KIT | KIT-Bibliothek | Impressum | Datenschutz

ASSUME: An agent-based simulation framework for exploring electricity market dynamics with reinforcement learning

Harder, Nick ; Miskiw, Kim K. ORCID iD icon 1; Khanra, Manish; Maurer, Florian; Patil, Parag; Qussous, Ramiz; Weinhardt, Christof ORCID iD icon 1; Klobasa, Marian; Ragwitz, Mario; Weidlich, Anke
1 Fakultät für Wirtschaftswissenschaften – Institut für Informationswirtschaft und Marketing (IISM), Karlsruher Institut für Technologie (KIT)

Abstract:

Electricity markets are undergoing transformative changes driven by integrating renewable energy and emerging technologies, and evolving market conditions such as shifting demand patterns, regulatory reforms, and increased price volatility. To address the complexity of electricity markets and their interactions, we present ASSUME, an open-source agent-based simulation framework that incorporates multi-agent deep reinforcement learning for modeling adaptive market participants. ASSUME offers a modular architecture for representing generator and demand-side agents, bidding strategies, and diverse market configurations. ASSUME has been proven effective in multiple research studies, demonstrating its ability to analyze complex bids, demand-side flexibility, and other market scenarios. By incorporating adaptive strategies through deep reinforcement learning, ASSUME supports dynamic strategy exploration, enabling a deeper understanding of electricity market behaviors. With its flexible architecture, documentation, tutorials, and broad accessibility, ASSUME ensures usability across different user groups, minimizing technical overhead and freeing up human resources for deeper insights into operational, economic, and policy-related challenges in this critical sector.


Verlagsausgabe §
DOI: 10.5445/IR/1000182249
Veröffentlicht am 13.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Wirtschaftswissenschaften – Institut für Informationswirtschaft und Marketing (IISM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 05.2025
Sprache Englisch
Identifikator ISSN: 2352-7110
KITopen-ID: 1000182249
Erschienen in SoftwareX
Verlag Elsevier
Band 30
Seiten 102176
Nachgewiesen in Dimensions
Web of Science
OpenAlex
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 13 – Maßnahmen zum Klimaschutz
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page