KIT | KIT-Bibliothek | Impressum | Datenschutz

On the mathematical foundation of full waveform inversion in viscoelastic vertically transverse isotropic media *

Rieder, Andreas ORCID iD icon 1
1 Fakultät für Mathematik (MATH), Karlsruher Institut für Technologie (KIT)

Abstract:

We present a mathematical framework for viscoelastic full waveform inversion (FWI) in vertically transverse isotropic media. FWI can be formulated as the nonlinear inverse problem of identifying parameters in the underlying attenuating anisotropic wave equation given partial wave field measurements (seismograms). From a mathematical point of view, one has to solve an operator equation for the full waveform forward operator, which is the corresponding parameter-to-state map. We give a rigorous definition of this operator, show its Fréchet differentiability, and explicitly characterize the adjoint operator of its Fréchet derivative. Thus, we provide the main ingredients to implement Newton-type/gradient-based regularization schemes for FWI. Our approach can be directly applied to other concepts of anisotropy.


Verlagsausgabe §
DOI: 10.5445/IR/1000182229
Veröffentlicht am 20.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 31.05.2025
Sprache Englisch
Identifikator ISSN: 0266-5611, 1361-6420
KITopen-ID: 1000182229
Erschienen in Inverse Problems
Verlag Institute of Physics Publishing Ltd (IOP Publishing Ltd)
Band 41
Heft 5
Seiten 055009
Vorab online veröffentlicht am 02.05.2025
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page