KIT | KIT-Bibliothek | Impressum | Datenschutz

Orbital stability of plane waves in the Klein–Gordon equation against localized pertubations

Bukieda, Emile 1; Garénaux, Louis ORCID iD icon 1; Rijk de, Björn 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We investigate the stability and long-term behavior of spatially periodic plane waves in the complex Klein-Gordon equation under localized perturbations. Such perturbations render the wave neither localized nor periodic, placing its stability analysis outside the scope of the classical orbital stability theory for Hamiltonian systems developed by Grillakis, Shatah, and Strauss. Inspired by Zhidkov’s work on the stability of time-periodic, spatially homogeneous states in the nonlinear Schrödinger equation, we develop an alternative method that relies on an amplitude-phase decomposition and leverages conserved quantities tailored to the perturbation equation. We establish an orbital stability result of plane waves that is locally uniform in space, accommodating $L^2$-localized perturbations as well as nonlocalized phase modulations. Incertain regimes, our method even allows for unbounded modulations. Our result is sharp in the sense that it holds up to the spectral stability boundary.


Volltext §
DOI: 10.5445/IR/1000182175
Veröffentlicht am 05.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 06.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000182175
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 22 S.
Serie CRC 1173 Preprint ; 2025/23
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Abstract/Volltext
Forschungsdaten/Software
Schlagwörter complex Klein-Gordon equation, periodic traveling waves, orbital stability, conservation laws, phase modulation
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page