KIT | KIT-Bibliothek | Impressum | Datenschutz

Spiking Neural Belief Propagation Decoder for LDPC Codes with Small Variable Node Degrees

von Bank, Alexander 1; Edelmann, Eike-Manuel 1; Mandelbaum, Jonathan 1; Schmalen, Laurent 1
1 Communications Engineering Lab (CEL), Karlsruher Institut für Technologie (KIT)

Abstract:

Spiking neural networks (SNNs) promise energy-efficient data processing by imitating the event-based behavior of biological neurons. In previous work, we introduced the enlarge-likelihood-each-notable-amplitude spiking-neural-network (ELENA-SNN) decoder, a novel decoding algorithm for low-density parity-check (LDPC) codes. The decoder integrates SNNs into belief propagation (BP) decoding by approximating the check node (CN) update equation using SNNs. However, when decoding LDPC codes with a small variable node(VN) degree, the approximation gets too rough, and the ELENA-SNN decoder does not yield good results. This paper introduces the multi-level ELENA-SNN (ML-ELENA-SNN) decoder, which is an extension of the ELENA-SNN decoder. Instead of a single SNN approximating the CN update, multiple SNNs are applied in parallel, resulting in a higher resolution and higher dynamic range of the exchanged messages. We show that the ML-ELENA-SNN decoder performs similarly to the ubiquitous normalized min-sum decoder for the (38400, 30720) regular LDPC code with a VN degree of dv = 3 and a CN degree of dc = 15.


Volltext §
DOI: 10.5445/IR/1000182207
Veröffentlicht am 05.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Communications Engineering Lab (CEL)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000182207
Vorab online veröffentlicht am 20.12.2024
Schlagwörter BP Decoding, LDPC codes, regular LDPC codes, spiking neural networks
Nachgewiesen in arXiv
OpenAlex
Dimensions
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page