single bar. However, the value obtained for the efficiency with this setup is large enough to reasonably
assume that a muon injected in the detector would very rarely activate zero bars.
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Figure 4.16: Graphical representation of the procedure to obtain the 1σ interval for µ for a mea-
sured k = 3 and pcc = 0. Horizontal grey dashed lines correspond to the lmin and lmin + 0.5
levels. Vertical blue lines denote the interval obtained by the method. µ̂ is represented by a green
dashed line.

4.3 Error estimation of µ

In Section 4.1.2, modified likelihoods were proposed to account for the corner-clipping effect
which lead to new maximum likelihood estimators both for Nµ and µ, given by Eqs. 4.16 and
4.15, respectively. In this section, we deal with the task of determining an uncertainty interval
to the point estimation of µ. We focus only on µ as its asociated likelihood Eq. (4.14), which
is needed for the interval estimation, already accounts for sampling Poissonian fluctuations
by construction.

A common practice is to provide an interval with 68.2% confidence level, usually referred
as a 1σ interval in analogy to the gaussian case. Two recipies to construct a 1σ confidence
interval for µ were tested, namely the log-likelihood contour (LLC) and the Feldman-Cousins
(FC) procedure.

The LLC procedure to obtain a nσ interval consists in finding the (µ1, µ2) interval such
that lmin +

n2

2 = − ln(L(µ̂)) + n2

2 . As a consequence of the Wilks theorem, it can be shown
that in the limit of a large sample the coverage of such an interval tends to the desired
confidence level (e.g. 68.2%, 95%, 99% for n = 1, 2, 3, respectively, also in analogy to the
Gaussian case). An example of the procedure to obtain the 1σ interval for a measured value
of k = 3 and pcc = 0 is shown in Fig. 4.16. The resuling interval is denoted by vertical blue
dashed-dotted lines and corresponds to (µ1, µ2) = (1.6, 5.2). It is important to note that for
1 ≤ k ≤ 63, the interval provided by this recipe is assymetric and one would typically report
µ̂ σ+

σ− after a measured k, where σ+ = µ2 − µ̂ and σ− = µ̂− µ1.
Special care should be taken when k = 0 or k = 64. For the former case, µ̂ = 0 and

the log-likelihood is l(µ|k = 0) = µ, thus leading to an interval (0, 0.5). Note that since
µ > 0, only an upper limit can be provided in this case. As we will see next, this interval is
not optimal as it does not provides the correct coverage. For the saturated case k = 64, the
log-likelihood does not reaches a minimum and only a lower limit to µ can be established
[63].
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The FC method is built upon the Neyman’s construction to find confidence intervals [67].
The Neyman’s procedure is considered the most robust way of finding confidence intervals
as it assures the right coverage by construction, usually at the cost of being computationally
expensive. For a discrete variable, like in our case, it assures that the coverage is equal or
greater than the desired confidence level. However, the Neyman’s construction has a degree
of freedom as it does not unambiguously leads to an interval, so a criteria must be adopted
by the experimenter. Depending on the chosen criteria, different intervals with the same
coverage can be obtained given the same measurement. Feldman and Cousins proposed a
criteria based on the likelihood ratio of the measurements and it has become a standard in
the High-Energy Physics community since its publication. For a description of the procedure,
see the original publication, Ref [68]. More details on the implementation of the method to
our particular problem can be found in Appendix C.

In the left panel of Fig. 4.17, the maximum likelihood estimator µ̂ (Eq. (4.4)) for each k can
be found. The 1σ interval given by the LLC (FC) method is displayed with blue (magenta)
full (dashed) lines and triangle (square) markers. The ratio between the length of the two
intervals is shown on the right panel of the same Figure. The FC intervals are always larger
than the ones given by the LLC method in order to assure a coverage equal or larger than
the desired 68.2%.

A toy Monte-Carlo experiment was performed to assess the coverage of the intervals.
For the FC case, this only provides a sanity check as the method guarantees equal or larger
coverages than the desired one by construction6. For the LLC intervals, however, the desired
coverage is only guaranteed in the large sample limit, so this toy experiment serves to know
its true performance. One experiment consisted on generating 10000 random k values for a
fixed µ usinq Eq. (4.14) with pcc = 0. For each generated k, the corresponding µ interval was
computed. Finally, the coverage is obtained as the fraction of times this interval contained
the true value of µ. This scheme was repeated for 0.1 ≤ µ ≤ 10 with a step of ∆µ = 0.1 and
for 10 ≤ µ ≤ 200 with a step of ∆µ = 1.

The calculated coverages as function of µ are shown in Fig. 4.18, in which the typical
pattern of monotonous behaviour interrupted by abrupt discontinuities characteristic of
intervals constructed with discrete variables is visible. It is apparent that the FC intervals
have always larger or equal coverage than the nominal 68.2% (marked as a horizontal dashed
line) as expected, while the LLC values fluctuates around this value. In the inset plot a
zoom to small values of µ is shown. For the smallest values of µ, namely µ < 0.4, the LLC
intervals show a large coverage compatible with the FC intervals. This can be explained by
the fact that for these µ, the most likely outcome is to have k = 0 and therefore the LLC
interval (0, 0.5) contains the true µ the vast majority of the trials. When µ > 0.5, the LLC
does not contain anymore the true µ although k = 0 remains the most probably outcome,
causing the abrupt drop in the coverage to values below 50%. As µ increases, positive values
of k becomes increasingly likely (and k = 0 increasingly unlikely) and the impact of this
undesired behaviour of the LLC interval for k = 0 vanishes, leading to reasonable coverages
around 68.2%.

The error estimation of µ has to be computed for each UMD module in the event during
runtime in the reconstruction chain of the UMD in Offline . If there were no corner-clipping
(i.e., pcc = 0), the FC intervals could be computed beforehand for each of the 64 possible
values of k and stored in a look-up table, thus avoiding its costly calculation during runtime.
Unfortunately, since pcc 6= 0, the single-module likelihood depends both on k and on the
arrival the direction (θ, φ) of the shower, so the uncertainty interval needs to be unavoidably
computed during runtime. In a trade-off between reasonable computing time and coverage

6The true coverage can also be analitically calculated during the construction of the intervals, so the toy
Monte-Carlo results can be compared to this as well, see Appendix C
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Figure 4.18: Coverages of the FC and the LLC method obtained by the toy Monte-Carlo experi-
ment as function of the true µ. Horizontal dashed line marks the 68.2% value.

values, we use the FC interval only in the case of k = 0. Regardless of the value of pcc of
the module, we assign the more conservative interval computed for pcc = 0, which yields
(µ1, µ2) = (0, 1.28). For 1 ≤ k ≤ 63, the LLC interval, calculated during runtime, is used.

Finally, it is instructive to compare the length of the LLC uncertainty interval with that of
a Poisson interval. For a given µ̂, the error assuming a Poisson distribution is σPoisson =

√
µ̂.

Since the LLC gives assymetric errors, we take the error as the average σLLC = σ++σ−
2 . In

Fig. 4.19, we show the relative errors σPoisson/µ̂ and σLLC/µ̂ as function of µ̂. For small µ̂,
the two error estimates are close to each other, indicating that in the limit of low number
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Figure 4.19: Comparison of the relative error of µ̂ assuming a Poisson distribution and the one
obtained by the log-likelihood contour method.

of muons, Poissonian fluctutations are the dominating source of fluctuations. However, the
two curves start to differ as µ̂ increases, the one corresponding to the LLC case being above
the Poisson curve. The relative error of a Poisson estimate tends to zero as the number of
counts increases, whereas the relative error given by the LLC reaches a minimum around
µ̂ ∼ 50, after which start to increase again. Indeed, as the number of muons increases, the
fluctuations due to the segmentation of the detector start to dominate and the assumption
of a Poisson process would underestimate the uncertainties.

Since detectors close to the shower core are exposed to larger number of muons, assum-
ing a Poisson likelihood would give these detectors the largest weight in the muon LDF
fitting process. As it will be shown in Section 6.2.3, this can heavily bias the fit. In addition,
the underestimation of the signal fluctutations of the detectors lead to underestimation of
the uncertainties in the muon LDF fit parameters. Despite this being already noted in Ref.
[63], the official reconstruction of the UMD implemented in the Offline software was still
using the Poisson likelihood. In Chapter 6, we implement in Offline the likelihood model
developed in this chapter and compare its performance to the existing Poisson likelihood.

4.4 Summary

In this chapter, the likelihoods of an idealized segmented detector, developed in Ref. [63]
for fixed µ and in Ref. [64] for fixed Nµ, were extended to take into consideration detector
effects, such as detector inefficiency, noise and corner-clipping muons. This was achieved
by proposing suitable and easy-interpretable probabilistic models for each effect and by
thinking in terms of effective number of particles: each effect contributes to decreasing
(inefficiency) or increasing (noise and corner-clipping) this effective number.

The key ingredients are the single-muon inefficiency probability, pI, the corner-clipping
probability, pcc, and the single-bar noise probability pn. All of these can be straightforwardly
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measured in the laboratory. With these parameters, the final probablity distributions for Nµ

and µ were presented in Eq. (4.23) and Eq. (4.24), respectively.
With Monte-Carlo simulations, we showed that the derived distributions provide an

accurate representation of the detector signal. We additionally demonstrated that the new
maximum likelihood estimators have reasonable biases. In particular, a new and fundamen-
tally different feature arises when the noise is included in the likelihood: the presence of a
detection limit. If the number of activated bars is less than the expected number of bars due
to noise, a negative value is predicted by the estimators and nothing can be said about µ or
Nµ.

Subsequently, the formality derived for a general segmented detector was applied to
the UMD case. We obtained pI and pn from existing references and concluded that these
effects are negligible for the UMD and could be neglected for practical purposes. Although
no laboratory measurement is available for pcc, we present in the next chapter a data-driven
method to estimate it. As will be shown, the corner-clipping effect is the dominant effect
above inefficiency and noise, and it is considered in the UMD likelihood.

Finally, with the new likelihood, we tested two methods to compute an error interval for
µ, namely, the log-likelihood contour method and the Feldman-Cousins approach. We tested
the coverage of the two intervals with a toy Monte-Carlo simulation. The Feldman-Cousins
approach yields, by construction, equal or larger coverages than the desired nominal value of
68.2%, but at the cost of a rather expensive calculation. On the other hand, the LLC intervals
are more easily calculated. The coverage provided by this method is sometimes smaller than
68.2% but in most of the cases remains reasonably close. The exception to this is the case
where zero bars are activated. Thus, it was decided to use the Feldman-Cousins interval
only when zero bars are activated, and the LLC intervals for the rest of the cases.
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Chapter 5
Data-driven method to estimate the
corner-clipping probability

In the previous chapter, the single-detector likelihood of an idealized segmented detector
was extended to take into consideration the detector inefficiency, noise and the corner-
clipping muons. In this way, a more realistic model of a segmented detector could be
achieved.

The inclusion of these effects was accomplished by introducing new and easily-interpretable
parameters: the single-muon inefficiency probability pI, the single-bar noise probability pn
and the single-muon corner-clipping probability pcc. For the UMD case, it was shown that
pI and pn could be neglected, with pcc being the only relevant quantity to consider. Since no
laboratory measurement of such parameter is available, it is necessary to develop a reliable
method to estimate it. In this chapter we present a data-driven approach to obtain pcc.

The chapter is organized as follows: In Section 5.1 we describe the method and apply it
to simulations. We further use the simulations to compare the estimated and true pcc, and to
assess the bias of the corner-clipping corrected estimator N̂µ. Finally, in Section 5.2, we apply
the method to data and compare the estimated pcc with the one obtained in simulations.

5.1 Description of the method and validation with simulations

First, it is necessary to consider the detector in terms of halves, as they are the most irre-
ducible units of material in which a particle can be injected. We will refer to the half contain-
ing strips 1 to 32 as half 1, and the half containing strips 33 to 64 as half 2. In addition, we
will denote the number of activated bars in one half as k̃. Thus, the total number of triggered
bars in a module can be written as k = k̃1 + k̃2, where k̃1 and k̃2 correspond to the number
of triggered bars in half 1 and 2, respectively.

When a single muon is injected into a half, three outcomes are possible: no bar is ac-
tivated, a single bar is activated or two neighboring bars are activated. If we call N1µ the
number of times in which only a single muon was injected into a half, we can write

N1µ = N0 + N1-bar + Ncc, (5.1)

where N0, N1-bar and Ncc are the number of times in which zero, one and two neighboring
bars were activated, respectively. Thus, we can write

pcc =
Ncc

N1µ
. (5.2)

51
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If we neglect detector inefficiency, which is a reasonable assumption given the large
detection efficiency measured with a single bar [60], we can approximate N1µ

∼= N1-bar + Ncc.
Therefore, we have

pcc(θ, ∆φ) =
Ncc(θ, ∆φ)

N1-bar(θ, ∆φ) + Ncc(θ, ∆φ)
, (5.3)

where we explicitly indicate the dependence with θ and ∆φ. Since counting the number
of modules halves with only one activated bar is straightforward, estimating pcc reduces to
estimating Ncc.

We begin by considering the number of UMD modules halves with only two activated
bars (i.e. k̃ = 2), which we call N2-bars:

N2-bars = Nneigh + Nnon-neigh, (5.4)

where Nneigh and Nnon-neigh are the number of halves in which the two bars were neigh-
boring and non-neighboring, respectively. We can write

Nneigh = Ncc + N2µ, (5.5)

where N2µ is the number of times in which the neighboring pair of bars were activated
due to two different muons. Thus, it is necessary a way to obtain Ncc from Nneigh, discriminat-
ing the corner-clipping from the two-muons case. For that purpose, the timing information
of the signals can be exploited.

We call ∆t the absolute difference between the start times of the two signals involved1.
In Fig. 5.1, we show the histograms of the ∆t values for halves with k̃ = 2 using a set of
simulated showers. These showers correspond to the EPOS-LHC discrete library described
in Section 7.5. We separate the neighboring and the non-neighboring case into two different
histograms. In addition to the expected fact that the non-neighboring histogram has a larger
number of entries, it is apparent that the neighboring histogram shows a distinctive peak
for small ∆t that is not present in the non-neighboring case. We further split the neighboring
case into two categories: the corner-clipping case, obtained by requesting a single muon
injected, and the two-muons case. The former is displayed in the green filled histogram and
the latter in the grey filled histogram in the same figure. Since the two signals are generated
by the same muon, the corner-clipping values accumulate in the small ∆t (∆t . 5) region,
with extremely few exceptions caused by the activation of a neighboring bar due to a non-
muonic uncorrelated particle. We conclude that the ∆t distribution of the neighboring case
is the sum of two distributions: one, peaked at small ∆t values generated by corner-clipping
muons, and the other caused by two different muons randomly hitting two neighboring
bars. Furthermore, we expect the two-muons case to have the same ∆t distribution than
the non-neighboring case as they both correspond to the same underlying process, namely,
two muons hitting two different bars. Thus, any statistically significant deviation between
the distributions of the neighboring and the non-neighboring case can be attributed to the
corner-clipping muons alone. We will use this to estimate Ncc.

We start with a probabilistic argument by computing the probability of having two
neighboring bars by chance. The probability of activating the i-th bar is p(i) = 1/ñs and
the probability of activating the neighboring bar i + 1 given that the i-th was activated is
p(i + 1|i) = 1/(ñs − 1), where ñs = ns/2 = 32 is the segmentation of one modules half.
Thus, given the condition that two (and only two) bars are activated, the probability of them
being neighboring just by chance is given by

1The start time is the time of the first "1" of the muon pattern.
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pexp
2µ = 2

ñs−1

∑
i=1

p(i)p(i + 1|i) = 2
ñs − 1

= 6.45%, (5.6)

where a factor 2 comes from considering that i and i + 1 are exchangable. The subindex
2µ is to emphasize that this situation corresponds to two different muons that randomly hit
two neighboring bars and the supraindex is to indicate that this is an expected value using
only a probabilistic consideration. Therefore, in the absence of corner-clipping muons (i.e.
sufficiently large ∆t), we expect the quotient Nneigh

Nneigh+Nnon-neigh
to be equal to pexp

2µ . We refer to the
quotient calculated for large ∆t as pmeas

2µ , where the supraindex indicates that is a measured
value extracted from data.

In Fig. 5.2, this fraction is displayed for each ∆t, computed dividing the blue histogram
and the sum of the blue and orange histogram in Fig. 5.1 for each bin. The dashed grey line
corresponds to pexp

2µ , while the dotted magenta line indicates pmeas
2µ , calculated as the fraction

Nneigh
Nneigh+Nnon-neigh

using only pairs of strips with ∆t > 6. It is apparent that in this regime the

neighboring fraction remains constant and that pmeas
2µ and pexp

2µ are consistent.
In contrast, for ∆t < 6, a rapid increase in the neighboring fraction is observed as a

consequence of the corner-clipping effect. In this regime, we can estimate the number of
pairs that correspond to the two-muons case by using p2µ. For each ∆t, we have

N̂2µ = p2µ

(
Nneigh + Nnon-neigh

)
. (5.7)

Therefore, an estimate for Ncc is obtained by replacing N̂2µ in Eq. (5.5):

N̂cc(∆t) = Nneigh(∆t)− N̂2µ(∆t) = Nneigh(∆t)− p2µ

(
Nneigh(∆t) + Nnon-neigh(∆t)

)
, (5.8)

where we have explicitly indicated that the equation holds for each ∆t.
In Fig. 5.3, the estimations obtained by eqs. 5.7 and 5.8 are displayed along with the same

histograms shown in Fig. 5.1. The measured p2µ value was used in eqs. 5.7 and 5.8. A high
degree of agreement between the estimations and the true histograms can be seen.

In order to get an estimate of the total number of corner-clipping muons, as needed in
Eq. (5.3), we sum over all ∆t ≤ 5:

N̂tot
cc =

5

∑
∆t=0

N̂cc(∆t).

Thus, an estimator p̂cc can be constructed by replacing Ncc by N̂tot
cc in Eq. (5.3).

By applying this procedure in bins of (θ, ∆φ) the angular dependence of p̂cc can be
obtained. The result is shown in Fig. 5.4. As expected, p̂cc increases with θ and, for a fixed
θ, it increases as ∆φ approaches to 90◦ (or equivalenty, as | sin(∆φ)| approaches to 1). For a
fixed θ, we fit

pcc(θ, ∆φ) = m(θ) (| sin ∆φ| − 0.5) + b(θ). (5.9)

In turn, we fit the evolution of the slope and intercept with θ with linear functions in
sec θ,

m(θ) = m0 + m1(sec θ − 1.2),
b(θ) = b0 + b1(sec θ − 1.2).

(5.10)

The results of such fits are displayed in Fig. 5.6.
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Figure 5.1: Histograms of ∆t values for modules halves with k̃ = 2. Blue (orange) corresponds to
the (non-)neighboring case. The green filled histogram corresponds to the true corner-clipping
muons, identified by simultaneously requesting the condition of a single muon injected and two
neighboring bars with muon pattern. The grey filled histogram shows the case in which two
muons activate two neighboring bars by chance.
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Figure 5.2: Fraction of neighboring pairs for each ∆t, obtained by dividing the neighboring
histogram by the sum of the neighboring and non-neighboring histograms of Fig. 5.1. Grey
dashed line represents the expected value of the fraction in the absence of corner-clipping muons
(Eq. (5.6)). Magenta dashed line corresponds to the neighboring fraction using only pairs with
∆t > 6.

The true pcc, calculated using the true values of Ncc and N1µ, is compared to the estimated
p̂cc in Fig. 5.5. It is clear that the proposed method offers a satisfactory estimator of the corner-
clipping probability.
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Figure 5.3: Same as in Fig. 5.1 together with estimations from eqs. 5.7 and 5.8
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Figure 5.4: Estimated corner-clipping probability as function of | sin ∆φ| for six different zenith
angles. Dashed lines correspond to fits to the model of Eq. (5.9).

As a final step, it is necessary to validate the performance of the estimator of Eq. (4.16)
combined with the parameterization of p̂cc given by Eqs. 5.9 and 5.10 using realistic full
detector simulations. In Fig. 5.7, the relative bias of the estimator as a function of the dis-
tance to the shower core is displayed using air-shower simulations of proton primaries
with lg(E/ eV) = 18 and EPOS-LHC as hadronic model. For brevity, only the most vertical
(θ = 0◦) and inclined (θ = 48◦) zenith angles are shown. The same plot for iron primaries is
visible in Fig. 5.8.
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Figure 5.5: Comparison between estimated and true corner-clipping probability. The dashed line
indicates the identity function.
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Figure 5.6: Evolution of the slope (left) and intercept (right) of the model Eq. (5.9) as a function
of sec θ. Red dashed lines correspond to the linear fit of Eq. (5.10).

The same conclusions can be extracted for both primaries. Firstly, it is worth noting that
the bias is reasonably constant in the entire range of r values. Secondly, since the corner-
clipping effect is minimum for θ = 0◦, the difference between the corner-clipping-corrected
(circles) and uncorrected (squares) estimator is not very large in this case. In contrast, for
θ = 48◦, the uncorrected estimator shows a bias of ∼ 12%, while the corrected one presents
a reduced bias of ∼ 2.5%. Lastly, the residual bias of ∼ 2.5% that remains in the corrected
estimator can be attributed to the simplifications involved in the modeling of the corner-
clipping effect. Further, even in the idealized Monte Carlo simulations shown in Section 4.1.3,
in which the the corner-clipping effect is indeed simulated as a binomial process with a
defined pcc, a residual bias is still visible (see Fig. 4.10 and Fig. 4.11) as expected from the
segmentation bias of the detector discussed in Section 4.1.1 (see Fig. 4.2 and Fig. 4.5). For
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Figure 5.7: Mean relative bias of different estimators of Nµ between 100 ≤ r/m ≤ 1000 for proton
simulations with lg(E/ eV) = 18 and EPOS-LHC as hadronic model. Square markers correspond
to Eq. (4.5), circular to Eq. (4.16) and triangular to Eq. (5.11). Left (right) plot corresponds to
θ = 0◦ (θ = 48◦). The p̂cc values given by the parameterization of Eqs. 5.9 and 5.10 are used.
Error bars correspond to the standard deviation of the mean. Horizontal dashed line marks the
null bias.

this reason, a final global, zenith- and azimuth-independent correction can be applied to the
estimator,

N̂µ =
1

1.025

(
1

(1 + pcc)

ln(1− k/ns)

ln(1− 1/ns)

)
. (5.11)

The bias of the estimator of Eq. (5.11), represented as triangular markers in Fig. 5.7 and
Fig. 5.8, is now centered around zero as desired.

Finally, the mean relative bias over 100 ≤ r/m ≤ 1000 of Eq. (4.16) and Eq. (5.11) as
function of θ for all primaries and energies is shown in Fig. 5.9. It is evident that the uncor-
rected estimator shows an increasing bias with θ, while the corrected one shows a flat bias
centered in zero. We conclude that p̂cc succesfully captures the behaviour of the bias caused
by corner-clipping muons with the zenith angle. This conclusion holds also for air showers
simulated with QGSJetII-04 as hadronic model, as shown in Appendix D.

5.2 Application of the method to data

The neighboring and non-neighboring histograms for data along with the estimations cal-
culated with Eqs. 5.7 and 5.8 are displayed in Fig. 5.10. Like in simulations (Fig. 5.3), the
signature of the corner-clipping muons is visible in the neighboring histogram as an excess
of entries for ∆t . 52. Furthermore, the same behaviour observed in simulations for the frac-
tion of neighboring pairs (Fig. 5.2) is present in data, as shown in in Fig. 5.11. The fraction
remains constant for ∆t > 6 with a value consistent with pexp

2µ , while it increases rapidly for
small ∆t values as a consequence of the corner-clipping muons.

The estimated corner-clipping probability as function of | sin ∆φ| for different zenith
angle bins, together with the fits to Eq. (5.9), is presented in Fig. 5.12. To facilitate the com-
parison between data and simulations, the zenith bins were selected so that their center was
close to one of the discrete zenith angles in the simulation library. Similar to what was found

2In Appendix B, we use the corner-clipping muons to study the time response of the detector.
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Figure 5.8: Mean relative bias of different estimators of Nµ between 100 ≤ r/m ≤ 1000 for iron
simulations with lg(E/ eV) = 18 and EPOS-LHC as hadronic model. Square markers correspond
to Eq. (4.5), circular to Eq. (4.16) and triangular to Eq. (5.11). Left (right) plot corresponds to
θ = 0◦ (θ = 48◦). The p̂cc values given by the parameterization of Eqs. 5.9 and 5.10 are used.
Error bars correspond to the standard deviation of the mean. Horizontal dashed line marks the
null bias.
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Figure 5.9: Mean relative bias over 100 ≤ r/m ≤ 1000 of estimators of Eq. (4.5) (unfilled markers)
and Eq. (5.11) (filled markers). Different markers shape corresponds to different energies, while
different colors indicate different primaries.

in simulations, and in agreement with what is expected for corner-clipping muons, p̂cc in-
creases both with θ and | sin ∆φ|. In addition, m and b also show a linear behaviour in sec θ,
as shown in Fig. 5.13. This result constitutes the first quantification of the corner-clipping
effect using data.

The comparison between data and simulations of p̂cc for each (θ, | sin ∆φ|) bin is dis-
played in Fig. 5.14. The corresponding comparison of the parameters m and b is shown in
Fig. 5.15. Particularly for the most inclined zenith angles, a slight discrepancy is observed
between the p̂cc values found in data and simulations, which is also reflected in the evolution
of m and b with sec θ.
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These differences might be ultimately attributed to some simplifications present in the
simulation of the detector. For example, the scintillator-fiber-electronics system, whose re-
sponse was tuned to a handful of laboratory measurements, is the same for all the detectors
in the simulated array—an assumption that is too optimistic for real detectors in the field, for
which variations between different modules are expected. As a result, different strips in the
field would respond slightly different to the same energy deposition. Similarly, differences
between the noise levels and efficiency between bars can also impact the outcome of this
analysis.

Due to this difference between data and simulations, throughout this work we will use
the parameterization of p̂cc of Fig. 5.6 for simulations and the one of Fig. 5.13 for data.

Nevertheless, it is necessary to stress that this discrepancy is not highly significant as
it does not represent a large impact in the final corner-clipping correction. To ilustrate this,
we can compare the maximum likelihood estimator of Eq. (4.15) using the p̂cc found for
data with that of simulations. To assess the worst-case scenario, we use the values of the
(θ, | sin ∆φ|) bin for which the difference between data and simulations is the largest. This
corresponds to (θ = 48◦, | sin(78.75◦)| = 0.98), p̂data

cc = 0.10 and p̂sim
cc = 0.13. Thus,

µ̂data

µ̂sim
=

1 + p̂sim
cc

1 + p̂data
cc

= 1.03.

Therefore, the largest discrepancy between the p̂cc values implies only a 3% impact in
the final correction.
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Figure 5.10: Histograms of ∆t for the neighboring (blue) and non-neighboring (orange) case
using data. Unfilled markers correspond to the estimations obtained by eqs. 5.7 and 5.8.
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Figure 5.12: Estimated corner-clipping probability as function of | sin ∆φ| for six different zenith
angle bins of data. Dashed lines correspond to fits to the model of Eq. (5.9).
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5.3 Comparison to previous work

As already mentioned, in previous works the corner-clipping effect was corrected for by pa-
rameterizing the mean bias of N̂µ as a function of θ and ∆φ using simulations. This approach
was used in Refs. [54, 69, 70]. In Ref. [70], the parameterization had also a dependence on
the uncorrected number of muons. It is worth noting that these are end-to-end parame-
terizations and therefore account for all other source of biases included in the simulation
(segmentation, inefficiency, noise).
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In Ref. [69], a detector simulation with PMTs as photodetector was used, making the com-
parison to our parameterization not possible. In Refs. [54, 70], SiPMs were used and therefore
a comparison can in principle be made. However, the detector simulation used in Ref. [54]
was faulty, yielding overestimated signals in the UMD [71], which in turn overestimated
the mean bias. Thus, a comparison to the parameterization found there is meaningless. This
issue was corrected in a later version of Offline .

The latest work using SiPM was the one in Ref. [70], for which the detector simulation in
Offline was the same used in this work. Therefore, a comparison can be made to our results.

First, it is necessary to describe the reconstruction procedure to estimate the number of
muons used in Ref. [70], which differs to the one used in this thesis3. The procedure consists
in doing an estimation in each of the 2048 time bins. For a given time bin j, the number of
bars k j with a muon pattern that started in that bin is computed. The estimated number of
muons in that bin is obtained by the formula

ln(1− k j/(ns − ninh
j ))

ln(1− 1/(ns − ninh
j ))

,

where ninh
j is the total number of inhibited channels in that bin, which correspond to the

number of bars that presented a muon pattern earlier in the trace and are considered dead.
We note that this corresponds to Eq. (4.5) but with a modified segmentation ns − ninh

j . The
total number of muons in the detector for the event is then obtained by summing over all
the time bins

Ñuncorr
µ =

2048

∑
j=1

ln(1− k j/(ns − ninh
j ))

ln(1− 1/(ns − ninh
j ))

, (5.12)

where the superscript is to highlight that this estimator is not yet corrected for corner-
clipping and other sources of biases.

As opposed to Eq. (4.5), the estimator of Eq. (5.12) depends on the arrival time distri-
bution of the muons through the k j’s. Thus, a different intrinsic bias between the two is
expected (see e.g. Fig. 8 of Ref. [66]). The bias-corrected estimator is obtained by

Ñcorr
µ =

Ñuncorr
µ if Ñuncorr

µ < 1.01
Ñuncorr

µ

1+ fbias(θ,∆φ,Ñuncorr
µ )

if Ñuncorr
µ ≥ 1.01

(5.13)

where fbias is the bias correction, obtained by parameterizating the mean relative bias
of Ñuncorr

µ as function of θ, ∆φ and Ñuncorr
µ . The limit 1.01 was set to allow for numerical

inaccuracies. fbias is given by

fbias(θ,∆φ, Ñuncorr
µ ) = a(θ) + b(θ)| sin ∆φ|+ c(θ) lg(Ñuncorr

µ )

a(θ) = 0.094− 0.021 sin2 θ

b(θ) = −0.34 + 0.34 sec θ

c(θ) = −0.038 + 0.002 sin2 θ.

(5.14)

For consistency in the notation, let us call Eq. (4.5) and Eq. (5.11) as Nuncorr
µ and Ncorr

µ ,
respectively. To compare the performance of Nuncorr

µ and Ncorr
µ to that of Ñuncorr

µ and Ñcorr
µ ,

we used a set of proton showers of 1018 eV, using EPOS-LHC as the hadronic interaction
model. We reconstructed the number of muons in each module with Eqs. 4.5, 5.11, 5.12 and

3A more in-depth discussion on the differences can be found in Section 6.1
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5.13, and compare their outcome to the true number of injected muons to assess the bias. For
the comparison to be fair, we used the pcc obtained for simulations when applying 5.11.

In Fig. 5.16, the relative bias as a function of r for all the estimators is shown for the zenith
angles θ/◦ = {0, 32, 38, 48}. It is apparent that the uncorrected and corrected estimators used
in this work (Eqs. 4.5 and 5.11, respectively) are compatible to those developed in Ref. [70]
(Eqs. 5.12 and 5.13, respectively).
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Figure 5.16: Mean relative bias as a function of r of the uncorrected (Eqs. 4.5 and 5.12) and the
bias-corrected number of muons (Eqs. 5.11 and 5.13). Upper left (right) panels correspond to
θ = 0◦ (θ = 32◦), whereas lower left (right) correspond to θ = 38◦ (θ = 48◦)

5.4 Summary

In this chapter, a novel and simple method to estimate the single-muon corner-clipping prob-
ability in a data-driven way was presented. In this way, the magnitude of the corner-clipping
effect, which until now had to be characterized through simulations, could be quantified for
the first time using data.

The method relies on using halves of detectors with either one or two bars showing
a muon pattern. For the latter, the absolute difference in the start times of the signals, ∆t,
allows for estimating the number of corner-clipping muons

Firstly, we used air shower and full detector simulations to validate the method. We
have shown that, as a consequence of the corner-clipping muons, the distribution of ∆t is
fundamentally different in the neighboring and non-neighboring case for small ∆t. Indeed,
an excess of entries for ∆t . 5 is present in the neighboring case due to the corner-cliping
effect. By quantifying this excess in bins of θ and ∆φ, pcc(θ, ∆φ) could be estimated. We
further confirmed that the estimated pcc increases with θ and ∆φ, as expected. In addition,
we have demonstrated that the estimated and true pcc are compatible.

Secondly, we assessed the bias of the estimator N̂µ with and without the corner-clipping
correction. When no correction is applied, N̂µ increases with θ as a consequence of the
corner-clipping muons. In contrast, a flat dependence on θ is obtained when the correction
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is applied, indicating that the estimated pcc is succesfully capturing the behaviour of the
bias produced by this effect. A zenith- and azimuth-independent residual bias of ∼ 2.5% is
corrected for in a final step.

Thirdly, we applied the method to data and confirmed the same qualitative behaviour
found in simulations for the ∆t distributions and for the estimator of pcc(θ, ∆φ). The esti-
mated pcc is somewhat higher for simulations than to data, which we attributed to simplifi-
cations assumed in the detector simulation. This discrepancy, however, has a small impact
in the estimator N̂µ.

Additionally, we compared the bias of the estimator developed in this chapter to the one
used in a previous work, which used a different approach to estimate the number of muons
and to correct for the bias. We have shown both estimators to be compatible.

Finally, it is relevant to highlight that this method is generally applicable to any kind of
segmented detector with time resolution.
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Chapter 6
Reconstruction of the muon lateral
distribution function

The muon content of an air shower is a mass sensitive observable as heavier primaries pro-
duce more secondary muons during the shower development than lighter ones. Typical air
shower experiments, consisting of an array of detectors arranged in a grid, only sample a
fraction of the surviving muons at the ground. Such is the case of the Pierre Auger Observa-
tory. To overcome this, a muon lateral distribution function (MLDF) is used to fit the muon
footprint in the array. Then, the muon density at a reference distance from the shower axis
serves as a proxy for the muon content of the shower.

In this chapter, we describe and optimize the procedure to reconstruct the MLDF at the
event level. In Section 6.1, we discuss the reasons of not using the time resolution of the
detector in the MLDF fit, unlike all the previous analyses involving the UMD. In Section 6.2,
we assess the impact in the MLDF fit results of switching from the previous likelihood to the
likelihood model proposed in Chapter 4. In addition, a new way of fitting the core during
the MLDF fit is introduced. We evaluate the discrimination power of ρ450 yielded by the new
reconstruction in Section 6.3. Furthermore, we study the impact of leaving the MLDF slope
fixed/free on the merit factor of the new recostrunction. Finally, we provide a data-driven
parameterization of the MLDF slope in Section 6.4.

6.1 On the time information of the detector

In all of the previous analyses of the UMD data, the time resolution of the detector was
included. This means that, in contrast to the formality described in Section 4.1, the trace
was divided into time windows and a number of muons in each window was estimated.
Subsequently, the total number of muons in a detector was obtained by summing over the
number of estimated muons in each window.

In the analysis of the PMT data [62], muons were counted in windows of ∼22 ns (7 time
bins), while in the first analyses of SiPM data [72, 73] a window of ∼56 ns (18 bins) was
used. The window length in the analyses were selected based on the time response of the
different photodetectors and their associated electronics. Later, in Ref. [66], it was shown
that dividing the trace in windows, together with a sub-optimal modeling of the dead time
of the detector, can lead to biases in the estimators, particularly for large number of muons.
Thus, an improved strategy accounting for dead channels was developed. This strategy was
used in the analysis of the mean LDF of the UMD SiPM data in Ref. [70].

67
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Due to this precedent, we deem necessary to discuss the reasons behind the choice of
not using the time resolution in this work.

The expressions of Eq. (4.4) and Eq. (4.5) (and the subsequent modifications to account
for corner-clipping, inefficiency and noise derived in Section 4.1) are built from k, the total
number of segments with at least one muon pattern in the entire 6.4 µs-long trace. Conse-
quently, this approach does not utilize the time information of the muon trace: a bar showing
multiple patterns throughout its trace is treated the same as a bar showing only one pattern.
As a result, all the probability models derived depended solely on the total number of muons
irrespective of their arrival time distribution.

Nevertheless, muons arrive at the detector spread in time with a time distribution dµ(t)/dt.
The total number of expected muons corresponds to the integral of the distribution over the
duration of the trace, µ =

∫
(dµ/dt) dt. In an effort to use all the available information from

the detector, the likelihood of Eq. (4.3) was extended to consider the time resolution of the
detector in Ref. [74]. This was achieved by dividing the trace in nw time windows. In each
window, Eq. (4.3) is applied:

L(k, µ) =
nw

∏
j=1

(
ns

k j

)
e−µj(eµj/ns − 1)k j , (6.1)

where k j and µj are the total number of bars with pattern and the number of expected
muons in the j-th time window, respectively. µj is obtained by integrating the time distribu-
tion in the j-th window. It follows that µ = ∑nw

j µj.
We note that the observable has now changed from a single integer k in Eq. (4.3), to a

vector of integers k = (k1, .., knw) in Eq. (6.1). Thus, contrary to Eq. (4.3), Eq. (6.1) is sensitive
to the time distribution of the impinging muons through the k j. Also, the single parameter µ
in Eq. (4.3) is now replaced by the vector of expected muons in each window µ = (µ1, .., µnw).

As shown in Ref. [66], Eq. (6.1) is sub-optimal as it does not accounts for inhibited chan-
nels. When these are considered, the length of the time window can be reduced to a single
time bin (i.e., nw = 2048). With these modifications, Eq. (6.1) becomes

L(k, µ) =
2048

∏
j=1

(
ns − ninh

j

k j

)
e−µj(eµj/(ns−ninh

j ) − 1)k j , (6.2)

where ninh
j denotes the number of inhibited (dead) channels in the j-th bin. These corre-

spond to the number of bars that presented a muon pattern in an earlier time bin between
j− 12 and j− 1, where 12 bins corresponds to the dead time of the detector (see Section 3.3.4).
We notice that the only difference with Eq. (6.1) is the replacement of ns by ns − ninh

j . It
follows that the effective segmentation of the detector, i.e., the number of available non-
inhibited bars, changes in each bin and is given by ns − ninh

j .
By maximizing the likelihood of Eq. (6.2), the estimator for µ can be obtained:

µ̂ =
2048

∑
j
−(ns − ninh

j ) ln(1− k j/(ns − ninh
j )). (6.3)

The same reasoning can be used to consider the time resolution in the case of Nµ. For
completeness, we write the expressions below:

L(k, Nµ) =
2048

∏
j=1

(
ns − ninh

j

k j

)
S(Nµj , k j)

k j!

(ns − ninh
j )

Nµj
, (6.4)
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N̂µ =
2048

∑
j

ln(1− k j/(ns − ninh
j ))

ln(1− 1/(ns − ninh
j ))

. (6.5)

Following the naming adopted in Ref. [66, 70], we refer to Eq. (6.2) and Eq. (6.4), and its
corresponding estimators of Eq. (6.3) and Eq. (6.4), as the one-bin strategy since the muon
trace is analyzed in windows of one time bin. In contrast, we refer to Eq. (4.3) and Eq. (4.4)
(and to Eq. (4.2) and Eq. (4.5) for Nµ) as the infinite window strategy, since the muon trace is
analyzed in a single window equal to the total length of the trace.

Both strategies possess pros and cons. The one-bin strategy is useful for reconstructing
the time distribution of muons [66], crucial for timing studies, such as those aiming at recon-
structing the muon production depth profile of the shower1. However, the arrival times of
the muons is irrelevant for the purpose of LDF fitting. Indeed, the relevant parameter for the
fit of the LDF is µ (see Eq. (4.1)), while Eq. (6.2) is a function of µ. Due to the lack of knowl-
edge of dµ/dt (and therefore of the µj’s), the likelihood of Eq. (6.2) can not be computed for a
given µ. In Ref. [74], this is overcome by using the profile method treating the µj as nuisance
parameters. This lead to an approximate likelihood which resulted in a slight improvement
in the resolution of the estimator of the muon shower size, particularly at higher energies,
and in an increase of unsaturated events. However, in the original publication, the number
of time windows was small compared to the total number of bins in the trace since inhibited
channels were not taken into account. Applying the profile method to Eq. (6.2) would mean
having 2048 nuisance parameters for each of the modules in the event, adding complexity
and time to the already computationally expensive process of LDF fitting.

In addition, Eq. (6.2), and thus the estimator of Eq. (6.3), is sensitive to the undershoot
present in the fast-shaper signal [66, 75]. Due to this, a signal generated by a late muon can
be mounted on top of the undershoot of the signal of an earlier muon in the same bar. As a
consequence, the late muon signal, which would have generated a pattern match had the
undershoot not existed, could fail to produce a muon pattern, leading to under-counting2.
This generates a non-trivial bias in the estimator of Eq. (6.3) that depends not only on the
total number of impinging muons but also on their time distribution. Although this bias
can be removed to certain extent from the estimators of Eq. (6.3) by using air shower and
full detector simulations (e.g. via Eq. (5.13) used in Ref. [70]), it is not clear how to include
the undershoot effect in the likelihod of Eq. (6.2), necessary for the event-wise MLDF fit. In
contrast, Eq. (4.3) and Eq. (4.4) are insensitive to this effect, as it is enough with the earliest
muon pattern in the bar to mark it as triggered.

For the previously mentioned reasons, we consider the infinite window strategy the more
suitable and conservative approach for the purpose of LDF fitting at the event level. Based
on these considerations, it has been adopted by the Observatory as the official strategy in
the UMD reconstruction chain in Offline .

6.2 Reconstruction optimization

A modified NKG function, like the one used in the Kascade-Grande experiment, was found
to provide a good representation of the UMD data. Is thus chosen as the model to fit the
MLDF at every event. The function is subsequently evaluated at a reference distance to be

1In this direction, the study on the time response of the detector shown in Appendix B can be used to estimate
the uncertainty in the true arrival time of muons.

2The undershoot can extend up to 18 time bins [75]. Thus, increasing the inhibition window from 12 to 30
bins could be benefitial to reduce the impact of the effect, although it would not supress it completely. However,
such a large window would make the strategy to effectively perform as the infinite window strategy.
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used as a proxy of the total number of muons in the shower. The reference distance, selected
to minimize the systematic uncertainty due to the unknown true shape of the LDF, depends
almost exclusively on the spacing and shape of the array [38]. For the infill array of the Pierre
Auger Observatory, it has been found to be 450 m both for the SD [76] and UMD [63].

The expression for the modified NKG is given by

ρ(r) = ρ450

( r
450 m

)−α
(

1 + r/r0

1 + 450 m/r0

)−β ( 1 + (r/10r0)2

1 + (450 m/10r0)2

)−γ

, (6.6)

where α = 0.75, γ = 3 and r0 = 320 m. These values were found to be optimal to describe
the mean LDF observed by the UMD [70]. ρ450 is the muon density at the reference distance
and β is a shape parameter usually referred as the slope of the LDF. A larger (smaller) value
of this parameter translates into a steeper (flatter) LDF.

Like in the SD case, β is only left free if there is enough spacing between the detectors
around 450 m to provide a reliable fit. The conditions to fit β are:

• A minimum number of 5 candidates UMD stations. A UMD station is candidate if it
has at least one candidate module.

• At least one UMD station in the valid range of 250 m ≤ r ≤ 750 m.

• If there are more than one UMD station in the valid range, the maximum mutual
distance has to be larger than 250 m.

• If there are more than two UMD stations in the valid range, the maximum mutual
distance has to be larger than 165 m.

• If there are more than three UMD stations in the valid range, the maximum mutual
distance has to be larger than 125 m.

If none of the previous conditions are met, β is fixed according to a parameterization de-
pending on the zenith angle and energy of the shower. Said parameterization is obtained
using the subset of events in which β was left free as detailed in Section 6.4. Lastly, it is worth
to add that the muon LDF is fitted only if there is a minimum of three UMD stations with at
least one reconstructed muon each. This condition is necessary to avoid attempting to fit an
LDF in events with too few muons.

6.2.1 Event likelihoods

The optimal parameters of the LDF are obtained via a log-likelihood minimization. To this
aim, UMD modules in an event are divided into three categories: saturated, silent and can-
didate. Saturated modules are those in which all the bars in the detector are triggered, silent
modules are those that are paired to an untrigered SD tank and candidate detectors corre-
spond to those that are not saturated nor silent. In the following, we describe two methods
to combine the information of the detectors into an event likelihood to fit a LDF.

The first method to fit a muon LDF in an event level was proposed in Ref. [65], in which
the optimal parameters p of the muon LDF were obtained by minimizing L = − ln(L),
where the event likelihood L was given by
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L =
Nsat

∏
i

1
2

(
1− Erf

(
N̂sat

µi
− µ(ri; p)√
2µ(ri; p)

))
×

Ncand

∏
i

µ(ri; p)N̂µi e−µ(ri ;p)

N̂µi !
×

Nsil

∏
i

e−µ(ri ;p)
(

1 + µ(ri; p) +
µ(ri; p)2

2

)
,

(6.7)

where the first, second and third term correspond to saturated, candidate and silent
modules, respectively. ri indicates the distance from the shower core of the i−th module,
µ(ri; p) is the expected number of muons in the i−th module given by µ = ρ(ri; p)A cos θ,
where A is the area of the detector, θ is the zenith angle of the shower and ρ(ri; p) is the muon
density given by Eq. (6.6). In addition, N̂µi denotes the bias-corrected number of estimated
muons in the i-th module given by Eq. (5.11)3. Lastly, Nsat, Ncand and Nsil correspond to the
total number of saturated, candidate and silent modules in the event.

For saturated modules, a point estimation of the number of muons is not possible and
only a lower limit can be established. Nevertheless, this information can be used to constrain
the LDF at distances close to the core, preventing it from predicting excessively low muon
densities near saturated modules. Thus, the formula corresponding to the saturated case
in Eq. (6.7) is derived from the approximation of a Poisson distribution with mean µ by a
Gaussian distribution with mean µ and standard deviation

√
µ when µ is large. Therefore,

the probability of the number of muons to be larger than a lower limit N̂sat
µi

is

P(n > N̂sat
µi

) =
1√
2πµ

∫ ∞

N̂sat
µi

dn e−
(n−µ)2

2µ =
1
2

[
1− Erf

(
N̂sat

µi
− µ√
2µ

)]
.

For silent detectors, there is no measurement available. Still, this constitutes valuable
information that can be used to constrain the LDF at large distances, preventing it from
predicting excessively high muon densities in regions with silent stations. The term corre-
sponding to the silent detectors corresponds to the probability of the number of muons to
be less or equal than two:

P(n ≤ 2) =
2

∑
n=0

e−µ µn

n!
= e−µ

(
1 + µ +

µ2

2

)
.

The formula for the candidate modules takes into account that the number of muons
impinging a detector fluctuates as a Poisson variable with mean µ. This is not optimal since,
as discussed in Section 4.3, it underestimates the fluctutations of N̂µ, particularly for large
number of muons. Additionally, it is worth noting that N̂µ is in general a real number, while
Poisson statistics requires the measurement to be integer. Although not totally satisfying,
this turns out not to be an obstacle since what is actually maximized (minimized) is not L
but − ln L. Thus, when the logarithm is taken in the Poisson term, the factorial N̂µi !, the only
expression that formally needs N̂µi to be integer, can be ignored as it does not depends on
the minimization variables p.

Lastly, we note that the likelihood from Eq. (6.7) was used in the analysis of the UMD
PMT data [62] and in the first analyses of UMD SiPM data [72, 73].

The second method was introduced in Ref. [63], in which the distribution of the raw
signal in a segmented detector k for a fixed µ, given by Eq. (4.3), was found. This improved

3At the moment of the publication, a sub-optimal estimator of Nµ that used the time resolution of the detecor
was used. See Section 6.1
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model naturally accounts for both the Poisson fluctuations in the number of muons and
the segmentation of the detector. In Section 4.1 we extended the distribution to account for
detector effects, being the corner-clipping muons the most important for the UMD case. The
event likelihood is given by

L =
Ncand+Nsat

∏
i

(
ns

ki

)
e−µ(ri ;p)(1+pcci )(eµ(ri ;p)(1+pcci )/ns − 1)ki×

Nsil

∏
i

e−µ(ri ;p)
(

1 + ns(eµ(ri ;p)/ns − 1) +
ns(ns − 1)

2
(eµ(ri ;p)/ns − 1)2

)
,

(6.8)

where pcci is the corner-clipping probability of the i-th module (see Section 4.1.2). The
term corresponding to the silent modules is now obtained by requesting the probability
of having k less or equal than two. We note that in this model, candidates and saturated
modules have the same likelihood. Also, in contrast to Eq. (6.7), in Eq. (6.8) there is no need
to go through the intermediate step of estimating the number of muons in each detector: the
raw signal k is used in the candidate and saturated modules.

Since a Poisson likelihood is assumed for candidate modules, we will refer to the (log-
)likelihood of Eq. (6.7) as the Poisson likelihood. Correspondingly, we will refer to Eq. (6.8) as
the Binomial likelihood. We will assess the perfomance of the two likelihoods in Section 6.2.3.

6.2.2 Core fitting

During the LDF fit of the SD tanks, an estimate cSD = (xSD, ySD) of the position of the core in
the ground plane is obtained. This parameter is highly relevant as it determines the shower
plane distances of the detectors. In order to have a reliable estimate of the core, a quality
cut, dubbed 6T5, is applied to SD events requesting the station with largest signal to be
surrounded by 6 working stations (not necessarily triggered) (see Section 3.1). This ensures
that the shower lands inside a working hexagon allowing for a reliable reconstruction of the
core position.

A common practice to fit the LDF of subordinate detectors, like the SSD and UMD, is to
leave the core position fixed to the one obtained by the SD reconstruction. This approach is
not optimal since uncertainty in the core position translates into uncertainty in the shower
plane distances of the subordinate detectors and ultimately into the LDF. This effect is par-
ticularly relevant for stations close to the core, where the LDF raises very steeply, in which a
small offset in the shower plane distance can produce a large shift in the LDF values. Thus,
if the core uncertainty is not accounted for, it can bias the fit of the LDFs of subordinate
detectors.

Ideally, the core position should be left free in the fit of the LDF of subordinate detec-
tors as well. In this way, the core uncertainty is naturally propagated into the other LDF
parameters through the covariance matrix of the fit. However, this would come at the cost
of requesting a 6T5 condition to the subordinate detectors too, with the corresponding im-
pact in the number of events. For the UMD array, the dataset of available events for physics
analyses would be reduced roughly 90%. It is apparent that an alternative solution is needed.

For the SSD, this is overcome by propagating the core uncertainty into the variance
model of the SSD signals [77]. This strategy is not applicable to the UMD since it does not
need a variance model: the entire distribution of the signal k is completely determined by
the single parameter µ (see Eq. (4.3)). Therefore, we propose a different procedure for the
UMD. It consists of leaving the core as a free parameter but adding an extra factor in the
likelihood that penalizes core positions that are too far from the SD core. To this aim, we
model the distribution of the UMD core (x, y) as a bivariate gaussian whose expected value
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corresponds to cSD, and whose covariance matrix is given by the covariance matrix of the
core coordinates obtained in the SD fit. When taking the logarithm of this factor, a χ2-like
term is obtained.

Therefore, the log-likelihoods corresponding to Eq. (6.7) and Eq. (6.8) now become

L(x, y, ρ450, β) =−
Nsat

∑
i=1

ln Lsati(x, y, ρ450, β)−
Ncand

∑
i=1

ln Lcandi(x, y, ρ450, β)

−
Nsil

∑
i=1

ln Lsili(x, y, ρ450, β) +
1
2

χ2(x, y),

(6.9)

L(x, y, ρ450, β) =−
Ncand+Nsat

∑
i=1

ln Lcandi(x, y, ρ450, β)−
Nsil

∑
i=1

ln Lsili(x, y, ρ450, β)

+
1
2

χ2(x, y),

(6.10)

where χ2 is given by

χ2(x, y) =
1

1− ρ2
SD

[(
x− xSD

σxSD

)2

+

(
y− ySD

σySD

)2

− 2
ρSD

σxSD σySD

(x− xSD)(y− ySD)

]
,

where σxSD , σySD are the errors in the SD core position and ρSD corresponds to the correla-
tion between the SD core coordinates.

Eq. (6.10) and Eq. (6.9) constitute a new way to fit the core position with the UMD. It is
thus necessary to evaluate its impact in the LDF fit. For this purpose, in what follows we
focus only on Eq. (6.10). We use events with lg(E/eV) > 17.5 and θ < 45◦.

In the upper panel of Fig. 6.1, the LDF fit of a selected event with the core fixed to the
SD core is shown. It is apparent that the fit is driven by the UMD modules that are closest
to the core, biasing the LDF. The footprint of the event in the UMD array is shown in the
middle panel of the same Figure, along with the SD core and its 1-sigma ellipse. The core
position obtained when leaving it as a free parameter (with the penalization term) in the
UMD fit is also shown. The UMD core remains in the vicinity of the SD core, being separated
by a distance of ∼ 35 m. Despite being a relatively minor correction in the core position, a
clear improvement in the LDF fit can be achieved, as displayed in the lower panel. The ρ450
estimate changes from 0.04 m−2 to 0.31 m−2, highlighting the importance of fitting the core
position.

To illustrate the importance of the penalization term in the log-likelihood, the footprint
of event 181064399001 is presented in Fig. 6.2. The core of the shower lands in a hexagon
that, at the moment of the event, was only partially filled with UMD modules. This is the
case for the vast majority of the events in the UMD dataset. The UMD cores obtained with
(triangle) and without (star) the penalization term are shown in the Figure. It is evident that
when no penalization term is used, the UMD core is wrongly shifted towards the region
filled with UMD detectors.

A histogram with the distance between the SD and UMD core for all the events in the
dataset is shown in Fig. 6.6. The mean distance between cores is∼ 16 m and the 95%-quantile
is ∼ 45 m, which demonstrates that the penalization term is indeed constraining the UMD
core close to the SD core.

To evaluate the impact of leaving the core free in the MLDF slope, we use the subset of
events with enough information to fit β (see Section 6.2). Each event is reconstructed with
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the core free and fixed and the β estimate in each case is compared. In Fig. 6.3, the histogram
of the relative difference between the estimate of β with the core free and fixed is shown. It
is evident that both cases are compatible.

In Fig. 6.4, the ρ450 estimates obtained with a free and a fixed core are compared. For this,
β was fixed according to the parameterization described in Section 6.4. For the predominant
majority of events, there is no significant difference between the two cases. This is not the
case for σρ450 , the uncertainty in the ρ450 estimate, as displayed in Fig. 6.5. Like with the
MLDF slope, the uncertainty is larger when the core is fitted since the uncertainty in the core
position is now accounted for and it naturally propagates into σρ450 in the fitting procedure.
Therefore, leaving the core free gives an improved and more conservative error estimate of
the ρ450.
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Figure 6.2: Footprint of the event 181061885800 recorded on April 16th of 2018. The size of the
marker is proportional to the total number of muons measured by the UMD modules. Black
crosses represent stations of the hexagon that did not have a UMD deployed at the moment of
the event. Red dashed line represents the axis of the shower. In the inset panel, a zoom in the
SD core region can be observed, along with its 1σ ellipse and its errors (vertical and horizontal
error bars). The triangle (star) indicates the UMD core obtained with (without) the penalization
term in the log-likelihood.
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Figure 6.3: Relative difference of the β estimate when the core is free and fixed.
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Figure 6.4: Event-level comparison of the ρ450 estimate with and without fitting the core. Left:
Scatter plot. Dashed line indicates the identity. Right: Histogram of the relative difference.
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Figure 6.5: Event-level comparison of σρ450 , the uncertainty in ρ450 estimate, with and without
fitting the core. Left: Scatter plot. Dashed line indicates the identity. Right: Histogram of the
relative difference.
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Figure 6.6: Histogram of the distance between de SD and UMD cores.

Lastly, we assess the impact in the bias of ρ450 of leaving the core free in events whose
core lands very close to a station with simulations. To that end, we randomly toss the core
in a small tile of 100 m side centered at a station using the set of showers of energy 1017.5 eV.
The bias in ρ450 as a function of θ for proton and iron is shown in Fig. 6.7, for the cases with
core free (filled markers) and fixed (unfilled markers). When the core is fixed, the bias for
proton (iron) can reach up to ∼50% (∼20%) for the most vertical zenith angles. In contrast,
the bias is significantly lowered when the core is free.
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Figure 6.7: Bias in the muon shower size as a function of θ. The case in which the core is left free
(fixed) is indicated with filled (unfilled) markers.

6.2.3 Performance of the different likelihoods

As already pointed out, the likelihood of Eq. (6.10) provides a more acccurate modeling of
the signal fluctuations (see Section 4.3) since, in addition to the Poissonian fluctuations in
the number of muons, it accounts for the fluctuations arising from detector segmentation. It
is hence preferred over Eq. (6.9). Consequently, we propose the official reconstruction chain
of the UMD data of the Observatory to switch from Eq. (6.9) to Eq. (6.10). In this section,
we assess the impact of this change in ρ450 and β using the discrete EPOS-LHC simulation
library described in Section 7.5.

Each shower was thrown once in the array and the resulting simulated signals were used
to fit the LDF of Eq. (6.6) using Eq. (6.9) and Eq. (6.10). The simulation of both the SD and
UMD, and the reconstruction procedure was done using Offline . The values of pcc found
for simulations in Chapter 5 were used.

In each simulated event, a ring of 11 UMD stations placed at 450 meters from the shower
core is used to obtain the true muon density at 450 meters, which we denote ρ450. For this, the
true muon density in each of the modules in the ring is calcuated by dividing the true number
of injected muons by the effective area A cos θ. Subsequently, ρ450 is obtained averaging over
the true muon densities of all the modules in the ring. This value can be compared to the
estimate ρ̂450 retrieved by the LDF fit to assess the bias of the LDF.

Impact on β

For the analysis of the UMD data, β is left fixed during the LDF fit of every event (see
Section 6.3). The value of β is obtained from a data-driven parameterization as explained
in Section 6.4. Therefore, to replicate the same conditions than the LDF fits in data, it is
first necessary to find a parameterization for β optimal for simulations. In what follows, we
assess what is the impact of the likelihood model chosen in such parameterization.

The mean β values obtained as function of sec θ for the three available energies for
proton and iron primaries are shown in Fig. 6.8. These were obtained in events with the
right topology to leave the parameter free as explained in Section 6.2. The values obtained
with the likelihood of Eq. (6.9) are represented with squares, while the ones yielded by
Eq. (6.10) are indicated with triangles. For the smallest energies, the values of β given by
both likelihoods are compatible within statistical uncertainties. For the largest energy (1018.5

eV), the binomial likelihoods yields slightly larger β values. However, this difference is of
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the order of . 1% and is negligible for all practical purposes. It is thus evident that the two
likelihoods lead to compatible parameterizations of β.

It is worth noting that β decreases with zenith angle, which means that LDF becomes
flatter for inclined showers. It is also clear that β increases with energy. Both effects can be
understood by the fact that more vertical (and more energetic) showers reach their maximum
muon production depth closer to the ground, leaving a steeper footprint in the array. For the
same reason, proton showers show slightly larger values of β (i.e. steeper LDFs) than iron
showers.

For each energy, the following linear function in sec θ was fitted to the β values obtained
by the binomial likelihood:

β = m (sec θ − 1.2) + b. (6.11)

The results of such fits are indicated with dashed lines in Fig. 6.8. The dependence of m
and b with energy is displayed in Fig. 6.9. The slope m is independent of energy and shows
only a slight dependence on the primary particle, being somewhat higher for iron. Therefore,
we take the weighted mean over the two primaries and the three energies, yielding m =
−1.38, as indicated by the dashed line in the left panel of the figure. The offset b shows a
linear increase with log-energy, and is slightly larger for proton than iron primaries. We
combine the values of both primaries to fit a linear model to the dependence of b with
lg(E/eV),

b = b1 (lg(E/eV)− 17.8) + b0, (6.12)

yielding b0 = 2.86 and b1 = 0.25. The result is represented with a dashed line in the right
panel of the figure. Therefore, the set of values (m, b0, b1) defines the parameterization to fix
the β parameter during the reconstruction in simulations.
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Figure 6.8: Mean β as a function of sec θ for different energies using the Poisson (squares) and
binomial (triangles) likelihoods. Left (right) panel shows proton (iron) simulations. Dashed lines
indicate the results of the fits of Eq. (6.11).
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Figure 6.9: Slope (left) and intercept (right) of the model of Eq. (6.11) as function of energy for
both primaries.

Impact on ρ450

The histogram of the relative difference between the ρ450 estimates given by the two like-
lihoods for proton (iron) is shown in the left (right) panel of Fig. 6.10. When the event is
not saturated, both likelihoods lead to compatible estimates. However, when the event is
saturated (i.e., at least one UMD module is saturated), greater dispersion between the two
likelihoods is observed, with the presence of several outliers. This is somehow expected as
the the likelihoods have different expressions to treat saturated detectors (see Eq. (6.7) and
Eq. (6.8)).

An example of a saturated event, corresponding to a proton primary of 1018 eV and
zenith angle of 22◦, is shown in Fig. 6.11. The relative difference between the ρ450 estimates is
∼ 40%. The LDF fit using the Poisson (binomial) likelihood is displayed in the upper (lower)
panel. The red triangular markers indicate saturated modules, the green square shows the
true ρ450 obtained with the dense ring of detectors, and the magenta star corresponds to the
estimate of the ρ450 given by the LDF. It is apparent that the binomial likelihood results in a
better fit, yielding a ρ450 estimate significantly closer to the true value than the Poisson case.

The bias of the different methods can be assessed using the true ρ450 obtained with the
ring of detectors at 450 m. The bias and resolution of ρ̂450 are displayed as a function of
energy for each primary species and likelihood model in the upper and middle panel of
Fig. 6.12, respectively. No dependence on the zenith angle was found. The two likelihoods
yield compatible biases and resolutions.

During the LDF fit, a 1σ error interval is computed for ρ450. In the lower panel of Fig. 6.12,
the coverage of this interval for the Poisson (circles) and binomial (squares) likelihoods, cal-
culated as the fraction of events where the interval includes the true ρ450 , is shown. The
coverage of the Poisson likelihood decreases with energy, while the binomial likelihood re-
mains stable around 60%. This difference arises because the Poisson model ignores detector
segmentation, underestimating signal fluctuations — as already explained — and, thereby,
the uncertainty interval. In contrast, the binomial model accounts for segmentation, result-
ing in larger, more accurate uncertainty intervals and improved coverage. Similar results are
obtained using QGSJetII-04 as hadronic model, as shown in Appendix E.
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Figure 6.11: LDF fit of a proton shower of 1018 eV and zenith angle of 22◦ using the Poisson
(upper panel) and the binomial likelihood (lower panel). Empty square indicate the true ρ450
obtained with the dense ring.
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panel) of ρ̂450 retrieved by the LDF fit for the Poisson (circles) and binomial (squares) likelihoods.

Finally, to further illustrate the difference between the methods in a real event, we show
the LDF fit of event 180721359500 in Fig. 6.13. The poor fit yielded by the Poisson case is
completely driven by the detectors closer to the core, since these have the largest weight in
the likelihood. As a consequence, the UMD core is also shifted towards the position of this
station. On the other hand, the binomial likelihood shows an improved fit since, as already
mentioned, it correctly accounts for signal fluctuations, reducing the weight of detectors
with large signals.
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Figure 6.13: LDF fit of event 180721359500 using the Poisson (upper panel) and the binomial
likelihood (lower panel).

6.2.4 Corner-clipping correction

In Section 5.1, the bias of the estimator N̂µ as function of θ with and without the corner-
clipping correction was shown. We demonstrated that when the correction is applied, a flat
behaviour with θ is observed, as desired (see Fig. 5.9).

However, N̂µ is a module level quantity and is not affected by any additional bias that
the MLDF fitting process might be introducing. Thus, it is relevant to study how well the
correction performs in the context of MLDF fitting.

For this purpose, we use a subset of simulations of proton and iron primares of 1018 eV.
Each shower was reconstructed with and without the corner-clipping correction. The latter
was accomplished by setting pcc = 0 in Eq. (6.10), while the former used the parameteriza-
tion of p̂cc found for simulations in Chapter 5.

The bias of ρ̂450 in each case is shown as function of the zenith angle in Fig. 6.14. For both
primaries, when no correction is applied, the bias increases with θ, similarly to what was ob-
served for N̂µ. In contrast, when the correction is applied, the bias remains constant around
∼ 2.5% for all zenith angles, confirming that the corner-clipping correction is performing as
desired.
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Figure 6.14: Bias of ρ̂450 as function of θ with (empty squares) and without (full triangles) the
corner-clipping correction developed in Chapter 4 and Chapter 5. Proton (red) and iron (blue)
primaries of energy 1018 eV with EPOS-LHC as hadronic model were used.

6.3 Discrimination power

The ultimate goal of measuring the muon content of extensive air showers is to discriminate
between primary masses. Therefore, it is of our interest to characterize the discrimination
power of ρ450, especially after the new adjustements introduced in the reconstruction in the
previous chapters and sections. To this aim, we introduce the merit factor

f =
〈ρ450〉Fe − 〈ρ450〉p√

σ2
ρ450Fe

+ σ2
ρ450p

, (6.13)

where 〈 〉Fe (p) and σρ450Fe (p)
indicate the mean and standard deviation over iron (proton)

showers, respectively. We note that f measures how separated the mean of the two dis-
tributions are relative to their width. Therefore, the larger the value of f , the greater the
discrimination power of the method.

For each energy and zenith angle, we computed the merit factor using the ρ450 estimate
from the LDF fit, denoted as ρLDF

450 . In order to have a proxy of the best achievable factor, we
additionally compute the merit factor using the true ρ450 estimated with the dense ring of
detectors at 450 m from the core, referred to as ρdense

450 . The corresponding merit factors are
denoted as fLDF and fdense, respectively. No dependence of fLDF or fdense on the zenith angle
was found. Thus, we take the mean value of the merit factors over all the zenith angles for
each energy. The merit factors as function of energy are presented in Fig. 6.15.
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Figure 6.15: Merit factors as function of energy. The errorbars are estimated via the bootstrap
method.

Since the relative fluctuations due to shower-to-shower fluctuations decrease with energy,
the merit factors using both estimates increase with energy. However, we note that fLDF
increases more rapidly, becoming closer to the upper bound fdense as energy increases. This
can be explained by the fact that the resolution of ρLDF

450 increases with energy. Indeed, more
energetic showers possess a larger number of triggered detectors and larger number of
muons, minimizing the Poissonian fluctuations in the number of detected particles.

To illustrate this, we show the relative standard deviation of ρLDF
450 and ρdense

450 for both
primaries as function of energy in the left panel of Fig. 6.16. It is apparent that the fluctuations
of both estimates decreases with energy. The fluctuations of ρLDF

450 can be thought as having
a contribution of both shower-to-shower and reconstruction fluctuations:(

σ
[
ρLDF

450
]

〈ρLDF
450 〉

)2

=

(
σ [ρ450]

〈ρ450〉

)2

sh-to-sh
+

(
σ [ρ450]

〈ρ450〉

)2

rec
. (6.14)

Taking the fluctuations of ρdense
450 as a proxy for the shower-to-shower fluctuations, the

relative fluctuation due to the reconstruction procedure, σrec =
(

σ[ρ450]
〈ρ450〉

)
rec

, can be estimated
using Eq. (6.14). The evolution of σrec as a function of energy for both primaries is presented
in the left panel of Fig. 6.16. Despite having relatively large statistical uncertainties, it is clear
that there is a decreasing trend with energy. Furthermore, protons have systematically larger
reconstruction fluctuations than irons, suggesting that the improvement in the reconstruc-
tion resolution is indeed related to having a larger number of muons, decreasing the Poisson
fluctuations as a consequence.

Finally, it is relevant to compare the merit factors obtained here with those achieved
with Xmax, the most common observable used for composition analysis. To this aim, we
additionally computed the corresponding merit factors by using the true Monte-Carlo Xmax.
We do not account for any reconstruction resolution, so this calculation corresponds to the
discrimination power of Xmax in a best-case scenario. A value of approximately fXmax = 1.5
was obtained, independently of energy and zenith angle. The fact that fXmax does not increase
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with energy can be explained noting that the difference between the mean Xmax for proton
and iron remains relatively constant around ∼ 100 g cm−2. In addition, the σ [Xmax] for both
primaries also remains constant for all energies, with a larger value for proton than for irons
(see Fig. 4 of Ref. [78]). The merit factors obtained with ρ450 displayed in Fig. 6.15 are above
1.8 and present an incresasing trend with energy, which highlights the relevance of direct
muon measurements for composition studies. However, if the uncertainty in the energy
estimate is large enough, the merit factors of the muon measurements can be reduced down
to the values of Xmax [65].
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Figure 6.16: Left: Relative standard deviations of ρLDF
450 and ρdense

450 as function of energy for proton
(red) and iron (blue) primaries. Right: Relative fluctuations due to the reconstruction procedure
of the LDF fit (see Eq. (6.14)).

6.3.1 Merit factor as function of r

In the analysis of the data obtained with the UMD engineering array, it was found that
leaving β free in the LDF fit introduces a dependence of the merit factor on the distance to
the core [69]. In contrast, when the parameter is fixed to the parameterized value, the merit
factor remains fairly constant for all radial distances. Furthermore, the value of the merit
factor with β fixed was in most of the cases equal or larger than the maximum merit factor
achieved with β free.

Several changes have occurred since the engineering array, with the most significant
being the replacement of PMTs with SiPMs as photodetectors. Additionally, a different pa-
rameterization of the LDF Eq. (6.6) was used. Also, the new adjustments in the reconstruction
procedure introduced in the previous chapters and sections might also impact this result.
Therefore, we repeated the analysis to test if this previous finding still hold.

For each energy and zenith angle, the merit factor at a given distance to the core r was
computed by obtaining the mean and standard deviation of ρ(r) over the set of proton and
iron showers, where ρ(r) represents the LDF fit evaluated at r. Subsequently, Eq. (6.13) was
used replacing ρ450 by ρ(r).

In Fig. 6.17, the merit factor as a function of r, with β allowed to vary in the LDF fits,
is displayed for different energies and zenith angles. It is evident that f shows a strong
dependence on r, with the maximum discrimination power achieved within a distance range
of 400 to 700 meters, varying according to energy and zenith angle.

Conversely, when β is fixed, f remains approximately constant across all distances, with
its value dependent on energy and zenith angle, as shown in Fig. 6.18. Notably, the value



86CHAPTER 6. RECONSTRUCTION OF THE MUON LATERAL DISTRIBUTION FUNCTION

obtained with a fixed β is generally equal to or greater than the maximum value reached
when β is free to vary.

To illustrate this more clearly, Fig. 6.19 presents the ratio between f (r) with β fixed and
the maximum f achieved with β free. This ratio exceeds one in most cases, except for the
most inclined showers with energies of 1018 and 1018.5 eV.

The results presented here align perfectly with those found in Ref. [69]. We conclude that
fixing β during the LDF fit is the most convenient approach.
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Figure 6.17: Merit factor with β free as function of shower plane distance r for energies of 1017.5

(upper panel), 1018 (middle panel) and 1018.5 (lower panel).
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Figure 6.18: Merit factor with β fixed as function of shower plane distance r for energies of 1017.5

(upper panel), 1018 (middle panel) and 1018.5 (lower panel).
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Figure 6.19: Quotient between the merit factor with β fixed and the maximum f achieved with
β free as function of shower plane distance r for energies of 1017.5 (upper panel), 1018 (middle
panel) and 1018.5 (lower panel).
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6.4 Data-driven parameterization of the MLDF slope

As shown in the previous section, it is advantageous to fix the slope β, leaving only the
normalization ρ450 as a free parameter. Therefore, a parameterization of β is needed. To this
aim, we use the subset of events with enough detector information that allow for a reliable
fit of β (see Section 6.2). We additionally request the events to fulfill the standard quality cuts
of the SD described in Section 3.1, consisting of fulfilling the fourth- and fifth-level triggers.

In Fig. 6.20, the mean β values as function of sec θ for five energy bins are shown. The
same behaviour observed for simulations in Section 6.2.3 is found, namely, β decreases with
the zenith angle and increases with energy. For each energy bin, we fit the linear model of
Eq. (6.11), indicated as dashed lines in the figure.

The dependence of m and b with log-energy is shown in Fig. 6.21. Like in Section 6.2.3,
m shows no strong dependence with log-energy, whereas a linear increase is observed for
b. Thus, we take the weighted mean of m, m, and we fit the energy dependence of b with
the linear model of Eq. (6.12). In this way, the parameterization of β is defined by the values
(m, b0, b1) = (−1.21, 2.71, 0.20).

To assess how well the parameterization describe the data for different energies, for each
event we compute the residuals as the relative difference between the value of β predicted
by the parameterization and the one obtained by the fit. The result is displayed in Fig. 6.22,
where the relative difference of each event is depicted as a grey circle. The mean and stan-
dard deviation of the residuals is computed for each energy bin and are represented as
filled and unfilled squares in the figure, respectively. To avoid the influence of a few outliers,
the standard deviation is computed as half of the interquantile range between the quan-
tiles 16% and 84%. The mean value of the residuals is centered at zero, indicating that the
parameterization is capturing the mean evolution of β with energy.

The standard deviation shows a decreasing trend with energy, being ∼ 25% for 1017.5 eV
and ∼ 8% for 1018.5 eV. Indeed, low energy events have larger fluctuations as they possess
smaller number of muons and less triggered stations. As energy increases, the number of
muons and triggered stations increases and, as a consequence, the fit possess more informa-
tion to constrain the value of β, resulting in smaller fluctuations.

Since β is fixed to fit the MLDF in every event (see Section 6.3), a systematic uncertainty
is induced in ρ450 due to the uncertainty of the true β. The standard deviation is a measure of
how much is expected β to vary, and is therefore valuable to assess this source of systematic.
Therefore, we use a second order polynomial to parameterize the standard deviation of
the residuals of β as a function of log-energy. The result is represented as a dashed line in
Fig. 6.22. We use such parameterization in Section 7.4.4 to study the systematic uncertainty
in ρ450 induced by fixing β.
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6.5 Analysis of the MLDF residuals

The muon density at 450 meters, ρ450, is regarded as a proxy of the total number of muons
in the shower and is therefore the main observable used for physics analyses with the UMD.
This parameter, obtained by the MLDF fit, depends on the chosen MLDF model (Eq. (6.6)).
Thus, to ensure a proper description of the data by the model, it is relevant to assess the
residuals of the fits, particularly close to 450 m.

The muon density in a given UMD module is given by

ρi =
N̂µ

A cos θ
,

where N̂µ is the bias-corrected muon estimator of Eq. (5.11), A is the nominal area of the
detector and cos θ is the cosine of the zenith angle of the shower. The relative residual of the
module is then defined as

ρi −MLDF(ri)

MLDF(ri)
,

where ri is the distance of the module from the core, and MLDF(ri) is the value of the MLDF
model, evaluated at its best-fit parameters, at ri.

To investigate the behavior of the residuals and its potential dependence on energy and
zenith angle, the dataset was divided in two angular bins, 0◦ < θ < 30◦ and 30◦ < θ < 45◦,
and in six log-energy bins, whose bin edges are given by lg(E/eV) = {17.3, 17.5, 17.7, 17.9, 18.1, 18.3, ∞}.
All the residuals of the individual-event fits in a given (θ, lg(E)) bin were accumulated and
their mean and median value as function of the distance to the core were obtained. The
residuals as a function of the distance for each (θ, lg(E)) bin is displayed in Fig. 6.23, where
each row (column) represents an energy (zenith angle) bin. Filled markers represent the
mean, whereas unfilled markers indicate the median in each distance bin. The inset panel
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in each plot contains a zoom on the mean residuals in the distance range 400 < r/m < 500.
The mean residuals are reasonably flat with distance and centered in zero.

The mean and median values tend to coincide near the core, while an increasing discrep-
ancy between the two is observed at larger distances, indicating some asymmetry in the
underlying distributions when a small number of muons are sampled. Indeed, in Fig. 6.24
we show the residual distributions for 0◦ < θ < 30◦ and 17.3 < lg(E/eV) < 17.5 across
three distance ranges: close to the core (200 < r/m < 300), an intermediate range containing
450 m (400 < r/m < 500), and far from the core (900 < r/m < 1000). The three histograms
are conveniently normalized to a total of 1000 entries.

For small r, a larger number of muons is sampled and, as a consequence of the central
limit theorem, the distribution of N̂µ becomes symmetric and bell-shaped. In this limit, N̂µ

resembles a continuous variable and, as a result, the residuals also exhibit a symmetric,
Gaussian-like distribution. An increasing asymmetry in the distributions is observed in the
remaining two distance ranges. Indeed, as r increases, the muon counts become scarce and
the discrete nature of counting muons becomes apparent as Poissonian fluctuations start to
dominate. Specifically, the large peak at -1, visible for the furthest distances, is caused by
zero muon measurements.

In the left panel of Fig. 6.25, the mean residual in the relevant distance range of 400 <
r/m < 500 is shown as a function of energy. It is evident that the mean residuals are
compatible with zero for all energies. Some discrepancy seems to arise when dividing the
data set in the two angular bins for the energy bin lg(E/eV) ∼ 18.2, the vertical (inclined)
bin showing a positive (negative) bias of approximately +8% (-5%). However, both data
points show rather large statistical errors and when the whole zenith range is used, this
behaviour cancels out. Overall, the residuals are well contained within approximately ±5%.

Finally, in the right panel of Fig. 6.25 we show the standard deviation of the residuals
as a function of energy. As expected, the fluctuations decrease smoothly with energy as a
result of the better quality of the fits with increasing energy.
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Figure 6.23: Mean and median of the residuals as function of distance to the core for different
energies and zenith angle ranges. Each row represents a fixed energy bin. The left (right) column
corresponds to the zenith range 0 < θ/◦ < 30 (30 < θ/◦ < 45).
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as a function of energy.

6.6 Summary

In this chapter, we presented several modifications and improvements to the existing recon-
struction procedure of the MLDF.

We started by discussing the reasons behind ignoring the time resolution of the detector,
which makes this work different from all the previous analyses of UMD data. This decision
was motivated by the following reasons: First, when the time resolution of the detector is
not considered, the likelihood of a single detector of Eq. (4.3) is exact and depends only on
the total number of expected muons µ, irrespective of their time distribution. In contrast, a
dependence on the arrival times of the muons in the detector is introduced in the likelihood,
which makes its exact analytical calculation not possible, and a computationally expensive
method of profiling would need to be implemented by updating the method in Ref. [74] to
consider inhibited channels [66]. Second, the undershoot present in the fast shaper signal
introduces a bias that depends not only on the total number of impinging muons but also on
their time distribution. Air shower simulations followed by full detector simulations can be
used to parameterize and correct this bias from the estimators of Eq. (6.3) and Eq. (6.5) [70].
However, it is not clear how to include this effect in the likelihood of Eq. (6.2), necessary to
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fit the MLDF at event level. Conversely, when the time resolution is ignored, the likelihood
is insensitive to the undershoot.

The next modification involved the core reconstruction and its impact in the MLDF. In
the existing reconstruction, the core obtained by the SD reconstruction was fixed to compute
the shower plane distances of the UMD detectors, necessary for the MLDF fit. We have
shown that for events with UMD detectors close to the core, this can bias the MLDF. A
new way of fitting the core with the UMD was developed by adding a penalization term
in the event likelihood to constrain the UMD core to the vicinity of the SD core. As a result,
previously biased events now show improved MLDF fits. In addition, the core uncertainty
is now accounted for and naturally propagates to the ρ450, resulting in a more realistic error
estimate.

Another major change introduced in the reconstruction chain was to move from the Pois-
son to the binomial likelihood, with the modifications introduced in Chapter 4, as the latter
involves a more realistic modeling of the signal fluctuations. We showed that the methods
yielded compatible bias and resolution of ρ450. However, since the binomial model accounts
for detector segmentation, it yields systematically larger and more realistic uncertainty in-
tervals for ρ450, with improved coverage.

We have additionally confirmed that the corner-clipping correction developed in Chap-
ter 4 and Chapter 5 performs correctly. We did so by showing that the bias of ρ̂450 increased
with θ when no correction is applied. In contrast, the bias remains constant with θ when the
correction is used.

The discrimination power of the new reconstruction was assessed. We demonstrated
that, since the relative standard deviation of ρ450 decreases with energy, the merit factor of
ρ450 increases with energy. In addition, we have shown that leaving β as a free parameter
in the fit introduces a dependence in the merit factor on the distance, confirming the result
found in a previous work. In contrast, when β is fixed, the merit factor remains flat with the
distance in a value that is, in most cases, equal or larger than the maximum value achieved
with β free. Therefore, we concluded that is advantageous to fix β during the MLDF fit.

Also, we presented a data-driven parameterization of β dependent on energy and the
zenith angle. By looking at the residuals, we confirmed it provided a good representation of
the mean β for all energies. This parameterization is used in the analysis presented in the
next chapter to fix β in all the events. In addition, we parameterize the energy dependence
of the standard deviation of the residuals of the parameterization of β. This provides an
estimate on how much is expected β to vary in each event and is one of the basic ingredients
to compute the systematic uncertainty in ρ450 produced by fixing β to its mean value, as will
be shown in the next chapter.

Finally, we analyzed the residuals of the MLDF for different energies and zenith angle
ranges to investigate potential biases in the event-level fits, with particular interest in the
crucial range of 400 < r/m < 500. We showed that the biases are reasonably centered,
compatible to zero within statistical uncertainties and their values contained within ±5%.
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Figure 6.1: Event 181064399001 recorded on April 16th of 2018. Upper-(lower-)most panel corre-
sponds to the UMD LDF fit with the core position fixed (free). Circles represent modules with
non-zero signals, while triangles indicate zero-muons measurements. Vertical dashed line indi-
cates the 450 m mark. Middle panel shows the footprint of the event in the UMD array. Unfilled
circles indicate SD tanks while filled circles indicate positions in which UMD detectors measured
a non-zero signal. The size of the marker is proportional to the total number of muons measured
by the UMD modules. Red dashed line represents the axis of the shower. In the inset panel, a
zoom in the SD core region can be observed, along with its 1σ ellipse and its errors (vertical and
horizontal error bars). Triangular marker indicates the UMD core. The grey dashed lines indicate
the Feldman-Cousin interval obtained for modules with zero measured muons, as explained in
Section 4.3.
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Chapter 7
Analysis of the muon content measured
by the UMD

In this chapter, we present the measurement of the muon content in air showers using the
UMD in the energy range 1017.5 to 1018.9 eV and compare the results with predictions from
simulations and with other experiments.

In Section 7.1, we describe the dataset and the quality cuts applied to ensure a reliable
analysis. The attenuation correction, derived using the Constant Intensity Cut (CIC) method
to remove the zenith angle dependence of the muon shower size, is detailed in Section 7.2.
The evolution of the attenuation-corrected muon densities is presented in Section 7.3, with
systematic uncertainties evaluated in Section 7.4.

The set of simulations used for comparison with the data is described in Section 7.5,
while the actual comparison is carried out in Section 7.6, where the mean logarithmic mass
is derived and its consistency with the mass inferred from Xmax is assessed.

The compatibility of these results with previous UMD analyses is discussed in Section 7.7,
while Section 7.8 introduces the z-scale to compare our findings with other experiments.

Lastly, since the shape of the lateral distribution of muons is expected to remain largely
unchanged with energy and atmospheric depth, Section 7.9 compares the shape of the mean
muon LDF observed by the UMD in this work with measurements from the Yakutsk and
Akeno observatories, which used the same muon energy threshold.

7.1 Data selection and reconstruction

As explained in Section 3.1, a fiducial cut, known as 6T5, is required to ensure a proper
reconstruction of the shower core. This condition consists of requiring the SD station with
the largest signal to be surrounded by six working stations, so that the shower core is fully
contained in a working hexagon of WCDs. Since the SD energy and geometry reconstruc-
tion, on which the UMD reconstruction relies, is still in a preliminary stage with the new
electronics, we restrict the analysis to the period in which the WCDs were operating with the
old electronics. Thus, an additional condition is imposed: only SD stations operating with
the old electronics are accepted for the SD reconstruction. Consequently, the 6T5 hexagon
needs to be formed by stations operating with old electronics.

In Fig. 7.1, the monthly number of events from 2018 to 2025 is shown. Up to January
2021, we observe an average of approximately 100 events per month, with some drops due
to periods of poor data acquisition or detector malfunctions. From January 2021 to December
2021, an increase in the number of events is observed as a consequence of the expansion of

99
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the UMD array with the deployment of new positions, reaching an average of roughly 250
events per month. From December 2021 to February 2023, when the transition between the
old and new electronics of the WCDs in the SD-750 array occurred, there are no SD hexagons
with the same kind of electronics. Consequently, no event fulfill the 6T5 and the usage of
old electronics simultaneously. After that, when the entire array was equipped with the new
electronics, we fully entered Phase 21. Thus, the time period for the data considered in this
analysis spans from January 1st, 2018, to December 31st, 2021.

Furthermore, we apply all the standard quality cuts used for the official SD data produc-
tion for ICRC2023, which include a physical T4 trigger (see Section 3.1), a successful fit of
the SD LDF, and the rejection of known bad data acquisition periods or lighting issues. In
addition to the standard SD quality cuts, the UMD requires additional conditions for the
events; these include the requirement that the SD station with the largest signal in the event
has a non-rejected UMD detector and a successful fit of the muon LDF. We remind the reader
that the LDF model used for the UMD is that of Eq. (6.6). The binomial log-likelihood from
Eq. (6.10) is applied, with ρ450 and the core coordinates (x, y) treated as free parameters.
The slope β is fixed to the energy- and zenith-dependent parameterization presented in Sec-
tion 6.4, and the corner-clipping probability parameterization derived from data (Section 5.2)
is used. Finally, we restrict the analysis to events with θ < 45◦ in order to minimize the loss
of the detector’s effective area.
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Figure 7.1: Monthly number of events as a function of GPS time. Only Phase 1 events are con-
sidered for this work.

7.1.1 Energy cut

To define an energy range for the physics analysis, it is necessary to ensure that the set
of cuts applied to the events—both from the SD and UMD—still define the fully efficient
regime. In other words, we need to assess wether the cuts imposed to the dataset are not
biasing the selection towards a prefered zenith angle range. This regime can be determined
by identifying the minimum energy Eth above which the distribution of sin2 θ is uniform. To
achieve this, we perform a scan over the energy threshold Ecut. For each Ecut, we conduct a

1We remind the reader that the operation of WCDs with old electronics is referred to as Phase 1, whereas the
current operation with new electronics is known as Phase 2 (see Section 3.3.2).
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χ2 test to assess the uniformity of the sin2 θ distribution for events with energy above Ecut.
In this way, we define Eth as the lowest Ecut for which the p-value of the test exceeds 5%.

In Fig. 7.2, the χ2 values and corresponding p-values as a function of lg(Ecut/eV) are
displayed. A threshold energy of 1017.55 eV was obtained, which we round to Eth = 1017.5 eV.
Thus, we restrict our analysis to events with lg(E/eV) > 17.5. For visualization purposes
only, we retain one energy bin below Eth.

After all these cuts are applied, we obtain a total of 4838 events (13255 if we consider
lg(E/eV) > 17.3).
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Figure 7.2: Observed χ2 (left) and p-value (right) of the uniformity test as a function of Ecut. The
vertical dashed line indicates the minimum energy above which the p-value exceeds 5%.

7.2 Attenuation correction (CIC)

In this section, we aim to remove the zenith dependence of the muon shower size ρ450.
Inclined showers must traverse a greater thickness of the atmosphere before reaching

the ground. As a consequence, less particles survive to reach the detectors thus leaving a
weaker footprint in the array compared to a more vertical shower generated by the same
primary with the same energy. Although this effect is predominant for electromagnetic
particles, high-energy muons, like those detected by the UMD, also suffer from attenuation
as they have to additionally travel longer distances through the soil before reaching the
underground detector as the zenith angle of the shower increases. Thus, the muon shower
size ρ450 depends not only on the energy, but also on the zenith angle of the shower2. We
can factorize these dependencies as

ρ450(E, θ) = ρref(E) fatt(θ), (7.1)

where ρref is the zenith-independent muon shower size estimator and is interpreted as
the ρ450 the shower would have produced had it arrived at the reference zenith angle θref.
On the other hand, fatt(θ) captures the zenith angle dependence of the shower size due to
attenuation and is given by

fatt(θ) = 1 + a x + b x2, (7.2)

where x = sin2 θ − sin2 θref.
Therefore, with the knowledge of fatt(θ), ρ450 can be converted to the zenith-independent

quantity ρref via Eq. (7.1).

2The number of muons also depends on the primary particle. In this way, Eq. (7.1) is averaged over the
underlying mass distribution of the primary beam.
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For the analysis of data, the reference angle is typically chosen to be the median of
the zenith angle distribution, such that most of the events have a minor correction (i.e.,
fatt(θ) close to 1). For the UMD-750, the reference angle is chosen to be 35◦. We note that
this corresponds to the median of the zenith angle distribution when 0 < θ/◦ < 55, slightly
differing from 30◦, the median obtained for the zenith range used in this work (0 < θ/◦ < 45).
This sub-optimal reference zenith angle has only a small impact in the total systematic
uncertainty budget (see Section 7.4.1) and has been used in previous UMD analyses ([62, 69,
73]). Therefore, we chose to remain with θref = 35◦ for a straightforward comparison to the
previous UMD results.

To obtain the attenuation function fatt(θ), we employ the Constant Intensity Cut (CIC)
procedure [39]. This method, vastly used to characterize the attenuation of the SD signals,
relies on the assumption that the cosmic ray flux is isotropic and, as a consequence, the
number of events dN above an energy threshold E0 in the full efficiency region must follow

dN ∝ sin θ cos θdθ =
1
2

d(sin2 θ).

Therefore,

dN
d sin2 θ

= constant. (7.3)

Since there is a one-to-one mapping between energy and shower size, from Eq. (7.3) it
follows that the number of events above a given ρcut

450, onwards defined as intensity n(ρ450 >
ρcut

450), must be constant in equally-spaced bins of sin2 θ. In the left panel of Fig. 7.3, we show
n(ρ450 > ρcut

450) as a function of ρcut
450 for five equally-spaced sin2 θ bins, ranging from sin2 θ = 0

to sin2 θ = 0.62 (θ ∼ 52◦) in steps of 0.125. Only the first four bins, spanning our working
range of 0 < θ/◦ < 45, are taken into account for the analysis. The remaining, most inclined
bin (0.5 < sin2 θ < 0.62) is preserved for visualization only.

If no attenuation effects were present, a horizontal cut at fixed ncut values should yield
compatible values in the ρcut

450 for the different angular bins. Therefore, any deviation of ρcut
450

from a constant is attributed to attenuation alone, allowing to obtain fatt.
To illustrate the procedure, we show three horizontal cuts, corresponding to ncut =

300, 500 , 700, marked as horizontal dashed lines in the left panel of Fig. 7.3. For each ncut,
the corresponding ρcut

450 values for each zenith bin are displayed in the right panel of the
figure. The errorbars were computed via bootstrap as described in Ref. [79]. To obtain ρ35, a
and b, the resulting ρcut

450 values for each ncut are fitted to Eq. (7.1), as displayed by full lines.
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Figure 7.3: Left: Number of events with ρ450 > ρcut
450 as a function of ρcut

450 for different equally-
spaced sin2 θ bins. Horizontal dashed lines indicate constant intensities of 300, 500 and 700. Right:
ρcut

450 as function of x = sinθ − sin2 35◦ for intensities of 300, 500 and 700. Full lines represent the
fits to Eq. (7.1). The 2D histogram shows the underlying distribution of events in the (x, ρ450)
space. The orange shaded band indicates the most inclined bin 0.5 < sin2 θ < 0.62 (45 < θ/◦ .
52), which is not considered for the fit and preserved for visualization only.

The parameters of fatt, a and b, depend on the arbitrarily chosen value of ncut. In turn,
we note that ncut is related to the energy cut, as displayed in Fig. 7.4: a smaller (larger) ncut
implies a larger (smaller) energy cut.
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Figure 7.4: Mean energy of events (over the entire zenith range) as function of ncut.

Therefore, the procedure is repeated for several values of ncut to investigate the depen-
dence of a and b on this parameter, as shown in Fig. 7.5. Both a and b remain relatively flat
with respect to ncut. The ultimate values of a and b, chosen as a weighted mean over the
entire ncut scan, are indicated as dashed horizontal lines in the left panel of Fig. 7.5. The
corresponding fatt is shown as a black full line in the right panel of the Figure.
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Figure 7.5: Left: a and b of the attenuation function (Eq. (7.2)) as a function of ncut. Horizontal
dashed line indicate the weighted mean of a and b. Right: Dashed lines represent plots of fatt for
different ncut. Black full line shows the final function, obtained by using the weighted mean of a
and b.

An uncertainty for fatt is needed for a proper propagation to the muon estimator ρ35.
To that end, we obtain the covariance matrix of a and b using the values displayed in the
left panel of Fig. 7.5. We summarize all the information related to a and b in Table 7.1. The
uncertainty of fatt is thus obtained by usual Gaussian error propagation:

σ2
f (x) =

(
∂ f
∂a

)2

σ2
a +

(
∂ f
∂b

)2

σ2
b + 2

∂ f
∂a

∂ f
∂b

Cov(a, b), (7.4)

where ∂ f
∂a = x, ∂ f

∂b = x2, and the remaining quantities can be found in Table 7.1. The
definitive fatt and its 1σ uncertainty band is shown in Fig. 7.6. The uncertainty is null when
θ = 35◦ and increases as the zenith angle deviates from this value, which explains why the
reference angle should be chosen as the median or mode of the zenith angle distribution.

a σ2
a b σ2

b Cov(a, b)
-0.170 0.0021 -0.394 0.0444 -0.0018

Table 7.1: Optimal values and their uncertainties of the attenuation function fatt.
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Figure 7.6: Attenuation function and its 1σ uncertainty band.
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To verify that the derived attenuation function is working properly, the mean of the
normalized density ρ450/(E/1018 eV)0.9 as a function of log-energy for three angular bands
is shown in the left panel of Fig. 7.7. Full circles indicate the mean over the entire range 0 <
θ/◦ < 45, whereas unfilled triangles (squares) indicate the mean over a vertical (inclined)
range of 0 < θ/◦ < 30 (30 < θ/◦ < 45). Although not highly significant, a clear split
is visible between the vertical and inclined sets, the latter showing systematically smaller
muon densities as a consequence of muon attenuation. In the right panel of the Figure, the
same analysis is displayed for the attenuation-corrected quantity ρ35. It is evident that the
zenith dependence has been removed and no significant differences between the angular
bands is observed. To furhter illustrate this, in Fig. 7.8 we show the ratio between the means
of the vertical and inclined datasets as a function of energy. For the uncorrected values, the
vertical dataset show ∼ 3% greater values, while the ratio is compatible to unity for the
corrected values.
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Figure 7.7: Normalized muon shower size for different angular bands as a function of energy. The
left panel corresponds to the uncorrected case, whereas the right panel shows the attenuation-
corrected values.
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function of energy. Full (emptys) markers correspond to the uncorrected (corrrected) case.
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7.3 Evolution of the muon content with energy

In Fig. 7.9, we present the energy evolution of the normalized density ρ35 / (E/1018eV)0.9.
This normalization with energy is applied to reduce the energy dependence and facilitate
visualization. Since the number of muons increases roughly as E0.9, a constant composition
within a given energy range would correspond to a horizontal line when using the nor-
malized density. In the upper panel of the figure, we show both the full unbinned dataset
along with the mean (full circles) and median (empty triangles) of the distributions in each
energy bin. To better visualize the evolution, the lower panel displays only the mean and
median. The lowermost log-energy bin corresponds to lg(E/eV) = 17.3 (one energy bin
below full efficiency of the array, see Section 7.1.1), increasing in steps of ∆ lg(E/eV) = 0.2
up to lg(E/eV) = 18.9. Events with energies greater than 1018.9 eV are grouped into the
same bin, which contains only three events. In both panels, the lower and upper brackets
indicate the systematic uncertainty of the mean normalized density. We delay the details of
how systematic uncertainties are calculated to Section 7.4.

The muon content seems to decrease smoothly with energy up to ∼ 1018.4 eV, where
a break is observed towards larger densities. This feature is visible both for the mean and
the median of the distributions, indicating that is not likely to be caused by outliers. The
interpretation of this result in terms of mass composition will be discussed in Section 7.6.
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Figure 7.9: Normalized ρ35 as a function of energy. The upper panel shows the underlying un-
binned dataset together with the binned data, whereas the lower panel only shows the binned
data. Error bars indicate the standard deviation of the mean, while brackets correspond to the
systematic uncertainty calculated in Section 7.4. The horizontal position of the data points cor-
responds to the mean energy in the bin. The number of events in each energy bin is stated in
the lower panel. The shaded grey area indicates lg(E/eV) < 17.5, corresponding to the region
below full efficiency as explained in Section 7.1.1.

7.4 Systematic uncertainties

In this section, we detail the calculation of the systematic uncertainties for ρ35. As explained
in Section 7.2, ρ35 is obtained via Eq. (7.1). Therefore, we compute the systematic uncertainty
with the following formula:
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(
σρ35

ρ35

)2

=

(
σρ450

ρ450

)2

+

(
σfatt

fatt

)2

+

(
σ

energy scale
ρ35

ρ35

)2

, (7.5)

where σρ450 encapsulates all the uncertainty due to the UMD measurement only (i.e.,
without considering the uncertainty in the energy), σfatt corresponds to the uncertainty in

the attenuation function given by Eq. (7.4) described in Section 7.2, and σ
energy scale
ρ35 indicates

the uncertainty in ρ35 induced by the uncertainty in the energy scale. In turn, we write σρ450

as a contribution of three sources:

σ2
ρ450

= σ2
LDF(E) + σ2

pcc
+ σrec(E)2 + σ2

pattern, (7.6)

where σLDF is the uncertainty due to the unknown true shape of the muon LDF, σpcc is the
contribution due to the corner-clipping correction developed in Chapter 5, σrec corresponds
to the contribution of the reconstruction procedures, and σpattern indicates the systematic
introduced by the choice of the muon pattern. We note that σLDF and σrec can potentially
depend on energy.

In what follows, we explain the procedure to compute each of the contributions in
Eq. (7.5) and Eq. (7.6).

7.4.1 Attenuation correction

For an event with a zenith angle θ, the uncertainty in fatt is determined by evaluating Eq. (7.4)
at θ. In Fig. 7.10, we present the evolution of σf / fatt as a function of sin2 θ − sin2 35◦. It is
evident that the relative uncertainty increases as θ deviates from the reference angle of 35◦,
reaching a maximum of approximately 3% for θ = 0◦ and θ = 45◦. By construction, the
uncertainty is zero for θ = 35◦.

To quantify the uncertainty of fatt, we take the mean value of σf / fatt over the events,
which follow an underlying sin θ cos θ distribution. In Fig. 7.11, we show 〈σf / fatt〉 as a
function of lg(E/eV). As expected, no energy dependence is observed. A value of σf / fatt ∼
1% is found for all energy bins. Consequently, we adopt this value as the estimate of the
systematic uncertainty.
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Figure 7.10: Relative uncertainty of the attenuation function as a function of sin2 θ − sin2 35◦.
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Figure 7.11: Mean relative uncertainty of the attenuation function as a function of log-energy.

7.4.2 Corner-clipping correction

The uncertainty in the corner-clipping correction developed in Chapter 5, parameterized in
Eq. (5.9) and Eq. (5.10), needs to be accounted for to estimate a systematic effect. To this end,
we obtain an uncertainty in pcc by usual Guassian propagation:

σ2
p =

(
∂p
∂m

)2

σ2
m +

(
∂p
∂b

)2

σ2
b , (7.7)

where we neglect the correlation between m and b and the partial derivatives are given
by

∂p
∂m

= sin ∆φ− 1/2,

∂p
∂b

= 1.
(7.8)

In turn, σm and σb depend on θ and are obtained by propagating the uncertainty in
Eq. (5.10):

σ2
m =

(
∂m
∂m0

)2

σ2
m0

+

(
∂m
∂m1

)2

σ2
m1

+ 2cov(m0, m1)
∂m
∂m0

∂m
∂m1

,

σ2
b =

(
∂b
∂b0

)2

σ2
b0
+

(
∂b
∂b1

)2

σ2
b1

+ 2cov(b0, b1)
∂b
∂b0

∂b
∂b1

,

(7.9)

where

∂m
∂m0

=
∂b
∂b0

= 1,

∂m
∂m1

=
∂b
∂b1

= sec θ − 1.2,
(7.10)

and m0 = 0.03, σm0 = 0.002, m1 = 0.14, σm1 = 0.01, b0 = 0.035, σb0 = 0.001, b1 = 0.076
and σb1 = 0.004. The covariances are cov(m0, m1) = 8.9× 10−6 and cov(b0, b1) = 7.6× 10−7.
All these values were obtained by the covariance matrix of the fits shown in Fig. 5.13.

In Fig. 7.12, the parameterizations of m and b (Eq. (5.10)) together with the 1σ band given
by Eq. (7.9) are displayed. The 1σ and 2σ bands (via Eq. (7.7)) of pcc as a function of | sin ∆φ|
for four different zenith angles are shown in Fig. 7.13.
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Figure 7.12: Solid lines indicate the parameterziations of Eq. (5.10), whereas the shaded areas
correspond to the 1σ bands in m and b given by Eq. (7.9).
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Figure 7.13: pcc parameterization of Eq. (5.9) for four different zenith angles, together with the
corresponding 1σ (shaded bands) and 2σ (dashed lines) intervals.

To assess a systematic uncertainty, the standard reconstruction of data was repeated with
shifted probabilities pcc(θ, ∆φ)± = pcc(θ, ∆φ)± 2σ(θ, ∆φ), leaving all the remaining recon-
struction parameters unchanged3. Furthermore, an additional reconstruction was performed
but using the corner-clipping correction found for simulations (see Fig. 5.6). As discussed
in Section 5.2, the parameterization of pcc for simulations shows some zenith-dependent
discrepancy with the one obtained for data. Although we showed that such discrepancy is
not significant as it produces at most a 3% difference in the maximum likelihood estimators,
this test serves to evaluate the impact of using the two parameterizations in the end-to-end
result.

The evolution of ρ35 / (E/1018 eV)0.9 with energy obtained with the different parameter-
izations of pcc is shown in the left panel of Fig. 7.14. All the markers lie almost on top of
each other and is visually difficult to see a significant impact. In the left panel of the figure,
the ratio between the mean muon density obtained for each alternative pcc and the standard
pcc in each energy bin is displayed. When p−cc is used, a smaller corner-clipping correction is
applied and therefore the ρ450 are systematically higher than those obtained with the stan-
dard pcc. In contrast, a larger correction is applied when utilizing p+cc, shifting ρ450 downards.
Finally, the values of pcc for simulations are systematically higher than those for data and,
consequently, the muon shower sizes are systematically smaller.

3In particular, we did not repeat the CIC each time.
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It is evident that using different corrections produces only small impact, being at most
0.6% when using the simulation parameterization. Consequently, we use this value as an
estimate of the systematic uncertainty due to different corner-clipping corrections.

Finally, to illustrate the reason for the minimal impact of the correction on the muon
shower size, we present in Fig. 7.15 the log-likelihood (logarithm of Eq. (4.14)) for a single
module with k = 5 and k = 50 for different pcc. In addition to reaching their minima at very
similar µ values, regardless of the value of pcc, the shape and curvature of the log-likelihood
curves are nearly identical. In other words, the log-likelihood curves exhibit similar behavior
for all µ, particularly near the minima. This is most clearly observed for small k (k = 5 in the
figure), where the likelihoods are very broad for being dominated by Poisson fluctuations.
As a consequence, the event likelihood, defined as the sum of the log-likelihoods of the
individual module likelihoods, is only marginally affected by differences in the value of pcc,
reaching its minimum at a nearby ρ450.

17.3 17.5 17.7 17.9 18.1 18.3 18.5 18.7 18.9
lg(E/eV)

1.4

1.5

1.6

1.7

1.8

1.9

2.0

〈ρ
35
/(

E
/1

018
eV
)0.9
〉

standard pcc
pcc + 2σp
pcc − 2σp
pcc of simulations

17.3 17.5 17.7 17.9 18.1 18.3 18.5 18.7 18.9
lg(E/eV)

−0.006

−0.004

−0.002

0.000

0.002
ρ
al
te
rn
at
iv
e

35
ρ

p c
c

35
−1

pcc + 2σp
pcc − 2σp
pcc of simulations

Figure 7.14: Impact in the final result of using different corner-clipping corrections.
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Figure 7.15: Log-likelihoods (logarithm of Eq. (4.14), normalized by its maximum) for a module
with k = 5 (left) and k = 50 (right) for different values of pcc.

7.4.3 Muon pattern

The typical width of a muon signal is approximately ∼ 7− 8 "1s". The condition for identify-
ing a muon signal in a bar is the presence of at least one sequence of four consecutive "1s" in
its binary trace (see Section 3.3.4). This criterion was chosen to maximize the signal-to-noise
ratio, preventing noise signals—composed predominantly of sequences with three or fewer
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"1s" in the trace—from being misidentified as muons, while ensuring high efficiency for
muon detection [59].

However, differences in the UMD modules (SiPM gain, scintillators, fibers, electronics)
throughout the array can result in some detectors systematically producing wider signals
than others (see Appendix I), making them slightly more efficient or noisier. Aging effects,
although shown not to be highly significant, can also play a minor role, as UMD modules
output 0.7% fewer "1s" per year (see Appendix I).

To assess the impact of selecting four consecutive "1s" as the muon pattern, we repeated
the reconstruction procedure using patterns of three and five consecutive "1s", keeping all
other configuration parameters unchanged. When a shorter pattern is used, a higher muon
efficiency is expected at the cost of also increasing false positives due to noise. Conversely, a
decrease in the efficiency is awaited when using a wider pattern4. Thus, this test ultimately
provides the possibility to explore the impact of varying the detector efficiency. Although we
acknowledge that this approach may overestimate the uncertainty, we consider it a coarse
but conservative estimation.

In the left panel of Fig. 7.16, the normalized muon density as a function of energy is
shown for both the standard and alternative pattern definitions. When three "1s" are required,
it is more likely for detectors to trigger on more bars, either due to noise signals that were
previously rejected or weak muon signals that failed to produce four "1s". Consequently,
the muon measurement is pushed toward higher values. In contrast, when a pattern of five
"1s" is used, short signals previously accepted are now ignored, resulting in fewer triggered
bars. As a result, the detector becomes less efficient, shifting the measurement toward lower
values. In the right panel of the figure, the ratio between the results obtained with the
alternative patterns and the standard pattern of four "1s" is displayed as a function of energy.
The shorter pattern results in a shift of +5% while the wider pattern results in a shift of−7%.
Therefore, we take these values as systematic uncertainties.
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Figure 7.16: Impact of using different muon patterns in the end result.

7.4.4 Systematic uncertainty in ρ450 due to unknown MLDF shape and optimal
distance

Fixing β to a parameterized value fixes the MLDF shape during the fit. However, the true
value of β varies for each event. Therefore, fixing the slope can induce a bias in ρ450.

4We note that different muon patterns would also affect the corner-clipping correction developed in the
Chapter 5: a shorter (wider) pattern would produce more (less) overcounting due to corner-clipping.
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To investigate this, using the events in which β can be left free, we computed the ratio
between the ρ450 obtained with β fixed and free. The mean and median ratio as function of
energy are shown in Fig. 7.17. The two statistics are slightly different due to the presence
of some outliers, mainly saturated events, in the lower energy bins. The mean difference
between the ρ450 with fixed and free slope is at most ∼ 3% for the lowest energy bin, and
decreases with energy. If we take the median as a reference, the difference is further reduced
below 1% for all energies. Thus, for the events in which β can be left free, we can conclude
that fixing the slope does not significantly changes the result of ρ450.
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Figure 7.17: Comparison of ρ450 obtained with β free and fixed.

However, the vast majority of events does not allow for a free β, as already discussed. To
assess the systematic uncertainty in ρ450 induced by fixing β, we use a similar approach to
the one used by the SD. The method consists in, for each event, repeating the fit but fixing the
slope to a shifted value β± = β0 × (1± σβ(E)), where β0 is given by the parameterization
described in the previous section and the magnitude of the shift σβ(E) depends on the
energy of the event and is given by the quadratic parameterization shown in Fig. 6.22. If we
name ρ±450 the ρ450 value obtained with the slope fixed to β±, a systematic uncertainty can
be defined as

σ
sys
ρ450 =

|ρ+450 − ρ−450|
2

. (7.11)

This excercise also allows to obtain ropt for each event, the optimal distance at which the
MLDF is independent of β. This is defined as the distance at which the MLDFs with shifted
β coincide. A selected event is shown as an example to illustrate the method to obtain ropt

and σ
sys
ρ450 in Fig. 7.18.
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Figure 7.18: Method to obtain ropt and σ
sys
ρ450 for an event. Black line indicates the LDF with β

fixed to the parameterized value, while red (blue) dashed line represents the LDF with beta fixed
to β+ (β−). The stars indicate the value of ρ450 in each case. Vertical green line represents ropt.

It is worth noting that ropt and σ
sys
ρ450 are intimately related, as shown in Fig. 7.19. When ropt

is below (above) 450 meters, ρ−450 is greater (smaller) than ρ+450, and therefore the difference
ρ+450 − ρ−450 is negative (positive). Naturally, when ropt = 450 m, the systematic uncertainty
is null. The further ropt deviates from 450 m, the larger (in absolute value) the difference
between ρ+450 and ρ−450.
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Figure 7.19: Mean value of ρ+450−ρ−450
2ρ450

as a function of ropt. The vertical dashed line indicates 450
meters, whereas the horizontal line marks the null value.

In the left panel of Fig. 7.20, we show the mean relative systematic error as a function
of energy. We also show the energy evolution of the mean relative statistical error. The
statistical error is provided by the MLDF fit procedure in each event, and is mainly driven
by the number of triggered stations and the total number of muons. For the two types
of uncertainties, it is necessary to disinguish between events with and without saturation.
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Saturated detectors do not fully constrain the MLDF close to the core, and as a consequence,
the fit loses leverage, resulting in larger uncertainties, both statistical and systematic.

Systematic and statistical uncertainties decrease with energy, regardless of the saturation
status. This is a consequence of the increasing number of triggered stations, which results in
a better constrain to the MLDF fit. Additionally, a larger number of muons is measured in
each detector, which decreases the sampling fluctuations.

The zenith dependence of the errors is displayed in the right panel of Fig. 7.20. For unsat-
urated events, the statistical and systematic errors show no dependence on the zenith angle.
In contrast, the uncertainties for saturated events become smaller for more inclined showers.
This is a result of a geometrical effect. Vertical saturated events have a saturated detector
close to the core, while the bulk of unsaturated detectors, corresponding to the first crown
surrounding the saturated position, are at a similar shower plane distance, determined by
the array spacing (750 m for the UMD). As a result, the MLDF is weakly constrained, leading
to larger uncertainties. For inclined events, the first crown of unsaturated detectors spans a
wider range of distances to the core, providing better constrains for the fit.

The mean relative systematic uncertainty using all the events (i.e., both saturated and
non-saturated) as a function of energy is displayed with triangular empty markers in Fig. 7.21.
For lower energies, where saturation is unlikely, the uncertainty is dominated by non-saturated
events. As the energy increases, the fraction of saturated events rises, and the uncertainty of
saturated events begin to dominate, causing a slight increase in the systematic uncertainty
in the higher energy bins. To capture this behaviour, a quadratic function was used to fit
the energy dependence of the systematic uncertainty, shown as a dashed line in the figure.
This parameterization allows us to obtain an estimate of the systematic error to an arbitrary
value of energy.
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Figure 7.20: Statistical and systematic uncertaintes of ρ450 as function of energy (left) and sec θ
(right). Saturated and non-saturated events are treated separately.



116 CHAPTER 7. ANALYSIS OF THE MUON CONTENT MEASURED BY THE UMD

17.25 17.50 17.75 18.00 18.25 18.50 18.75 19.00 19.25
lg(�/eV)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

�
sy
s

�
45

0
�

45
0

all
non-saturated
saturated

H = 0(lg(�/eV) − 18)2 + 1(lg(�/eV) − 18) + 2
a = 0.047 ± 0.007
b = -0.060 ± 0.003
c = 0.036 ± 0.001

H = 0(lg(�/eV) − 18)2 + 1(lg(�/eV) − 18) + 2
a = 0.047 ± 0.007
b = -0.060 ± 0.003
c = 0.036 ± 0.001

Figure 7.21: Mean relative systematic uncertainty of ρ450 due to fixing β as a function of energy
including both saturated and non-saturated events.

The optimal distance ropt as a function of energy (left panel) and zenith angle (right
panel) is shown in Fig. 7.22. Due to the aforementioned feature of the saturated events, the
optimal distance is systematically larger for them. Higher energy events produce bigger
footprints on the ground and therefore possess more triggered detectors further from the
shower core. As a result, a smooth increase of the optimal distance with energy is observed.
On the other hand, only a weak dependence is found with the zenith angle.
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Figure 7.22: Mean optimal distance as function of energy (left) and sec θ (right). Saturated and
non-saturated events are treated separately.

7.4.5 Reconstruction procedure

As explained in Chapter 6, the standard reconstruction of the UMD now leaves the UMD
core free while leaving the LDF slope β fixed to a parameterized value (see Section 6.4). We
try two additional configurations, namely, with the core and β fixed and with the core fixed
with β free in every event. Freeing both the core and the slope in every event is not feasible.
The maximum difference of 〈ρ35〉 between the reconstructions in each energy bin serves as
a measure of the systematic uncertainty due to the reconstruction configuration. In the left
panel of Fig. 7.23, the evolution of ρ35—normalized to reduce the energy dependence—for
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the different configurations is displayed. The ratio between the standard and alternative
reconstruction configurations is observed in the right panel of the figure. Fixing both the
core and β produces a negligible impact, below 1% in all energy bins. When β is free, the
difference with the standard configuration is well contained within±2%, with the exception
of the highest energy bin (1018.7 < E / eV < 1018.9), for which a difference of ∼ 6% is
observed, although only 6 events are present in this bin and the statistical error of the two
points overlap. Therefore, we take a contribution of 3% for all energies, as a compromise
between the 2% and 6% observed for lower and higher energy bins, respectively.
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Figure 7.23: Impact of using different reconstruction configurations.

7.4.6 Long-term stability

To evaluate the stability of the result over time, we divided our dataset into two periods
with the same number of events. The division time between the datasets was set to GPS
time 1295698963 s, corresponding to January 26, 2021. Thus, Period 1 spans from January 1st,
2018 to January 26, 2021 whereas Period 2 spans from January 26, 2021 to December 21, 2021.
Both periods contain 6627 events above 1017.3 eV each. Since the UMD array was deployed
at varying rates, with deployment still ongoing, the first period spans almost three years,
whereas the second covers less than one year (see Fig. 7.1).

In the left panel of Fig. 7.24, we show the mean normalized muon density as a function
of energy for each period, as well as for the full period. A split is visible between the two
periods, with Period 1 showing slightly larger values than Period 2. In the right panel of the
figure, the ratio between the mean for one period and that of the full period is displayed for
each energy bin. The effect is less than 2%, as observed at the lower energies where statistical
uncertainties do no dominate. This may likely be the result of Period 1 being dominated by
a small set of detectors as the UMD array was not very large (see Fig. 7.1). Therefore, we
conservatively take a ±2% contribution to the systematic uncertainty budget.
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Figure 7.24: Left: Mean normalized muon density for different time periods. Right: Ratio between
the mean ρ35 obtained in a selected period and the full period for each energy bin.

7.4.7 Energy scale

The number of muons increases almost linearly with energy (see Eq. (2.13)). Therefore, a
positive (negative) shift in the energy scale would produce an apparent decrease (increase)
in the muon number when averaged in an energy bin. To estimate the systematic induced
in the muon measurement due to this effect, we shift the energy of each event ±14%, which
corresponds to the systematic uncertainty in the SD energy estimate [11]. Then, we proceed
to compute the mean of the muon density in each energy bin using the same binning. The
relative difference of the mean muon density in each bin, with and without shifts in the
energies, serves as an estimate of the systematic uncertainty. As shown in Fig. 7.25, a +14%
increase in energy results in a −11% shift in the muon density (red upward-pointing trian-
gles), while a −14% decrease in energy produces a +14% shift in the muon density (blue
downward-pointing triangles). Thus, we take these as systematic.
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Figure 7.25: Systematic uncertainty in ρ35 due to shifts in the energy scale.
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7.4.8 Total systematic uncertainties

In Table 7.2, we summarize the contributions of all sources of systematic uncertainties. The
largest contribution arises from the uncertainty in the energy scale. In Fig. 7.26, the different
contributions to the systematic uncertainty as a function of energy are depicted with dashed
lines. The total systematic uncertainty, calculated as the sum in quadrature of all the uncer-
tainties, is represented by a solid olive line. The solid grey line indicates the total uncertainty
when considering only the UMD measurement, i.e., excluding the contribution of the energy
scale.

Source Relative uncertainty
Attenuation correction (CIC) 1%

Corner-clipping 0.6%
LDF shape from 10% to 2%

Muon pattern +5% −7%
Reconstruction 3%

Long-term 2%
Energy scale +14% −11%

Table 7.2: Table summarizing the contributions to the systematic uncertainty
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Figure 7.26: Systematic uncertainties as a function of energy. Lower (upper) error is shown in the
left (right) panel. The total systematic uncertainty, indicated with solid olive line, is computed
as the sum in quadrature of all the contributions (Eq. (7.5)). The solid grey line shows the total
uncertainty without considering the contribution of the energy scale.

7.5 Simulations

7.5.1 Library

For the interpretation of the muon measurements, it is necessary to obtain the expected out-
come of the muon content for fixed primaries using air-shower and full detector simulations.
In this section, we describe the set of simulations used to that end.

We have used a library of pre existent simulated showers generated with the COsmic
Ray Simulations for KAscade (CORSIKA) framework [24] available in the KIT cluster. The
library comprised proton and iron primaries, EPOS-LHC [27, 28] and QGSJetII-04 [29] as
high-energy hadronic interaction models, and contained the discrete energies 1017.5 eV, 1018

and 1018.5, and zenith angles θ/◦ = {0, 12, 22, 32, 38, 48}. Each primary, hadronic model,
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energy and zenith angle combination had 120 showers, leading to a total of NE × Nθ ×
Nprim × Nmodel × Nsh = 3× 6× 2× 2× 120 = 8640 showers. The azimuth angle of each
shower is uniformly distributed between 0◦ and 360◦.

Each shower was thrown once to the simulated SD-UMD-750 array. The impact point
of the shower was uniformly sampled from a distribution centered on a central WCD tile,
as shown in Fig. 7.27. Both the response of the SD and UMD, as well as the posterior re-
construction of their simulated signals, were performed using Offline . The reconstruction
chain for the simulated signals is identical to that used for the data, yielding for each sim-
ulated shower a reconstructed ρ450 by means of the MLDF fit to the detector signals. The
corner-clipping correction is the one obtained for simulations in Section 5.1.
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Figure 7.27: Distribution of simulated core positions.

7.5.2 Energy evolution of the muon content in simulations

To take into account attenuation in data, the muon shower size ρ450 produced by a shower
with an arbitrary zenith angle θ is converted to ρ35, interpreted as the ρ450 the shower would
have produced had it arrived at a reference zenith angle θref = 35◦, as explained in Section 7.2.
In this way, the zenith angle dependence of the muon shower size is removed, allowing to
focus the analysis in the energy evolution of the estimator. Therefore, it would be convenient
to have a set of showers with θMC = 35◦ to be compared to data.

However, the library possess six zenith angles and none of them equals 35◦. Thus, to
obtain the expected ρ35(E) we proceed as follows. For a fixed energy, primary and hadronic
model, we obtain the mean ρ450 for each zenith angle. Then, we fit the evolution of 〈ρ450〉
with x = sin2 θMC − sin2 35◦ with Eq. (7.1), obtaining ρ35, a and b as a result of the fit. An
example of this procedure applied to EPOS-LHC proton showers of 1017.5 eV is shown in
Fig. 7.28.
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Figure 7.28: Procedure to obtain ρ35 for EPOS-LHC proton showers of 1017.5 eV. Each point
corresponds to the mean ρ450 for each zenith, whereas the error bars indicate the standard
deviation of the mean.

In this way, a set of three ρ35 values is obtained, one for each of the energies in the
library. To be able to evaluate ρ35 at arbitrary energies, and not only to the ones available in
the library, the evolution of ρ35 with the Monte-Carlo energy is fitted with a power law, as
expected within the framework of the Heitler-Mathews model descrbed in Section 2.3 (see
Eq. (2.16)),

ρ35(EMC) = a
(

EMC

1018 eV

)b

, (7.12)

where a, the muon density at 1018 eV, and b, the logarithmic gain, are free parameters.
The resulting fits are shown in the top panel of Fig. 7.29 for the two primaries and

hadronic models. To ease visualization and weaken the energy dependence, we normalize
ρ35 by a factor

(
EMC/1018 eV

)0.9, as displayed in the bottom panel of the Figure.
The ratio of the muon density at 1018 eV between primares for a fixed model, and between

models for a fixed primary, can be obtained to quantify the different muon contents expected.
Both hadronic models predict ∼ 50 % more muons for iron than proton, being the ratios(

aFe
ap

)
EPOS-LHC

= 1.512± 0.007 and
(

aFe
ap

)
QGSJetII-04

= 1.504± 0.012. The ratio between models

are
(

aEPOS-LHC
aQGSJetII-04

)
p
= 1.045± 0.008 and

(
aEPOS-LHC
aQGSJetII-04

)
Fe

= 1.051± 0.005, indicating that EPOS-

LHC predicts ∼ 5 % more muons than QGSJetII-04, regardless of the primary.
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Figure 7.29: Top: Fit of the ρ35 values obtained in simulations to Eq. (7.12). The optimal param-
eters are stated in the lower right corner. Bottom: Same as in upper panel but normalized by(
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ties of the fits. The Monte-Carlo energy is used.

Another relevant quantity needed for the analysis is the energy evolution of the mean of
the natural logarithm of ρ35, 〈ln(ρ35/m−2)〉. To obtain this, for each energy, primary particle,
and hadronic model in the library, the reconstructed ρ450 of each shower is converted into
ρ35 using Eq. (7.1). The attenuation function fatt used was the one previously obtained by
fitting 〈ρ450〉 as a function of x = sin2 θMC − sin2 35◦. For instance, for EPOS-LHC proton
showers with 1017.5 eV, the attenuation function derived from the fit in Fig. 7.28 was utilized.

As an example, the mean ln(ρ35/m−2) as a function of x is shown in Fig. 7.30 for this set
of showers. As expected, any zenith angle dependence is removed by fatt. The mean value of
ln(ρ35/m−2) across all showers is indicated as a dashed horizontal line. In this way, a set of
three values of 〈ln(ρ35/m−2)〉 was obtained for each primary particle and hadronic model
(one value for each energy). These values are shown in Fig. 7.30.
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The dependence of the mean logarithmic muon density on energy was fitted with a
linear function of log-energy:

〈ln(ρ35 / m−2)〉 = m (lg(EMC/eV)− 18) + c. (7.13)

The results of these fits are also shown in Fig. 7.30.
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Figure 7.30: Mean of ln(ρ35/m−2) as a function of sin2 θMC − sin2 35◦ for EPOS-LHC proton
showers of 1017.5 eV. The mean over all the showers is indicated as a dashed horizontal line. The
shaded area corresponds to the mean ± one standard deviation of the mean.
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Figure 7.31: Evolution of 〈ln(ρ35 / m−2)〉 with Monte-Carlo energy. Lines indicate fits to
Eq. (7.13).

Impact of the energy reconstruction

The vertical axis in Fig. 7.29 corresponds to the reconstructed ρ35, obtained via the muon
LDF fit to the simulated signals, following the same procedure as applied to the data. Thus,
the effects of the muon detector and its reconstruction procedure are taken into account.
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However, the horizontal axis represents the true Monte Carlo energy, EMC (which also im-
pacts the vertical axis of the lower panel). In data, the reconstructed energy by the SD, E, is
used instead, and the muon density is obtained as a function of this estimate. Because the
number of muons increases rapidly with EMC (approximately E0.9

MC), reconstruction effects
in the energy must be accounted for before comparing data and simulations, even if E is
an unbiased estimator of EMC [80]. In order to take into account energy reconstruction ef-
fects, we follow the procedure adopted in Refs. [70, 81]. The mean muon density ρ35 in a
reconstructed energy bin E− < E < E+, with a bin center Ec, divided by Eα, is obtained by

〈
ρ35

(E/1018eV)α

〉
(Ec) =

∫ E+

E−
∫ ∞

0
ρsim

35 (EMC)

(E/1018eV)α J(EMC)G(E|EMC)ε(EMC)dEMCdE∫ E+

E−
∫ ∞

0 J(EMC)G(E|EMC)ε(EMC)dEMCdE
, (7.14)

where

• ρsim
35 (EMC) is the reconstructed mean muon density ρ35 as a function of the Monte-Carlo

energy given by Eq. (7.12) shown in Fig. 7.29.

• J(EMC) is the cosmic ray flux observed by the Pierre Auger Observatory taken from
Ref. [82] given by

J(EMC) = J0

(
EMC

1018.5 eV

)−γ1 3

∏
i=1

[
1 +

(
EMC

Eij

)1/ωij
](γi−γj)ωij

, (7.15)

where j = i + 1, J0 = 1.315 × 10−18km−2sr−1yr−1eV−1, E12 = 5 × 1018 eV, E23 =
13 × 1018 eV, E34 = 46 × 1018 eV, γ1 = 3.29, γ2 = 2.51, γ3 = 3.05, γ4 = 5.1, and
ωij = 0.05.

• G(E|EMC) is the resolution function of the SD energy. It corresponds to the conditional
probability of reconstructing a shower with true energy EMC to a reconstructed energy
E. Following Ref. [83], we adopt a Gaussian distribution centered in EMC (i.e., unbiased)
and a standard deviation given by

σ(EMC) = EMC

(
0.06 + 0.05× (EMC/1018 eV)−1/2

)
. (7.16)

• ε(EMC) corresponds to the trigger efficiency function of the SD-750 taken from Ref.
[70]. Its formula reads

ε(EMC) =
1
2
+

1
2

erf
[

3.71 lg
(

EMC

1016.93eV

) (
1 + 0.187 lg

(
EMC

1016.93eV

))]
. (7.17)

The cosmic ray flux J(EMC) (Eq. (7.15)), resolution function G(E|EMC) and trigger proba-
bility (Eq. (7.17)) are displayed in Fig. 7.32.
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Figure 7.32: Functions used to account for energy reconstruction effects in the muon measure-
ment via the convolution of Eq. (7.14). Left: Cosmic ray flux (Eq. (7.15)). Middle: Resolution
function of the SD energy estimate for four Monte-Carlo energies. The apparent assymetry in
the Gaussian distribution is due to the logarithmic scale of the x-axis. The standard deviation for
each energy given by Eq. (7.16) is stated in the legend. Right: Trigger probability of the SD-750
(Eq. (7.17)). Horizontal grey lines indicate the null and unity values, while the vertical black line
marks the threshold energy where the trigger probability equals 97%.

It is worth noting that the energy threshold—the energy above which the array triggers
with a probability greater than 97%—derived from Eq. (7.17) is 1017.3 eV, which is lower than
the value obtained using the uniformity χ2 test with data in Section 7.1.1. This discrepancy
is most likely due to the additional conditions imposed on UMD events, which were not
considered in Eq. (7.17).

In the upper panel of Fig. 7.33, the curves of 〈ρsim
35 /(EMC /, 1018 eV)α〉 as a function of the

true Monte Carlo energy EMC (as shown in the bottom panel of Fig. 7.29) and 〈ρ35/(E / 1018 eV)α〉
as a function of the reconstructed energy E, with α = 0.9, are shown for EPOS-LHC. For
the latter, we take the same bin edges used for data, the lower-most edge corresponding to
lg(E/eV) = 17.3 (on energy bin below full efficiency for data, see Section 7.1.1) increasing
with a step of ∆ lg(E/eV) = 0.2. The two curves are very similar. In the lower panel of the
figure, the ratio between the two curves is displayed, showing that the difference between
them is at most ∼ 5% near 1017.3 eV, the energy threshold implied by Eq. (7.17).

It is interesting to note that, for energies above 1017 eV, the convolved muon density ρ35
retrieved by Eq. (7.14) is smaller than ρsim

35 . In contrast, for energies below this value, ρ35 is
larger than ρsim

35 . This behavior can be explained by examining the integrand of Eq. (7.14).
For a fixed E, the inner integral corresponds to the integral of ρsim

35 (EMC) weighted by the
function w(EMC) = G(E|EMC) J(EMC) ε(EMC). In Fig. 7.34, w (conveniently normalized to
be 1 at its maximum) is displayed for different reconstructed energies E, indicated as vertical
dashed lines.

Above 1017.3 eV, the threshold defined by Eq. (7.17), ε ∼ 1, so the weighting function is
defined by the product G(E|EMC) J(EMC). The resolution function G(E|EMC) is symmetric,
but the flux J(EMC) is highly asymmetric, steeply falling with energy. Therefore, w is also
asymmetric, giving more weight to smaller energies5. Indeed, as observed in Fig. 7.34, the
weight function w for those reconstructed energies E above 1017.3 eV (in the figure, this is
lg(E/eV) = {17.5, 18}) gives more weight to MC energies EMC < E, as deduced from the
fact that the maximum of w is reached below E. Since ρsim

35 (EMC) increases with energy (see
Eq. (7.12)), the muon density values at smaller energies, which have more weight in the
integral, dominate, resulting in ρ35(E) < ρsim

35 (EMC = E).
The same effect is observed for energies close to but slightly below the threshold (in the

figure, lg(E/eV) = 17). Although formally ε cannot be approximated by unity, the drop in

5In other words, an event with a reconstructed energy E is more likely to originate from a shower with true
energy EMC < E.
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the trigger probability (see right panel of Fig. 7.32) is still not large enough to compensate
the steeply falling energy spectrum in this case.

For energy far below the threshold, the trigger probability ε becomes dominant. In this
case, a reconstructed energy E is more likely to come from a true energy EMC > E. Indeed, as
observed in the plot of w for lg(E/eV) = 16 in Fig. 7.34, the maximum of w is achieved above
E, resulting in larger weights to Monte-Carlo energies above E. However, we stress that the
analysis of this work is restricted to energies lg(E/eV) > 17.5, as explained in Section 7.1.1.
Therefore, the convolved densities below this value (shaded area in Fig. 7.33) are not used.

Finally, it is also worth noting that w becomes narrower for larger energies, which illus-
trates the fact that the resolution improves with energy (see Eq. (7.16)).
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Figure 7.33: Effect of the convolution of Eq. (7.14) for EPOS-LHC showers. Shaded grey bands
indicates the region below full efficiency that will not be used for the analysis, as explained in
Section 7.1.1 (lg(E/eV) < 17.5). Vertical dashed lines marks the log-energy bin edges. Upper
panel: Comparison between the ρ35 curves for iron (blue) and proton (red), with (dots joined
by dashed lines) and without (solid lines) accounting for energy reconstruction effects. Lower
panel: Ratio between the curves with and without accounting for energy reconstruction effects
for proton (red) and iron (blue).
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Figure 7.34: Weight function w(EMC) = G(E|EMC) J(EMC) ε(EMC) as a function of lg(EMC/eV)
for different reconstructed log-energies lg(E/eV), indicated by vertical dashed lines. For
lg(E/eV) = {17, 17.5, 18}, the maximum of w is reached below E, indicating that w gives more
weight to EMC < E. In contrast, for lg(E/eV) = 16, the maximum is reached above E, showing
that energies EMC > E have more weight.

The evolution of the mean logarithmic muon density with Monte Carlo energy must
also be convolved with Eq. (7.14) before being compared to data. To that end, we substitute〈

ρ35
(E/1018eV)α

〉
with 〈ln ρ35〉 on the left-hand side and ρsim

35
(E/1018eV)α with 〈ln ρ35〉sim on the right-

hand side of Eq. (7.14). Here, 〈ln ρ35〉sim corresponds to the linear model in Eq. (7.13), which
describes the evolution of the mean logarithmic density with Monte Carlo energy, as shown
in Fig. 7.31. The result of the convolution in the logarithmic density is shown in Fig. 7.35.
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Figure 7.35: Effect of the convolution of Eq. (7.14) for the mean logarithmic density for EPOS-
LHC showers. Shaded grey bands indicates the region below full efficiency that will not be used
for the analysis, as explained in Section 7.1.1 (lg(E/eV) < 17.5). Vertical dashed lines marks the
log-energy bin edges. Comparison between the 〈ln ρ35〉 curves for iron (blue) and proton (red),
with (dots joined by dashed lines) and without (solid lines) accounting for energy reconstruction
effects.

7.6 Comparison of data and simulations

The normalized muon density as a function of log-energy, along with the expected results
for protons and iron using EPOS-LHC and QGSJetII-04, is shown in Fig. 7.36. Within sys-
tematic uncertainties, the measurements are compatible with iron primaries, except for the
highest energy bin, which suggests a composition heavier than iron. However, this last bin
(lg(E/eV) > 18.9) is wide and contains only three events. For this reason, we exclude it
from the following analysis.
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Figure 7.36: Normalized muon density as a function of energy. Error bars indicate statistical
uncertainties, whereas brackets denote systematic uncertainties. Simulation results for protons
and iron, obtained using the integral convolution as explained in Section 7.5.2, are shown as red
and blue markers, respectively, joined by lines. The shaded grey area indicates lg(E/eV) < 17.5,
corresponding to the region below full efficiency as explained in Section 7.1.1.

For a given hadronic model, the mean logarithmic mass in each energy bin can be ob-
tained as (see Eq. (2.18))

〈ln A〉 = ln 56
〈ln ρ35〉data − 〈ln ρ35〉p
〈ln ρ35〉Fe − 〈ln ρ35〉p

, (7.18)

where 〈ln ρ35〉p, Fe indicates the expected value of ln(ρ35) for proton and iron primaries,
respectively, obtained as explained in Section 7.5.2. The mean logarithmic mass for each
hadronic model is displayed in Fig. 7.37, along with the logarithmic mass inferred from Xmax
measurements of the Pierre Auger Observatory taken from Ref. [84]. The mass inferred from
UMD measurements follows a similar energy-dependent trend to that of Xmax, suggesting a
transition from heavier to lighter elements up to 1018.4 eV, after which a shift toward heavier
masses is observed. However, the mass predicted by the UMD is systematically heavier than
that predicted from Xmax, providing evidence that the two observables—the muon content
and Xmax—are not consistently reproduced by any of the hadronic models. Assuming that
Xmax is sufficiently well reproduced in simulations, this discrepancy suggests a muon deficit
in the simulations.
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Figure 7.37: Mean logarithmic mass as a function of energy for EPOS-LHC (upper panel) and
QGSJetII-04 (lower panel). Error bars indicate statistical uncertainty, whereas brackets corre-
spond to systematic uncertainties. Grey markers indicate the logarithmic mass inferred from
Xmax measurements [84]. The shaded grey area indicates the energy bin below full efficiency
(see Section 7.1.1), preserved for visualization only.

In order to quantify the muon deficit, 〈ln ρ35〉 and 〈Xmax〉must be related via 〈ln A〉. The
logarithmic mass inferred from 〈Xmax〉 in an energy bin is given by (see Eq. (2.19))

〈ln A〉 = ln 56
〈Xmax〉data − 〈Xmax〉p
〈Xmax〉Fe − 〈Xmax〉p

, (7.19)

where 〈Xmax〉p, Fe denotes the expected value of Xmax for proton and iron primaries, respec-
tively. If Xmax and ρ35 were consistently described by a hadronic model, the logarithmic
mass predicted by them should be the same. Thus, if we set Eq. (7.19) equal to Eq. (7.18), we
obtain

〈ln ρ35〉 = m〈Xmax〉+ b, (7.20)
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where

m =
〈ln ρ35〉Fe − 〈ln ρ35〉p
〈Xmax〉Fe − 〈Xmax〉p

,

b = 〈ln ρ35〉p −m 〈Xmax〉p.

Therefore, by comparing data and simulations in the (Xmax, ln ρ35) plane, the discrepancy
between them can be studied.

In Fig. 7.38, the mean Xmax and ln ρ35 are shown for 17.5 < lg(E/eV) < 17.7. The ex-
pected values for protons and iron, as predicted by EPOS and QGSJetII-04, are also displayed.
The line connecting the proton and iron expectations for each hadronic model corresponds
to Eq. (7.20). Assuming that Xmax is well described by the models, the discrepancy must
stem from the muon number. Thus, the disagreement between the muon content in data and
simulations can be assessed by comparing the distance between the measured and expected
〈ln ρ35〉, assuming the models accurately describe both observables. The latter is obtained
by evaluating Eq. (7.20) at the mean Xmax observed in data. To this end, we define the factor

f = exp (〈ln ρ35〉data − 〈ln ρ35〉sim) , (7.21)

where 〈ln ρ35〉data and 〈ln ρ35〉sim correspond to the measured and expected values of 〈ln ρ35〉,
respectively. The exponential function is applied to account for the fact that these are logarith-
mic quantities. Thus, a value of f greater (smaller) than one corresponds to a muon deficit
(surplus) in the simulations with respect to the data. For the example of Fig. 7.38, a value of
fEPOS-LHC = 1.273± 0.005 (stat.)+0.23

−0.17 (sys.) and fQGSJetII-04 = 1.411± 0.006 (stat.)+0.25
−0.20 (sys.) is

obtained for EPOS-LHC and QGSJetII-04, respectively, which implies that the muon content
would need to be increased by 27% for EPOS-LHC and 41% for QGSJetII-04 for them to
consistently describe Xmax and ln ρ35.
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Figure 7.38: Comparison between data and simulations in the (Xmax, ln ρ35) plane for 17.5 <
lg(E/eV) < 17.7.

Applying this procedure in each energy bin, the discrepancy between data and simula-
tions can be studied as a function of energy. In Fig. 7.39, the f factor is shown as a function
of energy for EPOS-LHC (upper panel) and QGSJetII-04 (lower panel). Both models yield
factors greater than unity, indicating a disagreement between the muon content in data and
simulations within the considered energy range. QGSJetII-04 systematically shows larger
values than EPOS-LHC, exhibiting a more pronounced disagreement with simulations. To
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assess the significance of the discrepancy, the distance of the measured f from one, expressed
in units of σ, is indicated in each energy bin. Here, σ corresponds to the total uncertainty,
calculated as the quadrature sum of the statistical and systematic errors.

Regardless of the absolute value of f , both models exhibit a similar trend with energy,
characterized by a relatively flat behavior up to 1018.4 eV, beyond which a break is observed,
leading to increasing values of f . This suggests that the magnitude of the muon deficit in
simulations becomes more pronounced around that energy. Indeed, below 1018.4 eV, the
significance of the muon deficit is approximately 1.6σ (2.15σ) for EPOS-LHC (QGSJetII-04),
whereas above the break it increases up to 1.95σ (2.46σ). Nevertheless, it is important to
highlight that only 23 events are available in the energy bins above 1018.5 eV; therefore, more
statistics are needed before definitive conclusions can be drawn.

Lastly, it is worth to mention that the impact of energy binning and the comparison
between using the convolved and uncolvolved muon densities for the simulations can be
found in Appendix F.
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Figure 7.39: Factor comparing the agreement between the muon content in data and simulations
(Eq. (7.21)) as a function of energy for EPOS-LHC (upper panel) and QGSJetII-04 (lower panel).
Error bars indicate statistical error whereas brackets correspond to systematic uncertainties. The
horizontal dashed line indicates unity. The shaded grey area indicates the energy bin below full
efficiency (see Section 7.1.1), preserved for visualization only. The distance to unity in units of σ
is indicated in each bin, where σ corresponds to the total uncertainty.

7.7 Comparison to previous UMD results

Figure 7.40 shows a comparison between the results obtained in this work and previous
results obtained with the UMD operating in its final design with SiPMs, as in this work.

The dashed line corresponds to Ref. [73] and was obtained by performing event-wise
fits, as in this work, although there were some differences in the reconstruction procedure,
such as a different corner-clipping correction, inhibition windows, and β parameterization.
The solid line, from Ref. [70], was obtained from a study on the mean muon LDF in bins of
energy and zenith angle. A slight difference appears to be present between these results and
those obtained in this work (black data points). However, a different SD energy estimate
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was used in this work compared to the one used in those studies. The SD-FD calibration
curve described in Section 3.1 (see Fig. 3.5) is regularly updated, and slight differences in
the SD energy estimate can arise in studies conducted at different times. This is particularly
relevant for muon analyses, as they are highly sensitive to energy. When the same SD energy
estimate as in Refs. [70, 73] is used, the unfilled red markers are obtained, showing excel-
lent agreement between all the measurements. Thus, we conclude that all measurements
obtained with the UMD operating with SiPMs are consistent with each other.

In Fig. 7.41, we compare the results obtained in this work with those from the engineering
array phase of the UMD, reported in Refs. [62, 69], in which prototypes of the detector
operating with PMTs were used. In the right panel of the figure, we show the ratio between
the results for each energy bin, indicating that the densities obtained with the engineering
array are approximately 20% higher than those found in this work and in previous SiPM
analyses. Figure 7.42 provides a more detailed comparison between the two results for each
energy bin, indicating the systematic uncertainty intervals in each case. It is important to
note that the systematic uncertainty considered for this comparison does not include the
uncertainty in the energy scale, as this is the same in both analyses. For the engineering
array, the uncertainty in the ρ35 scale was reported to be 14.3% [62, 69], whereas in this work,
it corresponds to the grey curve in Fig. 7.26.

The uncertainty intervals of both analyses overlap. Indeed, when considering the sys-
tematic uncertainties of the two analyses, the ratios between the results shown in the right
panel of Fig. 7.41 are at the edge of consistency, being compatible with unity in most of
the energy bins. However, despite this apparent compatibility, it is noteworthy that such a
difference between the central values can have a significant impact on the interpretation of
the measurement, such as in the case of the muon puzzle. For example, the muon deficit
reported by the engineering array analysis was also quantified through Eq. (7.21), but using
the unconvolved densities as a reference. The magnitude of the deficit reported there was
38%+21%

−18% and 50%+23%
−20% for EPOS-LHC and QGSJetII-04, respectively. If we use the uncon-

volved densities for our calculation, we obtain ∼ 20%+20%
−20% and ∼ 30%+20%

−20%, respectively (see
Fig. F.4).
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Figure 7.40: Comparison of the results obtained in this work with others obtained with the UMD
operating in its final design with SiPMs. Dashed line corresponds to Ref. [73], full line to Ref.
[70]. The unfilled square markers correspond to the results obtained when using the same energy
estimate as in Refs. [70, 73].
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Figure 7.41: Comparison of the muon density obtained with the engineering array (Refs. [62, 69])
and this work. In the left panel, the mean ρ35 as a function of energy is displayed, whereas in the
right panel the ratio of the two results in each energy bin is shown. Error bars indicate statistical
uncertainties, whereas brackets show the systematic uncertainties.
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Figure 7.42: Comparison of the muon density obtained with the engineering array (Refs [62, 69])
and this work for each energy bin. The shaded blue are corresponds to the systematic uncertainty
interval for the engineering array’s analysis.

7.8 Comparison of the muon content to other experiments

Comparing muon measurements conducted in different air-shower experiments is challeng-
ing and not straightforward. The proxy for the muon content of air showers used in different
observatories is affected by the unique characteristics of each observatory, such as the type
of detector, atmospheric depth, the distance to the shower core at which the muons are
sampled, zenith angle range, energy threshold for muons, and so on. Big efforts have been
carried out in recent years by the Working Group for Hadronic Interactions and Shower
Physics (WHISP) to categorize and order a wide variety of muon measurements obtained
under different experimental conditions. Since its foundation, progress on this meta-analysis
of muon data has been regularly reported in dedicated international conferences [4, 85, 86].
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In order to compare measurements obtained under different experimental conditions,
the z factor was introduced by the WHISP, given by

z =
ln〈ρ35〉 − ln〈ρ35〉det

p

ln〈ρ35〉det
Fe − ln〈ρ35〉det

p
, (7.22)

where 〈ρ35〉det
p, Fe represents the mean ρ35 obtained over a set of simulated proton and iron

showers, respectively, accounting for detector simulations and applying the same recon-
struction procedure as in data. In this way, the different experimental conditions of each
observatory are accounted for, allowing different measurements to be compared.

Equation (7.22) has relevant properties that are desirable. The energy dependence of the
muon content is removed (with a remaining dependence only through the mass compo-
sition), with the expected value being 0 for proton showers and 1 for iron showers, pro-
vided simulations reproduce the data well. Additionally, biases of the form ln ρmeas

35 =
A + B ln ρtrue

35 , where ρmeas
35 and ρtrue

35 are the measured and true muon densities, respectively,
cancel out in z. Further details and discussion on the z-scale and its properties can be found
in Refs. [85, 87].

Offsets between the energy scales of different observatories further complicate compar-
isons, as the number of muons increases rapidly with energy. For instance, two identical
experiments with a 20% energy offset would show an 18% difference in their muon data-
to-Monte Carlo ratio because their muon measurements would be compared to simulations
at different apparent energies [85]. To mitigate this effect, a cross-calibration between the
energy scales between observatories is introduced by the WHISP, ensuring that all measure-
ments are expressed on a common energy scale.

Since the flux of cosmic rays is highly isotropic up to 1019.2 eV, it serves as a universal
reference to match the energy scales of different experiments. A relative shift of 10.4% was
found by the Spectrum Working Group between the flux measured by the Pierre Auger and
Telescope Array collaborations [88]. Therefore, the reference energy scale Eref was defined
as the midpoint between the scales of the two experiments. The cross-calibration involves
finding a scaling factor Eref/Edata for each experiment, such that its energy spectrum, mea-
sured on the Edata scale, coincides with the reference one. By construction, the factor needed
to convert the Auger scale to the reference scale is fAuger = Eref/Edata = 1.052. It is necessary
to highlight that the cross-calibration accounts for relative offsets between different exper-
iments, but does not remove a potential global offset between the experimental and true
energy. Thus, an uncertainty of at least 10% is expected in the reference energy scale.

By using Eq. (2.16), the z values reported in a given experiment can be converted to the
reference scale by [85]

zref = zdata + β
ln(Edata/Eref)

ln〈ρ35〉det
Fe − ln〈ρ35〉det

p
, (7.23)

where β ∼ 0.9, and zdata and zref are the z values reported in the experiment and reference
energy scale, respectively.

To serve as a reference and to account for the effect of an energy-dependent mass com-
position on z, an expected value for z can be derived assuming a given 〈ln A〉. By means of
Eq. (2.19), we obtain

zmass =
〈ln A〉
ln 56

. (7.24)

In our case, we use the mean logarithmic mass inferred from the Global Spline Fit (GSF)
as reference [89]. If the z values obtained from muon measurements agree with zmass, then
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there is no muon deficit in the simulations. Therefore, a measure of the muon deficit in
simulations is defined as

∆z = z− zmass. (7.25)

A positive (negative) value of ∆z indicates a muon deficit (surplus) in the simulations. A
value compatible to zero implies agreement between data and simulations.

In Fig. 7.43, the z values for EPOS-LHC and QGSJetII-04 as a function of energy, obtained
in this work, are presented. Both the values in the Auger scale, calculated using Eq. (7.22),
and the values expressed in the reference scale, obtained via the conversion in Eq. (7.23),
are shown. We note that the x-axis differs between the two cases: in the Auger scale, it is
expressed as a function of the Auger energy, while in the reference scale, it is expressed as a
function of the reference energy. The positive shift in the Auger scale required to match the
reference energy scale makes the muon measurement more compatible with lighter masses,
shifting the z value in the reference scale toward a more proton-like value. The dashed line
and grey band indicate zmass—computed via Eq. (7.24)—as expected from the GSF model
and the Xmax measurement at the Pierre Auger Observatory, respectively.
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Figure 7.43: Comparison of the z values obtained in this work using the Auger energy scale
(Eq. (7.22)) and the reference energy scale, obtained converting the values in the Auger scale via
Eq. (7.23). The upper panel corresponds to EPOS-LHC whereas the lower panel to QGSJetII-04.
The grey band and dashed line corresponds to the z values expected from Xmax measurements at
the Pierre Auger Observatory [84] and the GSF composition model [89] via Eq. (7.24), respectively.
Grey horizontal lines marks z = 0 and z = 1, the expected values for a pure proton and pure
iron compositions, respectively.

In Fig. 7.44, the z values obtained in this work are compared to those from other ex-
periments, all expressed in the reference energy scale. The error bars are calculated as the
quadrature sum of the systematic and statistical uncertainties. The values from the other
experiments were extracted from Figure 3 of Ref. [4]. We note that the z values are lower than
those previously reported by the engineering array with PMTs as photodetectors, driven
by the lower number of muons measured with the current design operating with SiPMs, as
discussed in Section 7.7. At the highest energy bins (above 1018.4 eV), the values obtained in
this work are compatible with those obtained by inclined hybrid events at the Pierre Auger
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Observatory [1] and AGASA [81], as opposed to those from Yakutsk, which are compatible
with the expectations of the GSF model.

Lastly, to remove the mass composition dependence, we show the ∆z values from this
work and other experiments in Fig. 7.45. As discussed in Section 7.6, the results obtained in
this work indicate a relatively constant muon deficit up to 1018.4 eV, being compatible with
GSF for EPOS-LHC but not compatible with QGSJetII-04. An increase in the magnitude of
the deficit is observed above that energy, suggesting that whatever process is originating
the muon discrepancy might be enhanced around that energy. However, we highlight again
that only 23 events are available in the energy bins above 1018.5 eV; therefore, more statistics
are needed before stronger statements can be done about the energy-dependent trend of the
muon deficit above 1018.4 eV with the UMD.
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Figure 7.44: Comparison of the z values obtained in this work with other experiments, extracted
from Fig. 3 of Ref. [4]. All the values are in the reference energy scale. The upper panel corre-
sponds to EPOS-LHC whereas the lower panel to QGSJetII-04. The grey band and dashed line
corresponds to the z values expected from Xmax measurements at the Pierre Auger Observatory
[84] and the GSF composition model [89] via Eq. (7.24), respectively. Grey horizontal lines marks
z = 0 and z = 1, the expected values for a pure proton and pure iron compositions, respectively.
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Figure 7.45: Comparison of the ∆z values obtained in this work with other experiments via
Eq. (7.25). All the values are in the reference energy scale. The upper panel corresponds to EPOS-
LHC whereas the lower panel to QGSJetII-04. The grey band and dashed line corresponds to the
z values expected from Xmax measurements at the Pierre Auger Observatory [84] and the GSF
composition model [89] via Eq. (7.24), respectively. Grey horizontal dashed line marks ∆z = 0,
the expected value for no muon deficit in the simulations.

7.9 Comparison of mean MLDF with other experiments

In addition to making a fit in each individual event, the MLDF can be studied in mean values.
To do so, muon density measurements ρi of events within an energy and zenith angle range
are grouped together. Since the muon number increases as ∼ E0.9, the densities measured
in an event with energy E are normalized by the factor (Ebin/E), where Ebin is the center of
the energy bin. The data is further binned in shower plane distances r and the mean value
of the normalized densities is obtained for each r bin. This binned data is finally fitted to a
suitable MLDF model, allowing to study the evolution of the mean MLDF with energy and
zenith angle. This approach was used to analyze the mean MLDF recorded by the UMD in
Ref. [70].
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Studies of the mean MLDF of muons with Eµ > 1 GeV were also conducted in other
UHECR observatories, such as the ones located at Akeno, Japan [90] (corresponding to an
atmospheric depth of 920 gcm−2) and Yakutsk, Russia [91] (located at a depth of 1020 gcm−2).

To cover a large energy range, muon measurements at Akeno were carried out with three
arrays with different spacing and areas, namely A1, A20 and A100, covering 1, 20 and 100
km2 respectively. A100 is also known as AGASA, which stands for Akeno Giant Air Shower
Array. We will focus on the results of the A1 and A20 arrays as they overlap with the energy
range accesible by the UMD. In both arrays, the core, arrival direction and energy of the
showers was determined by surface scintillator detectors. The muon measurements were
obtained by eight 25 m2 stations, each of which was comprised of 50 rectangular proportional
counters containing P10 gas and shielded by 2 m of concrete.

In the case of Yakutsk, the muon detectors consists of underground scintillator shielded
by 2.3-3 m of soil. In Ref. [91], data taken from the muon detectors over 1974 and 1992 was
used. Over that period, different configurations of detectors were utilized: a single 8 m2

detector with a threshold of 0.7 GeV was operative since 1974 to 1986; three 36 m2 detectors
with a threshold of 1 GeV were used since 1978 and five detectors with an area of 20 m2 and
a threshold of 1 GeV were available since 1986. Like in the case of Akeno, arrival direction,
core and energy of the showers were obtained independently by ground-based detectors.

Akeno, Yakutsk and Auger have different depths and very likely systematic differences
between their energy estimates. The latter is particularly relevant, since the number of muons
increases nearly proportional to the energy of the primary particle. For these reasons, com-
paring the absolute scale of the mean MLDF (i.e., the absolute number of muons) measured
by different observatories is not straightforward and must be done by the abstract z-scale,
as disccused in Section 7.8.

Nevertheless, the shape of the MLDF is not expected to change dramatically with atmo-
spheric depth nor with primary energy6. Furthermore, as shown in the next section, these
two variables can be, to some degree, accounted for when comparing shapes of MLDFs mea-
sured at different depths and energies. This provides a good opportunity to compare the
shape of the mean MLDF obtained by the UMD with that obtained by Akeno and Yakutsk.

7.9.1 On the dependence of the MLDF shape with depth and energy

To study the dependence of the MLDF shape on atmospheric depth and energy, we perform
a simple exercise using the parameterization of the UMD LDF slope β shown in Section 6.4.
With this, we aim to estimate how much the shape of the UMD LDF is expected to change
with these variables. We remind the reader that the remaining shape parameters in Eq. (6.6),
(α, r0, γ), are fixed, so the shape of the LDF is completely determined by β alone.

We begin by expressing the parameterization in terms of the atmospheric depth X replac-
ing sec θ = X/XAuger, where XAuger = 870g cm2. We can further write X = X0 sec θ, where
X0 represents the vertical atmospheric overburden of a given observatory. The expression
now reads

β = −1.21
(

X0 sec θ

XAuger
− 1.2

)
+ 0.2(lg(E/eV)− 17.8) + 2.71. (7.26)

With this simple change, we can extrapolate the value of β if the UMD had been located
in an observatory with an arbitrary X0. Thus, to estimate how much we expect the shape
of the UMD LDF to change at Akeno and Yakutsk, we only need to replace X0 = XAkeno =
920g cm2 and X0 = XYakutsk = 1020g cm2, respectively.

6Indeed, as shown in Fig. 6.20 and Fig. 6.21, the slope of the MLDF increases logarithmically with energy.
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The LDFs with the β values corresponding to the atmospheric depths of Auger, Akeno
and Yakutsk are shown in the left panel of Fig. 7.46. All the functions are normalized to an
arbitrary ρ450 and plotted for r < 800 m. The steepest LDF corresponds to the Auger case, as
it is the shallower observatory, whereas the flattest is that of Yakutsk, located near sea level.
Akeno, being at an intermediate depth, has an expected LDF that lies between the Auger
and Yakutsk functions.

In the right panel of the figure, the quotient between the Auger LDF and Akeno’s (solid
line) and Yakutsk (dashed line) is shown. From the figure, we conclude that a difference
of ∼ 5% between Auger and Akeno and of ∼ 10% between Auger and Yakutsk LDFs is
expected. We stress that this difference is expected only due to the observatories being at
different atmospheric depths.

In addition to having different atmospheric depths, the observatories also present sys-
tematic differences in their energy scales. As is apparent from Eq. (7.26), the MLDF shape
also depends on the energy. Since the dependence is logarithmic, its impact is usually small.
However, if the offset between the energy scales of the experiments is large enough, it is a
priori not clear if this can result in a non-negligible effect. Therefore, differences in the MLDF
shape measured at different observatories can arise due to relatively large offsets between
their energy scales.

As explained in Section 7.8, the so-called reference energy scale, defined as the mid-
point between the scales of the Pierre Auger and Telescope Array collaboratins, is used to
compare muon measurements between different observatories. The energy measured at a
given observatory Edata needs to be multiplied by a factor fdata = Eref/Edata to be trans-
formed to the reference scale. By construction, we have fAuger = 1.052. From Ref. [92],
we obtain fYakutsk = 0.87, while the corresponding factor for AGASA is fAGASA = 0.68
[81]. Since A20 was a prototype of AGASA, we assume fAGASA = fA20. The ratio between
the energy scale of A20 and A1 was found to be EA20/EA1 = 1.1 [93]. With these factors,
we can estimate the relative offset between the energy scales of Auger with A1, A20 and
Yakutsk: EAuger/EA1 = fA20 × 1.1/ fAuger = 0.71, EAuger/EA20 = fA20/ fAuger = 0.65 and
EAuger/EYakutsk = fYakutsk/ fAuger = 0.76.

We note that in order to convert Auger scale to both Akeno or Yakutsk’s energy scales
a positive shift is needed. This means that if the same shower is measured at the three
observatories, Auger would assign it an energy of lg(EAuger), while Akeno and Yakutsk
would report lg(EA1) = lg(EAuger) + 0.15, lg(EA20) = lg(EAuger) + 0.19 and lg(EYakutsk) =
lg(EAuger) + 0.12, respectively. This means that the energy of the events of Auger used to
compare with Akeno and Yakutsk measurements can be shifted to account for this effect.
For example, the measurements of A1 reported for a given energy bin lg E1 < lg EA1 < lg E2
should be compared to Auger events with energies lg E1 − 0.15 < lg EAuger < lg E2 − 0.15.

7.9.2 Distance cuts for the mean MLDF of the UMD

As already discussed, a muon density estimate can not be obtained for saturated detectors.
These are likely to occur closer to the core, where the particle density becomes increasingly
large. However, non-saturated detectors can also be found close to the core. The muon den-
sity estimates with these detectors are biased as they are sampling a downward fluctuation
of the underlying muon density distribution. To avoid considering such detectors in the
analysis, a minimum distance cut rmin must be applied.

In addition, measurements obtained too far from the core, where the trigger probability
of the SD tank decreases, should be avoided. These measurements consistute a biased sample

7From table 1 of the reference, we get fYakutsk = 1/1.24.
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Figure 7.46: Left: Expected LDFs at Auger, Akeno and Yakutsk atmospheric depths, obtained
by Eq. (6.6) varying β according to Eq. (7.26). They are normalized at 450 m. Right: Expecetd
quotient between Auger and Akeno’s LDF (solid line) and Auger and Yakutsk (dashed-dotted
line).

as they are an upward fluctuation of the triggering process of the SD tank. Thus, a maximum
distance cut rmax is needed.

In Ref. [70], rmin was defined as the distance in which the saturation probability is 1%,
denoted as rsat, following the criteria explained in Section 4.1.1. Furthermore, rmax was de-
fined as the distance in which the trigger probability of the tank reaches 90%, represented as
r90%. In this way, a value of rsat and r90% (and hence of rmin and rmax) was obtained in each
energy and zenith angle bin.

The values of rsat and r90% as function of energy for different zenith angle bins are shown
in Fig. 7.478. To be able to extrapolate them to an arbitrary energy and zenith, we fitted a
linear function y = m(lg(E/eV)− 17.6)+ b to the curves of each zenith bin, shown as dashed
lines in the figure. The slope m and b were further parameterized as quadratic functions of
sin2 θ, as shown in Appendix G.

The maximum difference between the linear model and the values of rsat, presented in
the left panel of Fig. 7.47, is of 25 m. This difference is of the same order than the typical rsat
values. Thus, we conservatively adopt rmin = rsat + 25 m. No such offset is needed for r90%
and therefore we take rmax = r90%.

7.9.3 Comparison with muon densities measured with A1

The mean MLDF of showers within the energy range of 1016.5-1018.5 eV was studied with the
A1 array at Akeno [90]. Only vertical showers with sec θ < 1.1 (θ . 25◦) were selected, and
a step of ∆ lg(E/eV) ∼ 0.2 was used for the energy binning9. Due to the size of the array,
only measurements up to 800 m from the shower core were possible. A good description
of their data was obtained with a slight modification of the formula proposed by Greisen
derived for showers with lower energies [94]:

ρGreisen(r) = ρ0
1
r2

0

(
r
r0

)−α (
1 +

r
r0

)−β

, (7.27)

8We thank Flavia Gesualdi for providing these data points.
9The binning is actually done in the number of electrons Ne, the measure used for determining the shower

size. We convert Ne to energy using Eq. 1 of Ref. [90].
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Figure 7.47: Minimum (left) and maximum (right) distances for each energy and zenith angle
bin. The data points correspond to the ones found in Figs. 6.12 and 6.14 of Ref. [70]. Dashed lines
indicate fits to a linear model.

where ρ0 is a scaling factor and α = 0.75. The shape of the MLDF is determined by the
parameters β and r0. It is worth noting that these are correlated and increasing (decreasing)
β (r0) leads to steeper LDFs. The reported optimal values for A1 data were r0 = (266± 33)
m and β = 2.52± 0.04, and no significant dependence neither on energy nor zenith angle
was found [90].

To compare the mean MLDF measured by the UMD under conditions as close as possible
to those of Akeno’s, we perform the same binning in energy and the same cut in zenith angle
as those used for the A1 analysis. The log-energy bin edges of the A1 dataset that overlap
with the accesible energies for the UMD are lg(E/eV) = {17.39, 17.61, 17.84, 18.07, 18.29}.
Furthermore, we perform the same binning in the r variable, taking care of excluding any
bin in the UMD set for which r < rmin or r > rmax, where rmin and rmax are determined as
explained in the previous section.

The A1 data was extracted from figure 2 of Ref. [90]. Due to the difficulty of extracting
error bars from the figure, an error of 5% is assumed in each data point. The raw data set
is displayed in the left panel of Fig. 7.48. In the right panel of the figure, all the MLDFs are
normalized to match an arbitrary value in the radial bin that contains 450 m. For energies
below 1017.62 eV, all the MLDFs seem to follow a common shape. This is not the case for the
three highest energy bins, for which a strong deviation from the overall trend is visible for
distances closer to the core. For these energies, the measurements seem to reach a plateau
when decreasing the distace to the core, suggesting possible detector saturation. This is
relevant to assess, as they correspond to the energy region of the measurements of the UMD.

To further investigate the hypothesis of saturation, let us consider the highest energy bin
(open triangles). From the right panel, the measurement that is at lg(r/m) ∼ 2.46 is the first
measurement deviating from the common LDF shape observed at lower energies. If we take
the absolute value of this measurement ρsat ∼ 6 m−2 as an estimate of the saturation limit
(the area ρ > ρsat is enclosed by grey in the left panel), we see that the measurements of
the lower energy bins, taken at distances closer to the core, that are above this value (i.e.,
inside the grey area in the left panel) coincide with the measurements that deviate from the
universal LDF shape on the right panel.

We understand this as an indication that those measurements might be affected by de-
tector saturation. Most of these measurements are at core distances for which no UMD
measurement is available due to the minimum distance cut descibed in the previous section.
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Figure 7.48: Left: Raw dataset of the A1 array, taken from Fig. 2 of Ref. [90]. The grey area indi-
cates the region in which detector saturation is suspected (see text for details). Right: Normalized
data to match an arbitrary value at ∼450 m.

Thus, we do not exclude this data points from the analysis, but we use a different marker to
highlight them in the following plots.

To fit both the UMD and A1 data, the function of Eq. (7.27) was normalized such that the
scaling factor ρ0 represents ρ450, the muon density at 450 meters, the reference distance of
the UMD array. In the left panel of Fig. 7.49, the UMD and A1 data of the lowest-energy bin,
along with their fits to Eq. (7.27), are shown. The agreement between the two measurements
is quite remarkable, even in absolute values. It is also evident that the model of Eq. (7.27)
properly describes the data of the two observatories within this distance range. The equiva-
lent figures corresponding to the remaining energy bins can be found in Appendix H.

To focus only on the shape of the LDFs, the A1 data is scaled with a factor ρUMD
450 /ρA1

450,
where ρUMD

450 (ρA1
450) is the muon density at 450 meters of the UMD (A1) data obtained by

the fit. The scaled data is jointly plot with the UMD points in the right panel of Fig. 7.49.
This procedure is repeated in each energy bin so that the UMD data can be compared to
the scaled A1 data. The maximum scaling factor was found to be 1.06 for the energy bin
17.61 < lg(E/eV) < 17.84, indicating an overall agreement in the absolute muon densities
of the two experiments.

The comparison between the UMD and the (scaled) A1 data is shown for each energy in
Fig. 7.50. Each row in the figure represents a single energy bin. The left column displays the
two sets of data (equivalently to the right panel of Fig. 7.49). To visualize more clearly the
differences in the LDF shape between the two set of measurements, the ratio between the
UMD and the A1 data for each radial bin is shown in the right panel of each row.

For all energies, the ratio ρUMD/ρA1 is typically within±10% and decreases with distance,
indicating that the LDFs measured by the UMD are steeper than those found by A1. Indeed,
Akeno is located at a lower altitude (larger atmospheric depth) and therefore a flatter LDF
is expected as explained in Section 7.9.1.

In addition, the shift in the energy scales between the experiments would also make the
Auger LDFs steeper when compared to the A1 data, as discussed in Section 7.9.1. To further
study the impact of the energy, instead of using the same nominal log-energy bin edges than
those used at Akeno, we bin the UMD dataset in shifted log-energy bins considering the
expected shift of lg(EAuger/eV)− 0.15 = lg(EA1/eV) between the energy estimates of the
observatories. For example, the A1 data corresponding to the bin 17.39 < lg(EA1/eV) <
17.61 is now compared to the Auger data belonging to the bin 17.24 < lg(EAuger/eV) <
17.37.
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Figure 7.49: Comparison between the UMD and A1 mean MLDF in the energy range 1017.39 <
E/eV < 1017.61 and for sec θ < 1.1. The vertical dashed line indicates 450 m. Red crosses
represent A1 measurements suspected of saturation (see text for details). Left: Raw UMD and A1
data and its fits to Eq. (7.27). Right: UMD and scaled A1 data. The scaling factor is stated in the
figure.

For each energy bin, we show the ratio of the UMD and the A1 scaled data comparing
the case with (unfilled squares) and without (filled circles) energy shift in Fig. 7.51. Since the
Auger events have lower energies for the energy-shifted case, it is possible to add new radial
bins closer to the core. When this happens, the UMD measurements are now compared to
the data points of the A1 dataset that are suspected of saturation (red crosses in the figure),
causing an increase in the ratio. With the exception of these data points, it is evident that
shifting the energy estimate does not significantly change the results.

With the energy shift accounted for, we note that now the difference in the shape can only
be attributed to the different depths of the observatories. Thus, we also plot the expected
ratio between the two LDFs obtained in Section 7.9.1 by extrapolating the Auger LDF slope
to the Akeno observation level (full line in Fig. 7.46). While most of the data points overlap
with the curve within their uncertainties, it is also clear that the ratio observed in data
is slightly larger than the expected one. This suggests that the extrapolation described in
Section 7.9.1 is not capturing the full dependence of the LDF shape with the atmospheric
depth. A possible explanation is that the LDF slope β alone is not enough to describe the
evolution of the LDF shape with depth, and that some other shape parameter (r0, α, or γ)
in the Auger LDF function (Eq. (6.6)) is sensitive to depth. Another possibility is that the
values of some of the aforementioned shape parameters, which are currently fixed, should
be slightly adjusted. Nevertheless, considering the systematics that are very likely involved,
the agreement between the expected and measured ratio is reasonably good.

Lastly, as already mentioned, when no energy shift is applied, the scaling factor needed
to match the ρ450 estimates of both datasets is at most 1.06, which indicates that the absolute
values of the measurements of the two observatories are in relatively good agreement. In
contrast, when the energy of the Auger events is shifted, the muon densities of the UMD
measurements is reduced such that the scaling factors are now approximately 0.75. If no large
systematic uncertainties in the measurements of the muon densites in the two experiments
are expected, this would suggest a relatively small shift in the energy scales, smaller than
the one expected according to what was discussed in Section 7.9.1.
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7.9.4 Comparison with muon densities measured with A20

Mean MLDFs were also obtained at Akeno with the 20 km2 array, A20. This bigger array
allowed to measure muon densities at distances further than 800 m from the core. In this
case, the muon densities were obtained for sec θ < 1.2 (θ . 33◦) and two relatively wide
energy bins, namely, 1017.5 < E/eV < 1018 and 1018.5 < E/eV < 1019. The former is chosen
for the comparison as it belongs to the energy region accesible by the UMD.

In order to capture the behaviour of the LDF at distances larger than 800 m obtained
with A20, Eq. (7.27) had to be modified to

ρA20(r) = ρ0
1
r2

0

(
r
r0

)−α (
1 +

r
r0

)−β (
1 +

( r
800 m

)3
)−δ

, (7.28)

where δ ∼ 0.6, ρ0 is a scaling factor, and the shape parameters r0 and β had the same
values than the ones of A1. Like we did with Eq. (7.27) for the comparison with A1 data, we
rearrange Eq. (7.28) such that the scaling factor represents ρ450, the muon density at 450 m.

The value of δ is reported in the reference with an approximate symbol instead of an
uncertainty, which makes us pressume that the uncertainty of this parameter was rather
large. Therefore, we still use Eq. (7.28) to fit the UMD and A20 data, but leaving r0 as a free
parameter. In any case, this fit is only used to find a scaling factor between the datasets, like
it was done in the previous section with Eq. (7.27).

The same cuts in energy and zenith angle applied to the A20 dataset were applied to the
UMD data. Furthermore, we also use the same binning in r, discarding any bin for which
r < rmin or r > rmax. In the left panel of Fig. 7.52 we show the A20 measurements, extracted
from Fig. 5 of [90], together with the UMD data points. Full and dashed lines indicate the
fits of both datasets to Eq. (7.28).

Again, to focus solely on the shape of the LDFs, the A20 data is scaled with a factor
ρUMD

450 /ρA20
450 , where ρUMD

450 and ρA20
450 are the muon densities at 450 m obtained by the fits to

the UMD and A20 data, respectively. Unlike with A1 data, the absolute densities of the two
datasets are somewhat dissimilar, the scaling factor being 1.26. As mentioned earlier, this sug-
gests that the expected shift between the A1 and A20 energy scales derived in Section 7.9.1
might need to be adjusted.

The scaled A20 data is plot jointly to the UMD points in the right panel of Fig. 7.52. The
agreement in the shape of the two LDFs is remarkable. Indeed, as presented with full circles
in Fig. 7.54, the ratio between the UMD and the (scaled) A20 data is consistent to 1 within
uncertainties, and is ∼ 5% at most.

To account for the expected shift in the energy scales discussed in Section 7.9.1, the log-
energy of the UMD dataset is shifted -0.19. The raw UMD and A20 data are displayed in
the left panel of Fig. 7.53. Since the energy of the UMD events is lower, their absolute muon
density also decreases, such that the scaling factor to match the two datasets is now 0.85. This
factor is smaller (in absolute value) than the 1.25 needed for the case with no energy shift,
which indicates that the shift in the scales is in the right direction. The scaled A20 data is
presented in the right panel of Fig. 7.53, where it is apparent that the excellent agreement in
the shape of the two sets still holds. The ratio is displayed with unfilled squares in Fig. 7.54,
where no significant difference with the case without energy shift is observed.

We conclude that the shape of the mean muon LDFs measured at A1 and A20 are in
good agreement with that of the UMD.
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7.9.5 Comparison with Yakutsk measurements

Mean MLDFs in the energy range 17.3 < lg(E/eV) < 19.3 with sec θ < 1.11, measured
at the Yakutsk array, were reported in Figure 1 of Ref. [91]. In particular, we focus on the
log-energies {17.3, 17.7, 18.1, 18.5} as they coincide with energies accesible with the UMD.

Their data is fitted by the model

ρYakutsk(r) = ρ0
1
r2

0

(
r
r0

)−α (
1 +

r
r0

)0.75−β (
1 +

( r
2000 m

))−1
, (7.29)

where ρ0 is a scaling factor, r0 = 280 m and β is a shape paremeter that is left free. Like
before, we rearrange the equation such that ρ0 becomes ρ450.

Like in the previous comparisons, we use the same energy, zenith angle and distance
binning for the UMD data. Also, for each energy, we use Eq. (7.29) to fit both the Yakutsk
and UMD data to obtain a scaling factor between the two datasets. As an example, we show
the fit results for the log-energy bin 17.2 < lg(E/eV) < 17.4 in the left panel of Fig. 7.55. The
scaled Yakutsk data and the UMD data is displayed in the right panel of the Figure.

The comparison between the UMD and the scaled Yakutsk data is shown for each energy
in Fig. 7.56. Each row in the figure represents a single energy bin. The left column displays
the two sets of data. To visualize more clearly the differences in the LDF shape between the
two set of measurements, the ratio between the UMD and the Yakutsk data for each radial
bin is shown in the right panel of each row.

It is apparent that the MLDFs of Yakutsk are steeper than those of the UMD. This is in
contradiction to what is expected according to the discussion given in Section 7.9.1. Since
Yakutsk is located at a lower altitude than Auger (and Akeno), a flatter LDF is expected.

To compute the muon densities at Yakutsk, it is assumed that the energy threshold for
muons is of 1× sec θ GeV, and that, on average, muons deposit 10.5 sec θ MeV in the under-
ground scintillators. In Ref. [95], a detailed study of the transmission of particles through
the soil and their energy deposit in the scintillators was conducted using GEANT4. There, it
is shown that the conventional threshold of 1 GeV for vertical muons is not entirely optimal,
as vertical muons with energies down to 0.65 GeV can reach the detectors. Furthermore,
the reference energy deposit of 10.5 MeV for vertical muons, assumed to interpret the ex-
perimental data of the muon detectors, can be significantly exceeded by a factor of 1.5. As
a consequence, the obtained signals can be up to 30 % larger, leading to an overestimation
of the number of muons. In addition, it was determined that gamma particles can reach
the underground scintillators and significantly contribute to the detector signal, especially
closer to the shower axis. Thus, a possible explanation for the discrepancy between the UMD
and the Yakutsk LDFs can be found in an overestimation of the muonic signal in the Yakutsk
detectors, especially considering that the Yakutsk data used in this thesis were extracted
from Ref. [91], published almost 15 years before the study conducted in Ref. [95]. This, how-
ever, is only a possibility and no definitive answer can be given at this point to explain this
discrepancy.

To study the potential impact of the different energy scales, the log-energy of the Auger
events used for the analysis is shifted by -0.12 (see Section 7.9.1). In Fig. 7.57, we show
the ratio between the UMD and Yakutsk measurements with (unfilled squares) and without
(filled circles) energy shift. In addition, the expected ratio due to the difference in the altitude
of the observatories, estimated in Section 7.9.1, is shown as a full line. Like in the comparison
to the Akeno data, it is evident that the shift in the energy scale does not change the result.



150 CHAPTER 7. ANALYSIS OF THE MUON CONTENT MEASURED BY THE UMD

7.10 Summary

In this chapter, we presented the measurement of the muon content of air showers obtained
with the UMD in the energy range 1017.5 < E/eV < 1018.9.

In Section 7.1, we described the quality cuts applied to the dataset. Due to the preliminary
stage of the SD reconstruction with the new electronics, we considered only the period in
which the WCDs operated with the old electronics, spanning from January 1st, 2018, to
December 21st, 2021. In addition, we showed that 1017.5 eV is an adequate energy threshold
for the analysis. A total of 4,838 events remained after applying all the cuts.

The attenuation correction was presented in Section 7.2, where we demonstrated that
the zenith angle dependence of the muon shower size, although not large, was effectively
removed after the correction.

The evolution of the attenuation-corrected muon shower size with energy was presented
in Section 7.3. An assessment of the systematic uncertainties was provided in Section 7.4,
where contributions from the attenuation correction, unknown true LDF shape, reconstruc-
tion procedure, muon pattern definition, long-term stability, and energy scale were studied.
The largest contribution arises from the energy scale uncertainty (14%), followed by the
limited knowledge of the true LDF shape, which can account for up to 10% at lower ener-
gies, and the muon pattern definition, reaching up to 7%. The reconstruction procedure and
long-term variation contribute 3% and 2%, respectively, whereas the attenuation and corner-
clipping corrections are subdominant, with contributions of 1% and 0.6%, respectively.

In Section 7.5, we described the analysis performed on simulated showers to obtain the
expected values for pure proton and iron compositions, which are necessary for interpreting
the measurements previously presented in Section 7.3. A discrete library consisting of proton
and iron primaries with energies 1017.5, 1018, 1018.5 eV, and zenith angles 0, 12, 22, 32, 38, and
48 degrees was utilized. EPOS-LHC and QGSJetII-04 were used as hadronic models. The
analysis involved fitting the evolution of the mean ρ35 and ln ρ35 as a function of the Monte-
Carlo energy for each primary and hadronic model. The effects of energy reconstruction and
binning, neccesary to compare the simulations to data, were accounted for in a later step
using an analytical approach.

Measurements and simulations were compared in Section 7.6. The mean logarithmic
mass inferred from this work, shown in Fig. 7.37, shows a trend towards light massess up to
approximately 1018.4 eV, where a break occurs and a trend towards heavier composition is
observed. This result is consistent to what is expected from the energy-dependent trend of
the mass composition inferred from Xmax measurements. The mass inferred here, however,
is systematically heavier than that derived from Xmax, indicating that both observables are
not consistently described by the hadronic models used in this work, being this discrep-
ancy more pronounced for QGSJetII-04. Assuming Xmax is sufficiently well described by the
simulations, this results provides further evidence of a muon deficit in the simulations. To
quantify the deficit, measurements of mean ln ρ35 and Xmax were compared, and a deficit
factor f was defined in Eq. (7.21) such that f compatible to 1 indicates agreement between
muon and Xmax measurements. For both hadronic models, we have f > 1 with significances
of approximately 1.5σ and 2.2σ for EPOS-LHC and QGSJetII-04 below 1018.4 eV, respectively.
An increase in the significance of the muon deficit is observed beyond 1018.4 eV, with 1.95σ
and 2.46σ for EPOS-LHC and QGSJetII-04, respectively. Although this suggests an increase
in the magnitude of the deficit above 1018.4 eV, it is necessary to stress that only 23 events
are available in the subsequent energy bins (17 events in 1018.5 < E/eV < 1018.7 and 6 in
1018.7 < E/eV < 1018.9), and therefore more statistics are needed before stronger statements
can be done on the energy-dependent trend of the muon deficit at the highest energies with
the UMD.
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A comparison with previous muon densities obtained with the UMD, both with the pro-
totype detector operating with PMTs and with the final design using SiPMs, was presented
in Section 7.7. The results obtained here are in agreement with those previously obtained
with the final design of the UMD and are at the edge of consistency with those reported in
the engineering array analysis, with the muon densities being approximately 20% smaller
in this work. This difference affects the significance of the reported muon deficit.

The muon content obtained in this work was compared to those reported by other ex-
periments in Section 7.8 by introducing the z-scale and working within the reference energy
scale established by the WHISP. The quantity ∆z = z− zmass removes the effect of the energy-
dependent composition on z, providing a measure of the muon deficit in the simulations.
The obtained ∆z are somewhat similar to the factor f and, indeed, the two quantities exhibit
a similar behaviour with energy, indicating a relatively flat muon deficit below 1018.4 eV,
with an increase above that value. In particular, the ∆z (and naturally also z) values at the
highest energy bins (1018.4 to 1018.9 eV) are compatible with those from the analysis of hybrid
inclined events at the Pierre Auger Observatory and AGASA. However, the same caveat on
the limited statistics in these bins, as previously mentioned, also applies here.

Lastly, in Section 7.9, the shape of the mean muon LDF observed in this work was com-
pared to that reported by the observatories at Yakutsk, Russia, and Akeno, Japan, which
measured muons with the same energy threshold. This comparison was motivated by the
fact that, unlike the absolute number of muons, the shape of the muon LDF is not expected
to change drastically with energy or atmospheric depth. Our results show good agreement
with Akeno, whereas tension is observed when compared to Yakutsk’s measurements. The
mean LDFs measured at Yakutsk are steeper than those reported at Akeno and in this work,
whereas a flatter LDF is expected due to Yakutsk being closer to sea level.
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Figure 7.50: Comparison between the UMD and the scaled A1 data (the scaling factor is stated in
each figure). Each row represents a single energy bin. For each energy, the left panel displays the
two sets of data, while the right shows the ratio between the UMD and A1 scaled measurements
for each radial bin. Red crosses represent A1 measurements suspected of saturation (see text for
details).
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Figure 7.51: Ratio between the UMD and A1 scaled measurements for each radial bin with
(unfilled squares) and without (full circles) energy shift in the Auger data. Red crosses represent
A1 measurements suspected of saturation (see text for details). Shaded area indicates the ±10%
region. The full line indicates the expected ratio calculated in Section 7.9.1 varying the UMD
LDF slope β to the observation level of Akeno.
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Figure 7.52: Comparison between the UMD and A20 mean MLDF in the energy range 1017.5 <
E/eV < 1018 and for sec θ < 1.2. The vertical dashed line indicates 450 m. Left: Raw UMD and
A20 data (taken from Fig. 5 of Ref. [90]) and its fits to Eq. (7.28). Right: UMD and scaled A20 data.
The scaling factor is stated in the figure.
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Figure 7.53: Comparison between the UMD and A20 mean MLDF for sec θ < 1.2. The A20
energies are in the range 1017.5 < EA20/eV < 1018 whereas the Auger energies are within
1017.21 < EAuger/eV < 1017.81 to account for the expected shift in the energy scale. The vertical
dashed line indicates 450 m. Left: Raw UMD and A20 data (taken from Fig. 5 of Ref. [90]) and its
fits to Eq. (7.28). Right: UMD and scaled A20 data. The scaling factor is stated in the figure.
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Figure 7.54: Ratio between the UMD and A20 scaled measurements for each radial bin with
(unfilled squares) and without (full circles) energy shift in the Auger data. The full line indicates
the expected ratio calculated in Section 7.9.1 varying the UMD LDF slope β to the observation
level of Akeno.
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Figure 7.55: Comparison between the UMD and Yakutsk mean MLDF for sec θ < 1.11. The
vertical dashed line indicates 450 m. Left: Raw UMD and Yakutsk data (taken from Fig. 1 of [91])
and its fits to Eq. (7.29). Right: UMD and scaled Yakutsk data. The scaling factor is stated in the
figure.
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Figure 7.56: Comparison between the UMD and the scaled Yakutsk data (the scaling factor is
stated in each figure). Each row represents a single energy bin. For each energy, the left panel
displays the two sets of data, while the right shows the ratio between the UMD and Yakutsk
scaled measurements for each radial bin.
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Figure 7.57: Ratio between the UMD and the Yakutsk scaled measurements for each radial bin
with (unfilled squares) and without (full circles) energy shift in the Auger data. The full line
indicates the expected ratio calculated in Section 7.9.1 varying the UMD LDF slope β to the
observation level of Yakutsk.
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Chapter 8
Summary and Conclusions

The measurement of the muon content of air showers produced by ultra-high-energy cosmic
rays (UHECRs) is of critical importance for the field. On one hand, the number of muons
is a mass-sensitive observable and, unlike Xmax, it can be sampled with high statistics us-
ing arrays of ground-based muon detectors that operate with nearly 100% duty cycle. The
determination of the mass composition of UHECRs is essential to break the degeneracy
between different astrophysical scenarios that aim to explain the long-standing questions
surrounding the origin and acceleration mechanisms of UHECRs. On the other hand, the
discrepancy between the inferred mass from Xmax and muon measurements suggests that
current hadronic models do not reproduce these observables consistently. This discrepancy,
known as the muon puzzle, indicates that some aspect of hadronic physics at the highest en-
ergies -beyond those achiveable by human-made accelerators- is not yet understood. Thus,
muon measurements also provide a unique opportunity to test the internal consistency of
current high-energy hadronic models, helping to shed light on hadronic physics at the high-
est energies, and providing essential input for model builders to better tune their models.
Both the trend of the inferred mass of the cosmic-ray beam and a quantification of the muon
deficit were addressed in this work. In what follows, we summarize the main results of this
thesis.

The basic aspects and current knowledge of UHECRs was presented in Chapter 2, whereas
a broad description of the Pierre Auger Observatory and its main components, with particu-
lar focus on the Undeground Muon Detector (UMD), was provided in Chapter 3.

In Chapter 4, the likelihoods of an ideal segmented detector developed in Ref. [64] for a
fixed number of muons Nµ, and in Ref. [63] for a fixed number of expected muons µ, were
extended to account for detector noise, inefficiency and corner-clipping muons. The case of
fixed µ is particularly relevant, as it considers Poisson fluctuations and can be straighfor-
wardly used in the fit of the lateral distribution function (LDF) of muons at the individual
event level, as we do later in this thesis. The extension of the likelihoods was achieved by
proposing easily interpretable probabilistic models, where the key parameters are the de-
tector noise probability pn, the single-muon detector inefficiency pI , and the single-muon
corner-clipping probability pcc, all of which can potentially be measured in the laboratory
using standard instrumentation. The framework developed is generally applicable to any
type of segmented detector. For the particular case of the UMD, the values of pn and pI in-
ferred from previous laboratory measurements are small and can be neglected for practical
purposes.
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In Chapter 5, we presented a data-driven method to estimate pcc, and validated its self-
consistency with simulations. We compared the estimated and true pcc, confirming that
the method yields an unbiased estimate of pcc. We also demonstrated that pcc successfully
captures the behavior of the bias in N̂µ induced by the corner-clipping effect. In this way, the
framewok developed in Chapter 4, together with the estimated corner-clipping probability,
were validated with full detector simulations. We then proceeded to apply the method to
data. The estimated pcc obtained in data shows a qualitatively similar behaviour with respect
to θ and φ as found in simulations, although it shows systematically lower values. The
difference increases with zenith angle and might indicate that corner-clipping is somewhat
overestimated in simulations. This, however, has only a small impact on the estimator N̂µ

and, overall, on the LDF reconstruction, as discussed later in Section 7.4.2. We highlight that
this approach enabled the first quantification of the corner-clipping effect using data, an
effect previously addressed solely through simulations. Moreover, this method is generally
applicable to any type of segmented detector with time resolution.

Within the framework developed in the previous chapters, in Chapter 6 we optimize the
procedure to fit a muon LDF at the event level. Based on the findings of Ref. [66], we begin
by discussing why we ignore the detector resolution, in contrast to all previous analysis
involving the UMD. Then, we extended the event log-likelihood to allow fitting the core
position during the LDF fit, even in events with a small number of triggered detectors or
whose core is not surrounded by a working UMD hexagon. This significantly improves the
quality of the fit in events where the core lies very close to a station, and also improves the
error estimation on ρ450, as the core uncertainty is naturally propagated to the uncertainty
of the remaining parameters during the fit. Since the existing reconstruction was based
on a Poisson likelihood, we assessed the impact of switching to the binomial likelihood
developed in Chapter 4. No significant differences were found for the bias or resolution of
ρ450, whereas an improved error estimation, leading to a greater coverage of the 1σ interval,
was observed for the binomial likelihood, as expected, since the latter is a more realistic
model for a segmented detector. Using the subset of events in which β can be reliably fit, we
obtained a data-driven parameterization dependent on the zenith angle and energy, which
is subsequently used to fix the parameter during the fits to the events. Lastly, we showed
that the residuals of the LDF around 450 m from the core are reasonably well centered in
zero within approximately ±5%.

In Chapter 7, using the optimized reconstruction developed in the previous chapters,
the muon measurement of air showers within energies 1017.5 to 1018.9 eV was presented.
The results were compared to simulations, other experiments, and previous UMD results.
When compared to previous analyses with the UMD, we observe compatibility with those
obtained with the final design of the detector, which employs silicon photomultipliers as
photodetectors, as is the case in this work. The results reported by the UMD engineering
array, which was operated with photomultiplier tubes, are at the edge of consistency with
our results, showing muon densities ∼ 20% larger than those found here. As a result, the
muon deficit reported here is of smaller magnitude.

Regarding the mass composition, our findings, displayed in Fig. 8.1, show that the energy-
dependent trend of the inferred mean logarithmic mass is consistent with expectations from
Xmax measurements, indicating a transition from heavy lo light elements from 1017.5 up to
∼ 1018.4 eV, where a break towards heavier elements is observed. Thus, this result confirms
the trend in the composition of the cosmic ray beam inferred from Xmax.

The inferred mass, however, is systematically heavier than that predicted from Xmax.
Under the assumption that Xmax is well described by the hadronic models, the results of
this work provide further evidence of a muon deficit in the simulations. To quantify the
deficit and its energy dependence, two quantities were utilized, namely f (Eq. (7.21)) and ∆z



161

(Eq. (7.25)) both exhibiting similar behavior—a relatively flat trend up to 1018.4 eV, followed
by increasing values at higher energies. The energy evolution of f is displayed in Fig. 8.2.
Although statistics are still scarce for energies above 1018.4 eV, this trend suggests that the
muon deficit becomes more pronounced around this energy.

Motivated by the fact that the shape of the muon LDF is not expected to change drasti-
cally with energy or atmospheric depth, we compared the shape of the mean muon LDF to
that reported by the observatories at Yakutsk, Russia, and Akeno, Japan, which measured
muons with the same energy threshold of 1 GeV. Our results show good agreement with
Akeno, whereas tension is observed when compared to Yakutsk’s measurements. The mean
LDFs measured at Yakutsk are steeper than those reported at Akeno and in this work, despite
a flatter LDF being expected due to Yakutsk’s lower altitude, closer to sea level.

This work focused on UMD data from Phase 1 of the Observatory’s operation. The
reconstruction methods developed here and the analyses applied to the data can be straight-
forwardly applied to the expanding dataset of Phase 2 of the Observatory’s operation. This
dataset is already larger than the one used in this work and can therefore be used to analyze
mass composition and test hadronic models at the highest energies with greater statistical
significance.
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Figure 8.1: Mean logarithmic mass as a function of energy for EPOS-LHC (left) and QGSJetII-04
(right panel). Error bars indicate statistical uncertainty, whereas brackets correspond to system-
atic uncertainties. Grey markers indicate the logarithmic mass inferred from Xmax measurements
[84]. The shaded grey area indicates the energy bin below full efficiency (see Section 7.1.1), pre-
served for visualization only.
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Appendix A
On the probability distribution P(k|µ)

In Section 4.1 the detector inefficiency and the corner-clipping effect were included in the
single-module likelihood proposing a multinomial process (Eq. (4.18)). The key idea was
to think in terms of effective number of particles Neff; the inefficiency would decrease this
number while corner-clipping muons would increase it.

In the derivation of the distribution P(k|µ) in Ref. [63], it is shown that if Nµ ∼ Poiss(µ),
then P(k|µ) is given by Eq. (4.3). Therefore, in order to be able to assure that the modi-
fied P(k|µ) given in Eq. (4.20) is the true distribution of k, one needs to prove that Neff ∼
Poiss(µeff). It is instructive to generalize our problem: let N ∼ Poiss(µ) and K ∼ Binom(N, p).
Lets define M− = N − K and M+ = N + K.

For M− we have:

P(M− = m) =
∞

∑
N=0

P(K = N −m|N, p)P(N|µ) =
∞

∑
N=0

N!
(N −m)!m!

pN−m(1− p)m µNe−µ

N!
,

Conveniently multiplying by µmµ−me−µpeµp we obtain

P(M− = m) = [µ(1− p)]m
e−µ(1−p)

m!

∞

∑
N=0

(µp)N−m e−µp

(N −m)!

= Poiss(m|µ(1− p))
∞

∑
N=0

(µp)N−m e−µp

(N −m)!
.

Finally, we note that since m ≤ N, the term with the sum actually goes from N = m to
∞. Therefore, ∑∞

N=m(µp)N−m e−µp

(N−m)! = ∑∞
j=0(µp)j e−µp

(j)! = 1. Thus,

P(M− = m) = Poiss(m|µ(1− p)).

We conclude that M− follows a Poisson distribution with mean µ(1− p).
A similar excercise with M+ does not lead to a Poisson or any known closed distribution

to our knowledge.
By making the substitution N = Nµ and K = nI we obseve that M− is Neff when pcc = 0.

Thus, when pcc = 0, Eq. (4.20) is exact. This corresponds to what is observed in the upper
panels of Figs. 4.8 and 4.9.

If we substitute N = Nµ and K = ncc we have that M+ is Neff when pI = 0. Therefore,
when pI = 0 (and pcc 6= 0), Eq. (4.20) is approximate.

We can generalize and conclude that Neff ∼ Poiss(µeff) only if pcc = 0.
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Figure A.1: Results of the Monte-Carlo simulation described in Section 4.1.3 for µ = 2, pI = 2%
and pcc = 15%. Left: Distribution of Nµ − nI . Center: Distribution of Nµ + ncc. Right: Distribution
of Neff.

Figure A.2: Results of the Monte-Carlo simulation described in Section 4.1.3 for µ = 2, pI = 80%
and pcc = 15%. Left: Distribution of Nµ − nI . Center: Distribution of Nµ + ncc. Right: Distribution
of Neff.

Finally, we show in Figs. A.1 and A.2 the distributions of Nµ − nI , Nµ + ncc and Neff =
Nµ + ncc − nI for µ = 2 obtained in the Monte-Carlo simulation described in Section 4.1.3
along with the Poisson expectations and the true distribution. Indeed, we confirm that
Nµ − nI (i.e. M−) follows a Poisson distributions with mean µ(1 − pI) and Nµ + ncc (i.e.
M+) and Neff do not follow Poisson distributions with means µ(1+ pcc) and µ(1+ pcc − pI),
respectively. However, we note that for pI = 2%, the Poisson approximation is sufficiently
good. The true distribution of Neff, represented with green lines, comes from computing

P(Neff|µ) =
∞

∑
Nµ=0

[
nI=Nµ

∑
nI=0

P(nI , ncc = Neff − Nµ + nI |Nµ)P(Nµ|µ)
]

,

where P(Nµ|µ) is a Poisson distribution with mean µ and P(nI , ncc|Nµ) is given by
Eq. (4.18).



Appendix B
Study on the time response of the
detector using corner-clipping muons

The corner-clipping muons provide a unique opportunity to conduct a study on the time
response of the detector. The start time t of a muon pattern produced by a muon hitting a
bar at a distance l from the SiPM at time t0 can be conveniently written as

t = t0 + l/c + tr, (B.1)

where c is the speed of light in the fiber and tr corresponds to the delay due to the
response of the detector. This is a random variable which encapsulates both the decay of the
scintillator-fiber system and the electronics response.

As already discussed, the signature of a corner-clipping muon is to produce two muon
patterns with very small time difference in adjacent bars. If we write the start time of the
two bars involved using Eq. (B.1) and substract them, we have

∆t = ∆t0 + ∆l/c + ∆tr.

Since the same muon is responsible for the two signals, we can approximate ∆t0 = 0 and
∆l = 0. Thus, for corner-clipping muons, we have

∆t = ∆tr. (B.2)

Therefore, assuming a probability distribution for tr, a model for ∆tr, our observable, can
be derived and fit to data.

To propose a model for tr it is convenient to plot the data displayed in Fig. 5.10 using
the ∆t preserving the sign instead of its absolute value. We arbitrarily compute ∆t as the
difference between the start times of the strip with the larger ID and the strip with the
smaller ID. The result is shown in Fig. B.1. As expected, a symmetrical peak around zero
can be observed. The shape of the ∆t peak resembles a triangular distribution, which in turn
corresponds to the expected distribution of the difference between two uniform random
variables. Thus, we propose a uniform distribution for tr between 0 and tmax, which we
denote U(0, tmax).

The uniform distribution is defined in a continuous time variable. However, our time
measurements are in discrete time bins due to the sampling of the electronics. Therefore, the
discretization has to be taken into account. The probability of the start time to be in the n
time bin is
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Figure B.1: Left: Same as in Fig. 5.10 but preserving the sign in ∆t. Right: N̂cc in linear scale. The
shape of the peak resembles a triangular distribution.

P(tbin = n|tmax) =
∫ (n+1) 3.125 ns

n 3.125 ns
U(0, tmax)dt, (B.3)

where 3.125 ns corresponds to the sampling time of the electronics.
Thus, the probability of ∆t = k is

P(∆t = k|tmax) =


∑∞

j=0 P(tbin = k + j)P(tbin = j) if k > 0

∑∞
j=0 P(tbin = j− k)P(tbin = j) if k < 0

∑∞
j=0 P(tbin = j)P(tbin = j) if k = 0.

(B.4)

The fit of the model of Eq. (B.4) to data and simulations is shown in Fig. B.2. The N̂cc(∆t)
values were previously normalized to represent a probability. It is apparent that the timing
distribution of data is wider than the one found in simulations. Indeed, the tmax value found
for data (7.8 ns) is larger than the one for simulations (4.5 ns), although the discrepancy is
not significant as it is of the order of the sampling time of the detector. This difference, not
relevant for the purpose of our analysis as the time resolution of the detector is not used
(see Section 6.1), is not surprising and can be explained by the fact that data is affected by
detector-to-detector fluctuations between the different modules deployed in the field.

The timing model proposed in this section can be used for simplified toy Monte-Carlo
simulations of the detector and to estimate uncertainties in future studies involving timing
information of the detector.
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Figure B.2: Fit of the model of Eq. (B.4) (red squares with dashed lines) to the measured proba-
bilites (green markers) as obtained with simulations (left) and data (right). The measured proba-
bility in a given ∆t was obtained by N̂cc(∆t)/(∑∆t N̂cc(∆t)), and it represents the probability of
a corner-clipping muon to produce a ∆t time difference between the signals start times.
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Appendix C
Feldman-Cousins interval calculation

Following the Feldman-Cousins (FC) procedure [68], the 1 − α = 68.2% interval is con-
structed as follows:

• For fixed µ, the values (k1, k2) such that P(k1 ≤ k ≤ k2|µ) ≥ 1− α are found. The
interval k1 ≤ k ≤ k2 is referred to as acceptance region. The k values are included in
the acceptance region in decreasing order of the ratio P(k|µ) / P(k|µ̂) until the sum
of P(k|µ) meets or exceeds the value 1 − α. k1 and k2 are then the minimum and
maximum values of k in the acceptance region, respectively. Performing a scan over
values of µ, two bands k1(µ) and k2(µ) are obtained (blue lines in the left panel of
Fig. C.1).

• A given observed k defines a horizontal line in Fig. C.1 (e.g. k = 0 dashed green line)
which interesects the constructed bands. The corresponding µ interval is obtained by
the lower- and upper-most edge of the intersection (green markers).

• For each possible observed k, the interval (µ1, µ2) is constructed.

When constructing the bands shown in the left panel of Fig. C.1, the actual coverage of
the interval can be computed. This coverage can be compared to the one obtained in Monte-
Carlo experiments as a sanity check. The results of these toy experiments is compared to
the analytical coverage in the right panel Fig. C.1, in which a very good agreement can be
observed.
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Figure C.1: Left: Confidence belt constructed with the Feldman-Cousins procedure. As an ex-
ample, the interval for k = 0 is represented with green markers. Right: Analytical coverage
calculated during the Feldman-Cousins procedure as a function of µ is represented with a green
line. The coverages obtained with toy MC experiments is denoted with black unfilled circles.
Horizontal dashed line marks the 68.2% value.



Appendix D
Performance of the corner-clipping
correction on QGSJetII-04

In Fig. 5.9, we showed that the estimated corner-clipping probability successfully captures
the zenith-dependent bias introduced in N̂µ by the corner-clipping muons using air showers
simulated with EPOS-LHC. In Fig. D.1, we show the same but applied to simulations per-
formed with QGSJetII-04 as hadronic model. It is apparent that the parameterization of the
estimated corner-clipping probability obtained in Fig. 5.6, derived from EPOS-LHC showers,
performs equally well on showers simulated with QGSJetII-04. Indeed, muons are highly
collimated, regardless of the model, and thus no significant impact in the corner-clipping
effect is expected between different hadronic models.
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Figure D.1: Same as in Fig. 5.9 but using QGSJetII-04 as hadronic model.



Appendix E
Performance of the muon LDF
reconstruction on QGSJetII-04

In Fig. E.1, we show the same as in Fig. 6.12 but using QGSJetII-04 as hadronic interaction
model.
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Appendix F
Additional plots of the comparison of
the muon content between data and
simulations

F.1 Impact of using convolved or uncolvolved densities in the fi-
nal results

The comparison between data and simulations in the (Xmax, ln ρ35) plane for all the energy
bins is shown in Fig. F.1 for EPOS-LHC and in Fig. F.2 for QGSJetII-04. The case in which
the uncolvolved simulations are used is also displayed.

The mean logarithmic mass and the deficit factor (Eq. (7.21)) obtained with the convolved
and uncolvolved densities are displayed in Fig. F.3 and Fig. F.4, respectively.

F.2 Alternative energy binning
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Figure F.1: Comparison between data and simulations of EPOS-LHC. The filled markers joined
by a full line correspond to the convolved values obtained via Eq. (7.14). The unfilled markers
joined by dashed line corespond to the uncolvolved values shown in Fig. 7.31.
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Figure F.2: Comparison between data and simulations of QGSJetII-04. The filled markers joined
by a full line correspond to the convolved values obtained via Eq. (7.14). The unfilled markers
joined by dashed line corespond to the uncolvolved values shown in Fig. 7.31.
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Figure F.3: Mean logarithmic mass as a function of energy for EPOS-LHC (upper panel) and
QGSJetII-04 (lower panel). Error bars indicate statistical uncertainty, whereas brackets corre-
spond to systematic uncertainties. Grey markers indicate the logarithmic mass inferred from
Xmax measurements [84]. The shaded grey area indicates the energy bin below full efficiency
(see Section 7.1.1), preserved for visualization only. The magenta markers indicate the masses
inferred with the uncolvolved densities shown in Fig. 7.31.
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Figure F.4: Factor comparing the agreement between the muon content in data and simulations
(Eq. (7.21)) as a function of energy for EPOS-LHC (upper panel) and QGSJetII-04 (lower panel).
Error bars indicate statistical error whereas brackets correspond to systematic uncertainties. The
horizontal dashed line indicates unity. The shaded grey area indicates the energy bin below full
efficiency (see Section 7.1.1), preserved for visualization only. The distance to unity in units of
σ is indicated in each bin, where σ corresponds to the total uncertainty. The magenta markers
indicate the values inferred with the uncolvolved densities shown in Fig. 7.31. Their significance
is displayed at the top of each bin in magenta font.
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Figure F.5: Same as in Fig. 7.36 but with alternative binning in energy with step of ∆ lg(E/eV) =
0.1.
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Figure F.6: Same as in Fig. F.3 but with alternative binning in energy with step of ∆ lg(E/eV) =
0.1. Upper (lower) panel corresponds to EPOS-LHC (QGSJetII-04).
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Figure F.7: Same as in Fig. F.4 but with alternative binning in energy with step of ∆ lg(E/eV) =
0.1. Upper (lower) panel corresponds to EPOS-LHC (QGSJetII-04).



Appendix G
Parameterization of distance cuts for
the mean MLDF analysis

As shown in Section 7.9.2, the evolution of rsat and r90% with energy for different zenith bins
was model as a linear function y = m(lg(E/eV)− 17.6) + b. The dependence with sin2 θ of
m and b was further parameterized as a quadratic polynomial in sin2 θ, with the exception
of m for rsat, for which no clear dependence was observed. For this case, the weighted mean
was taken. Such parameterizations are shown in Fig. G.1 and Fig. G.2 for rsat and r90%,
respectively.
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Figure G.1: Slope (left) and intercept (right) of the linear fits of rsat as function of sin2 θ. Since
the slope does not show a dependence in sin2 θ, the weighted mean was used. For the intercept,
a quadratic model was used to fit its sin2 θ dependence.
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Appendix H
Additional plots in the comparison of
the LDF shape with Akeno and Yakutsk

In the left panel of Fig. 7.49, the comparison between the raw A1 data and the UMD points
was shown for the lowest energy bin. In Fig. H.1, we show the same for the remaining energy
bins. In addition, in Fig. H.2 we show the corresponding plots when the Auger energy is
shifted.
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Figure H.1: Comparison between the UMD and raw A1 mean MLDF for sec θ < 1.1 in the
energy bins 1017.62 < E/eV < 1017.84 (upper left), 1017.84 < E/eV < 1018.07 (upper right) and
1018.04 < E/eV < 1018.29 (lower panel). The vertical dashed line indicates 450 m. Red crosses
represent A1 measurements suspected of saturation (see text for details). Full and dashed lines
indicate the fits to Eq. (7.27).
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Figure H.2: Comparison between the UMD and raw A1 mean MLDF for sec θ < 1.1. The log-
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periments. The vertical dashed line indicates 450 m. Red crosses represent A1 measurements
suspected of saturation (see text for details). Full and dashed lines indicate the fits to Eq. (7.27).
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Appendix I
Detector characterization and
long-term performance

In this section, we evaluate the stability of the data-taking period and validate the expected
features of the detector signals in the field; in particular, the impact of fiber attenuation in
the detector signals. This ensures a proper understanding of the detector’s behavior and its
performance over time.

In Appendix I.1, we present a study on optical fiber attenuation based on field data.
While previous analyses have been conducted in laboratory settings, here we assess the fiber
attenuation using real operational conditions.

In Appendix I.2, we examine the long-term performance of the detector signals.
In the two analysis, we considered both binary and ADC acquisition modes of the de-

tector. Although only the former is used in this thesis for physics analysis, analyzing the
ADC mode provides additional insights both in the fiber attenuation effect and into the
time-dependent behavior of the detector.

I.1 Fiber attenuation

Fiber attenuation plays a major role in signal fluctuations as a muon hitting the closest to
the SiPM can yield almost twice the number of photon-equivalents than one hitting the
furthest. This translates into having a larger number of 1s (charge) in the binary (ADC) trace
when muons hit the strip closer to the SiPM. This effect was characterized under controlled
conditions in the laboratory [60].

A study like that conducted in the laboratory is not feasible with deployed modules as
the impact point of the muon in the strip is unknown during an air-shower event. However,
the attenuation of photons in the fiber can be assessed using the fact that strips in the UMD
modules have different fiber lengths. Since the dome with the SiPM array is in the center of
the detector, the length of the fiber between the end of a strip and the SiPM array, referred to
as manifold length, is different for each strip, see Fig. I.1. Due to the symmetry of the module,
this leads to 16 groups each composed by 4 strips with the same fiber length. Consequently,
we expect both the mean number of 1s and charge produced by a single muon to be lower
in strips with longer fibers.
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Figure I.1: Sketch of a UMD module.
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Figure I.2: Left: Average number of 1s of each scintillator of module 101 of UMD station 1761.
The green area indicates the region enclosed by 〈#1s〉module ± 3smodule, outside which strips are
tagged as outliers and rejected for subsequent analysis. Right: Same as in the right panel but as a
function of the manifold length. The green squares indicate the mean over strips with the same
fiber length.

I.1.1 Binary channel

To inspect for a fiber effect in the data, the average number of 1s, 〈#1s〉, in all the strips
of every module was calculated using three years of air-shower events. In a module-by-
module analysis, we excluded any scintillator suspected of malfunctioning by identifying
scintillators with extreme values of 〈#1s〉. This was achieved through an iterative procedure.
The mean value 〈#1s〉module and the standard deviation smodule over the 64 scintillators in
each module were computed. Any bars outside the region defined by 〈#1s〉module ± 3smodule
were considered outliers and excluded. This procedure was repeated using the subset of
scintillators that were not excluded, until no new outliers were found. As an example, this
procedure is displayed for a selected module in Fig. I.2. Out of 5439 strips in the field
considered for this analysis, 70 (1%) were tagged as outliers and excluded.

The fiber attenuation is already visible —using only one detector— in the right panel
of Fig. I.2, where an anti-correlation between 〈#1s〉 and the fiber length can be observed. In
order to characterize the attenuation in a global way, we show in Fig. I.3 the values of 〈#1s〉 of
all the strips as a function of the fiber length (grey-unfilled circles), where the green squares
indicate the mean over group of strips with the same fiber length. In the right panel of the
figure, only the green squares are shown for better visualization. The fiber effect is quite
clear as there is an anti-correlation between the manifold length and 〈#1s〉, which translates
into a difference of ∼ 5% in the number of 1s between the shortest and longest fiber. We
fitted a linear model, yielding a decrease in the mean number of 1s of −0.7/m.

As explained in Section 3.3.4, typical muon signals generate between seven and eight
consecutive 1s, whereas a condition of at least four consecutive 1s in the binary trace is
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Figure I.3: Average number of 1s as a function of the manifold length using all the strips. The
mean number of 1s for individual strips is denoted by gray-unfilled markers. The green squares
indicate the mean over strips with the same fiber length. In the right panel, only the latter is
shown, together with the fit to a linear model.
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Figure I.4: Left: Number of muon patterns as a function of manifold length for module 103 of
UMD station 1760. The green squares indicate the mean over strips with the same fiber length.
Horizontal dashed line indicates the median of the number of muon patterns. Right: Same as in
left panel but normalized by the median.

required for a bar to be considered hit by a muon, a condition referred to as the muon pattern.
As demonstrated in Fig. I.3, strips with longer fibers generate, on average, fewer 1s. Thus,
it is relevant to assess whether fiber attenuation has an impact on the efficiency of muon
detection in the bars; that is, how often strips with longer fibers generate a muon pattern
compared with strips with shorter fibers. To this end, for each strip of every module, the
number of air-shower events in which it had a muon pattern was obtained. Since modules
have been operating in the field for different periods due to being deployed at different times,
modules deployed earlier participate in more events. To compare modules deployed at
different times, we compute the median of the strip-level number of events for each module.
Then, the number of events for each strip is normalized by this quantity. An example of this
procedure is shown in Fig. I.4 for a selected module.

The normalized number of events for all strips is displayed as a function of manifold
length in Fig. I.5. Again, we only show the mean over strips with the same fiber length in
the right panel to ease visualization. The influence of fiber attenuation is also visible here,
showing that strips with longer fibers are slightly more inefficient, having on average less
number of muon patterns, leading to a difference of∼ 2.5% between the shortest and longest
fiber.



192APPENDIX I. DETECTOR CHARACTERIZATION AND LONG-TERM PERFORMANCE

0.54 0.68 0.82 0.94
Manifold length / m

0.7

0.8

0.9

1.0

1.1

1.2

1.3

#
of

m
uo

n
pa

tte
rn
s(

no
rm

al
iz
ed

) individual strips
group mean

0.54 0.68 0.82 0.94
Manifold length / m

0.975

0.980

0.985

0.990

0.995

1.000

1.005

1.010

1.015

#
of

m
uo

n
pa

tte
rn
s(

no
rm

al
iz
ed

) y � m (x − 0.7 m)+ b
slope = (-0.06±0.01) m−1

intercept = 0.998±0.001
group mean

Figure I.5: Left: Normalized number of muon patterns as a function of manifold length using
all the strips. The green squares indicate the mean over strips with the same fiber length. In the
right panel, only the latter is shown along with a linear fit.

I.1.2 ADC channel

The fiber effect was additionally studied with the ADC channel following a similar proce-
dure. For this purpose, modules with only a single strip with a single muon pattern in its
binary trace were selected to guarantee that only one muon hits the detector. Subsequently,
the ADC trace was integrated to obtain its charge.

To have a clean dataset and minimize the impact of noise, we demand some quality
checks on the traces of the UMD modules. First, we ask that the start time of the binary
channel tbinary, defined as the time bin with the first ”1” in the trace, is inside the region 375
ADC samples < tbinary < 750 ADC samples (green shaded area in right panel of Fig. I.6). This
is a rather coarse condition and it is based on the region of the binary trace where positive
samples are more likely to occur as a consequence of the delays of the T2-TH and T2-ToT
triggers in the WCD, see left panel of Fig. I.6. In this way, we aim to avoid muon patterns
starting too early or too late in the trace, which may be likely due to noise. Then, we demand
for a causal connection between the binary and the ADC. Both modes have different delays
since they are built with different electronics. The binary channel is faster than the integrator,
meaning that the muon signal starts earlier in the binary trace than in the ADC. For this
reason, we only take into account traces in which 32 ADC samples < tmax − tbinary < 56
ADC samples, where tmax is the time of maximum amplitude in the ADC trace. The whole
procedure is visible for a selected module in Fig. I.6.

The mean single-muon charge of all the strips sharing the same manifold length was
obtained, as displayed in the left panel of Fig. I.7. Like in the binary channel, the fiber
attenuation is quite clear as strips with longer fibers have lower single-muon charge values,
which yields a difference of ∼ 10% between the shortest and the longest fiber. This confirms
and validates the expected behaviour of the detector in terms of fiber attenuation.

I.2 Long-term performance

Since the environmental conditions, such as temperature, in which the detector operates
cannot be controlled, it is crucial to monitor the long-term behaviour of the signals. This is
necessary to account for any seasonal effect in any subsequent higher-level physics analysis.
In this section, we study the long-term evolution of the signals of the binary and ADC mode.
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Figure I.6: Example of the cleaning procedure for module 101 of the UMD station 1760. Upper
left: Distribution of start times of muon patterns in events with only one activated bar. Each peak
corresponds to one of the WCD triggers, whose algorithms have different delays. Upper right:
Scatter plot of tbinary and tmax. The green shaded area correponds to 375 ADC samples < tbinary
< 750 ADC samples. The green circles indicate the accepted traces for the analysis, whereas the
red crosses show traces that do not fulfill the criteria to be accepted (see text for details). Lower
panel: Single-muon ADC traces accepted for the analysis. The vertical dashed lines show the
integration window, whereas the inset panel shows the charge distribution.
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Figure I.7: Single-muon charge as a function of the manifold length using all the strips. The
green squares indicate the mean over strips with the same fiber length. In the right panel, only
the latter is shown along with a linear fit.

For every local station trigger, an algorithm running in parallel to acquisition scans over
the 64 binary traces; if only one muon pattern is found in the whole module, the charge
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Figure I.8: Left: Raw time series of the online single-muon charge estimate. Some modules have
not measurements during the whole period due to malfunctioning or bad data taking periods.
Module-to-module variations can be seen due to SiPM gain differences between the modules.
Red markers show the time series of the reference module to which all the modules are scaled.
Right: Scaled time series. Unfilled magenta markers shows the profile over the whole set of
modules. The magenta line corresponds to the fit of a sinus (seasonal fluctuations) plus a linear
term (aging).

of the ADC trace is computed and streamed [59]. We will refer to the single-muon charge
estimated this way as online charge. In the left panel of Fig. I.8, the weekly mean of the online
charge is shown for a set of modules deployed over 2019, for which enough data is available
for a long-term analysis. Module-to-module differences can be observed due to different
SiPM gains between the modules. Thus, the time serie of an arbitrary module was chosen
as a reference (red markers in left panel of Fig. I.8) and a scaling factor for each module was
fitted to match this reference. The result of this is displayed on the right panel of Fig. I.8.
It is evident that a universal behaviour arises which includes a seasonal fluctuation and a
long-term drift related to the aging of the detector. In a phenomenological approach, we fit a
model that incorporated a sinusoidal component to capture the seasonal oscillations, along
with a linear component to represent the aging effect. The fluctuations correspond to ±1%
whereas the aging rate (slope of the linear term) is of −2.5%/yr.

The biweekly mean of the #1s using air-shower events was obtained for each module in
the same time period. The raw time series are shown in the left panel of Fig. I.9. The same
module as previously chosen was selected as a reference for scaling the remaining modules.
The scaled time series along with the profile over all the detectors and a fit to the same
model is shown in the right panel of Fig. I.9. The same qualitative behaviour seen in Fig. I.8
is found. In this case, a seasonal fluctuation of ±1% along with an aging rate of −0.7%/yr is
observed. The difference in aging rate between the ADC and binary modes is attributed to
the fact that the ADC mode is sensitive to the signal charge, whereas the binary mode relies
on an amplitude threshold, thus being sensitive to the signal amplitude.

In addition, the long-term behaviour of the SiPM gains was assessed. It is known that
the SiPM gain decreases with temperature. For that reason, a temperature compensation
mechanism is implemented in the high-voltage source of the electronics [59]. Still, there may
be some minor residual temperature dependence remaining. It is thus important to verify
that this residual dependence remains within acceptable limits. Measurements of the SiPM
gain were periodically performed for over a year in a single module following the procedure
detailed in Ref. [58]1. The gain for each SiPM was determined in each measurement and the
average value over the 64 channels was obtained. The relative fluctuations of the average
gain is shown in red markers in Fig. I.10. A fluctuation of±1% is observed, being as expected
larger for lower temperatures. This level of fluctuation in the gain is negligible and has no

1We thank Fernando Gollan for providing these measurements.
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Figure I.9: Left: Raw time series of the #1s for each module. Module-to-module variations can
be seen due to gain fluctuations between the modules. Red markers show the time series of the
reference module to which all the modules are scaled. Right: Scaled time series. Unfilled green
markers shows the profile over the whole set of modules. The green line corresponds to the fit
of a sinus (seasonal fluctuations) plus linear term (aging).

Figure I.10: Magenta (green) markers represent the relative fluctuations of the charge in the ADC
trace (〈#1s〉 in the binary trace) after the linear term associated with aging was subtracted. Red
markers show the relative fluctuations of the SiPM gain, obtained as the average gain over all
the 64 SiPMs for each measurement. The lower plot displays the average temperature registered
by a sensor located in the UMD electronics. Grey dashed vertical lines enclose one year period.

impact on the detector performance. It is however useful to explain the oscillations observed
in the binary and ADC signals. For this, the linear term of the model that was fit to the time
evolution of the online charge and 〈#1s〉 (right panel of Fig. I.8 and Fig. I.9) was subtracted
from the data points. The relative fluctuations of these aging-corrected quantities are also
shown in Fig. I.10. It is apparent that the seasonal modulation in the signals are highly
consistent with that found in the gain.

I.3 Summary

In this section of the appendix, the detector signals were characterized, and their long-term
performance was analyzed.

The impact of fiber attenuation on the signals in binary and ADC mode was assessed
using a dataset of three years of air-shower events in Appendix I.1. In binary mode, it was
shown that strips with longer fibers, on average, register fewer 1s than strips with shorter



196APPENDIX I. DETECTOR CHARACTERIZATION AND LONG-TERM PERFORMANCE

fibers, leading to a difference of approximately 5% between the longest and shortest fibers.
As a consequence, strips with longer fibers are slightly less efficient, having on average a
lower number of muon patterns, resulting in a difference of approximately 2.5% between
the longest and shortest fibers. A fiber effect was also found in ADC mode, where a decrease
in the single-muon charge with fiber length was observed, translating into a difference of
approximately 10% between the longest and shortest fibers.

In Appendix I.2, the long-term behavior of the signals was evaluated, revealing an aging
effect along with a seasonal fluctuation of ±1%, the latter being consistent with SiPM gain
fluctuations. The aging effect manifests as a decrease of −0.7% per year in the number of 1s
and as a −2.5% per year in the charge for the binary and ADC mode, respectively.
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