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 A B S T R A C T

Dislocation-mediated plastic deformation governs the mechanical response and microstructural evolution in 
tribological contacts, yet linking these effects across scales remains challenging. We present a dislocation-based 
crystal plasticity model that couples micro-scale dislocation dynamics with macro-scale plastic deformation 
under sliding conditions. By incorporating crystallographic effects on dislocation mobility and capturing 
subsurface dislocation transport and trace line formation, the model reveals intricate microstructural features 
that influence plastic deformation, surface topography, and contact area evolution. Unlike continuum-scale 
simulations, which lack the resolution to capture microstructural details, or discrete simulations, which 
fail to couple microstructure-driven plasticity with tribological contact, this model bridges these gaps. 
Leveraging an implicit macro–micro coupling mechanism, a flux vector splitting-based numerical scheme, 
and a penalty contact boundary condition, this work provides a foundation for predictive modeling capturing 
dislocation-driven deformation under tribological contact.
1. Introduction

Plastic deformation is a key factor influencing tribological contact 
mechanics [1–4], as it determines surface topography and stress dis-
tribution during sliding. To accurately predict plastic deformation in 
tribological contact scenarios, dislocation characteristics must be care-
fully considered, as dislocation glide is a primary mechanism driving 
plastic deformation.

Main dislocation processes induced by tribological loading include 
dislocation transport phenomena, where dislocations are retained
within the stress field beneath the moving asperity and move along with 
the sliding motions, as demonstrated by [2] using discrete dislocation 
dynamic (DDD) simulations. Additionally, the formation of one or 
more dislocation trace lines (DTLs) parallel to the sliding direction, 
representing accumulated dislocation densities at specific depths, in-
dicates discrete crystal rotation changes. And the discontinuities in 
crystal orientations further result in the formation of sub-grains. This 
phenomenon has been widely observed in experimental studies [5–7].

A similar loading scenario is the indentation loading. At the scale 
of single crystalline materials, existing modeling approaches include 
continuum crystal plasticity models [8–11], DDD [2–4,12], and molec-
ular dynamics (MD) [13–17]. The main challenge in predicting material 

∗ Corresponding author at: Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Karlsruhe, Germany.
E-mail address: katrin.schulz@kit.edu (K. Schulz).

response under tribological contact using continuum crystal plastic-
ity methods lies in their assumption that plastic strain occurs only 
when the applied stress exceeds a threshold. These methods neglect 
the detailed motion and dynamics of dislocations. [2] points out that 
the continuum approaches fail to effectively account for dislocation 
transport. Likewise, [3] notes that a surface pile-up, the result of 
plastic deformation under tribology loading, strongly depends on the 
crystal orientation. However, standard crystal plasticity methods are 
less sensitive to crystallographic effects and tend to underestimate 
pile-ups compared to discrete simulations. This limitation arises from 
the coarse-graining process, which reduces the localization of plastic 
mechanisms compared to discrete level simulations. However, another 
challenge arises in discrete-level simulations, which often simplify 
tribological contact using superposed analytical solutions, such as the 
Green’s function method [18]. These models typically assume purely 
elastic deformation and idealized geometries. For instance, Hamilton’s 
solution [19] predicts stress fields for a spherical surface sliding against 
a semi-infinite plane, resulting in a circular contact area. However, such 
models neglect plastic deformation and changes in surface geometry 
during sliding, leading to inaccuracies in stress field predictions once 
plastic deformation occurs. Additionally, as highlighted in [4], elastic 
models often estimate that under small loads, the true contact area 
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Nomenclature

𝜷el, 𝜷pl Elastic and plastic part of displacement 
gradient

𝜿s, 𝜅sscrew, 𝜅sedge Vector of the GND density and its screw 
and edge component on slip system s

𝜿s⊥ Orthogonal vector of the GND density of 
slip system s

𝝈 Cauchy stress tensor
𝜺tot, 𝜺el, 𝜺pl Total, elastic and plastic strain
𝒇B Body force
𝒏𝜕B The surface normal of the domain 𝜕B
𝒕S Prescribed surface traction (Neumann 

boundary condition)
𝒕N, 𝒕F Normal and tangential surface traction
𝒖 Displacement field
𝒖D Prescribed displacement (Dirichlet bound-

ary condition)
𝓁elem Element size
𝛾s Plastic slip of slip system s
𝛤𝑐 The domain for the contact surface
𝜆(𝓁)𝛼𝜙 , 𝐊(𝓁)

𝜙 The 𝓁th eigenvalue and its correspond-
ing eigenvector with the sign 𝛼 along the 
direction 𝜙

(

𝐅∗𝛼
𝑖
)

𝜙 Numerical flux with the sign 𝛼 in element 𝑖
along the direction 𝜙

C Anisotropic elasticity tensor
𝐀s Dislocation alignment tensor of slip system 

s
𝐂indent, Rindent The center coordinate and radius of the 

indenter
𝐉𝜙 The Jacobian matrix split along the direc-

tion 𝜙
𝐌s Schmidt tensor
𝐍f The face outward normal for face of 

element located at (𝑖, 𝑗, 𝑘) for face f
𝐐𝑖 The unknown vector for CDD PDEs 

(
[

𝜌s,𝜿s ⋅ 𝐥s,𝜿s ⋅ 𝐝s, qs
]𝑇 ) in element 𝑖

𝐱projected The projected point on the indenter for 
node 𝐱

Fapplied The applied force on the indenter
G(𝐱) The gap function for node 𝐱
K𝑖𝑗 , 𝛼𝑖𝑗 Lattice curvature and dislocation (Nye’s) 

tensor
Lstroke The stroke length of sliding
qs Dislocation curvature density of slip system 

s
vslid The sliding speed of indenter

is much smaller than the nominal contact area, with contact pressure 
significantly exceeding the nominal pressure.

In this study, we introduce a dislocation-based crystal plasticity 
model based on the continuum dislocation dynamics (CDD) approach, 
embedded into a numerical efficient simulation framework to ana-
lyze macro- and micro-scale material behavior considering tribological 
contact mechanics. To enhance numerical stability, we derived a nu-
merical scheme using the flux vector splitting method for solving 
CDD problems. An implicit coupling mechanism was implemented, 
enabling larger simulation time steps and accurately capturing the 
influence of dislocation evolution on plastic deformation. To model 
material responses under tribological contact conditions, we introduced 
2 
𝜇, 𝜈 Shear modulus and Poisson’s ratio
𝜇f riction Coulomb friction coefficient
𝜔0 Penalty parameter
𝜕BD, 𝜕BN Domains applied Dirichlet and Neumann 

boundary condition
𝜌s Mobile dislocation density on slip system s
𝜌sSSD Statistically stored dislocation density on 

slip system s
𝜏s The effective resolved shear stress of slip 

system s
𝜏sext, 𝜏sint Resolved shear stress due to external load-

ing and internal interaction on slip system 
s

𝜏smf, 𝜏sb Mean field stress and back stress on slip 
system s

𝜏sy The yield stress of slip system s
𝐛s, bs Burger’s vector and its length of slip system 

s
𝐝indent Sliding direction of the indenter
B Drag coefficient of the velocity law
L𝑥, L𝑦, L𝑧 𝑥, 𝑦, and 𝑧 dimension of the material
Mindent The iteration scaling factor for contact 

search
vs Isotropic dislocation velocity on slip system 

s
𝜑𝑥, 𝜑𝑦, 𝜑𝑧 Crystal rotation around the 𝑥−(SD), 

𝑦−(ND), and 𝑧−directions
𝜉force, 𝜉y Iteration tolerance for macro scale force 

balance and implicit coupling
𝜉indent Iteration tolerance for the force balance on 

the indenter
{𝐝s, 𝐥s,𝐦s} The orthonormal basis of slip system s
𝑎gs Interaction parameters for latent hardening 

between slip systems s and g
𝐷′ Material parameter for 𝜏sb
𝑇 , ▵𝑇 Time and time step size for the macro time 

series
𝑡, ▵𝑡 Time and time step size for the micro time 

series
N, M Discretization number of macro and micro 

time series

a penalty contact method with a Neumann boundary condition. We 
show that this approach effectively bridges the gap between macro- 
and micro-scale behaviors in tribological contact mechanics. Our model 
successfully simulates the accumulation of geometrically necessary dis-
location (GND) densities beneath the indented surface, aligning with 
the locations of DTLs observed in experiments. It also captures dislo-
cation transport phenomena and the plastic deformation induced by 
microstructural evolution under both symmetrical and asymmetrical 
crystal orientations.

2. Methodology

In this section, we introduce the dislocation-based crystal plasticity 
formulation using CDD theory. We outline the numerical scheme with a 
focus on deriving numerical fluxes for the partial differential equations 
in a CDD problem and the implicit coupling between macro- and 
micro-scales. Additionally, we detail the boundary conditions applied 
to model tribological contact, also the material parameters and system 
setup used in this study. The plasticity model is implemented using 
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the M++ library [20], a parallel finite element software optimized for 
high-performance computing environments.

2.1. Fundamental of continuum dislocation dynamic based crystal plasticity 
model

We decompose the deformation gradient tensor (D𝒖) into an elastic 
(𝜷el) and a plastic (𝜷pl) component as 

D𝒖 = 𝜷el + 𝜷pl. (1)

Here, 𝒖 denotes the displacement field. The total infinitesimal strain 
𝜺tot is defined as 𝜺tot = sym(D𝒖), where the elastic strain 𝜺el is 𝜺el =
sym(𝜷el), and the plastic strain 𝜺pl is 𝜺pl = sym(𝜷pl). The macro force 
equilibrium equation with the body force 𝒇B is expressed as 
−∇ ⋅ 𝝈 = 𝒇B, (2)

where 𝝈 represents the Cauchy stress tensor, given by 𝝈 = C
[

𝜺tot − 𝜺pl
]

, 
and C is the anisotropic elasticity tensor. The boundary conditions 
necessary for resolving Eq.  (2) include the Dirichlet boundary condition 
(Eq.  (3a)) for prescribed displacement field 𝒖D on 𝜕BD and Neumann 
boundary condition (Eq.  (3b)) for prescribed surface traction 𝒕S on 𝜕BN

𝒖 = 𝒖D  on 𝜕BD (3a)

𝝈 ⋅ 𝒏𝜕B = 𝒕S  on 𝜕BN, (3b)

where 𝒏𝜕B is the surface normal of the domain 𝜕B. The plastic strain 
𝜺pl can be determined by calculating 𝜷pl based on the microstructure 
evolution. The plastic distortion tensor 𝜷pl is obtained by summing the 
plastic slip, 𝛾s of a slip system s, across all slip systems 

𝜷pl =
𝑁
∑

s=1
𝛾s𝐌s (4)

where 𝐌s is the Schmidt tensor, 𝐌s = 𝐝s ⊗ 𝐦s. In this context, the 
orientations of the slip systems are defined by the orthonormal basis 
{𝐝s, 𝐥s,𝐦s} based on the face-centered cubic (FCC) crystal structure, 
where 𝐦s is the slip plane normal and 𝐝s = 1

bs 𝐛
s is the slip direction. 

Here, 𝐛s is the Burger’s vector with length bs, and 𝐥s = 𝐦s×𝐝s is the line 
direction. The plastic slip 𝛾s arises from dislocation motion on the slip 
system s, linking dislocation motion to plastic deformation. According 
to Orowan’s equation, the plastic slip rate 𝜕t𝛾s can be calculated by the 
following equation 
𝜕t𝛾

s = vsbs𝜌s, (5)

where vs is the isotropic dislocation velocity, and 𝜌s is the mobile 
dislocation density on slip system s. The mobile dislocation density 𝜌s
consists of the statistically stored dislocation (SSD) density 𝜌sSSD and the 
GND density 
𝜌s = |𝜿s| + 𝜌sSSD, (6)

where 𝜿s = 𝜅sscrew𝐝
s + 𝜅sedge𝐥

s denotes the vector of the GND density. 
Based on the CDD formulation in [21], the evolution of 𝜌s, 𝜿s, and the 
dislocation curvature density qs is governed by the following PDEs 
𝜕𝑡𝜌

s = −∇ ⋅ (vs𝜿s⊥) + v
sqs with 𝜿s⊥ = 𝜿s ×𝒎s, (7a)

𝜕𝑡𝜿s = ∇ × (𝜌svs𝒎s), (7b)

𝜕𝑡qs = −∇ ⋅
(

qs

𝜌s
𝜿s⊥v

s + 𝐀s∇vs
)

. (7c)

Modeling the evolution of qs, we employ the closure assumptions 
according to [22], with the dislocation alignment tensor 𝐀s given by 

𝐀s = 1
2|𝜿s|2

((

𝜌s + |𝜿s|
)

𝜿s ⊗ 𝜿s +
(

𝜌s − |𝜿s|
)

𝜿s⊥ ⊗ 𝜿s⊥
)

(8)

(following the notation in [23]). The dislocation curvature density, 
derived from high-dimensional CDD theory [21], represents the sum 
3 
of the local curvatures of all dislocation lines contained within the 
volume.

To calculate vs on slip system s in Eqs. (5) and (7), a formulation for 
the velocity law is needed to characterize the relationship between the 
stress state and vs. Following [22], we assume a linear-viscous model 
of over-damped dislocation motion. Therefore, a linear dependency 
between the effective resolved shear stress 𝜏s and vs is applied if 𝜏s
exceeds the yield stress 𝜏sy on the slip system. The velocity law can be 
expressed as 

vs =
{

bs
B (|𝜏

s
| − 𝜏sy) sign(𝜏s) if |𝜏s| > 𝜏sy

0 if |𝜏s| ≤ 𝜏sy.
(9)

Here, B is the drag coefficient.
𝜏s can be expressed as the superposition of shear stress due to ex-

ternal loading 𝜏sext and internal shear stresses 𝜏sint of the microstructure

𝜏s = 𝜏sext + 𝜏sint. (10)

𝜏sext is the projection of 𝝈 on slip system s via the Schmidt law, 𝜏sext = 𝝈 ∶
𝐌s. The internal stress 𝜏sint = 𝜏sb+𝜏smf is divided into a long-range (mean 
field stress, 𝜏smf) and a short-range (back stress, 𝜏sb) component. 𝜏smf
is the stress induced by a mean-field approach to maintain geometric 
consistency across coarse-grained volumes, as described in [24]. For 
systems with strong gradients of plastic distortion, the model can be 
enhanced by introducing short-range correction stresses 𝜏sb as proposed 
by [25,26] as the back stress term, and it is given by 

𝜏sb =
𝜇bs

2𝜋(1 − 𝜈)
𝐷′

(∇𝜅sedge
𝜌sSSD

)

(11)

with 
𝐷′ = 0.0588𝓁elem

√

𝜅sedge𝑡𝑎𝑛
−1

(

𝓁elem
√

𝜅sedge
)

, (12)

where 𝓁elem is the size of an averaging volume, i.e. the size of an 
element. 𝜇 is the shear modulus and 𝜈 is the Poisson’s ratio.

The yield stress 𝜏sy incorporates Franciosi’s formulation to include 
latent hardening, accounting for hardening effects due to interactions 
among different slip systems [27]. This formulation uses a matrix 
of interaction parameters 𝑎gs, considering interactions in addition to 
Taylor-type hardening [28]. The expression for the individual yield 
stress 𝜏sy on slip system s is given by 

𝜏sy =
∑

g
𝜏ygs =

∑

g
𝑎gs𝜇bs

√

𝜌s, (13)

where 𝜏ygs represents the latent hardening from interactions between 
slip systems g and s. For FCC crystals, the matrix 𝑎gs includes six 
coefficients, reflecting different types of reactions such as Lomer locks, 
Hirth locks, and glissile junctions for forest interactions, along with self, 
coplanar, and collinear interactions.

2.2. Discretization scheme of the macro and micro problem

The model is divided into a macro and a micro problem. The macro 
problem involves solving the force equilibrium (Eq.  (2)), while the 
micro problem addresses the CDD problem (Eq.  (7)). These two scales 
are interconnected through the micro-state variable 𝛾s and the macro-
state variable vs using Orowan’s equation (Eq.  (5)) on each slip system 
s.

In the following, we describe the discretization scheme for both the 
macro and micro problems (Eq.  (2)) as well as the approximation of the 
system discretized using a typical semi-discrete approach. We consider 
the discretization process in two stages, first discretizing the PDEs only 
in space and then discretizing in time.

For the space discretization, the macro problem is discretized over 
the spatial domain using a conforming finite element method with La-
grange discretization [29] to retain the continuity of macroscopic field 
variables such as displacement, stress, strain, and dislocation velocity. 
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Then, the resulting semi-discrete system is discretized and solved using 
a nonlinear time integrator with the implicit Euler method [30].

The micro (CDD) problem, as shown in Eq.  (7), consists of a set of 
hyperbolic partial differential equations (PDEs) describing dislocation 
evolutions. Unlike the macro problem, the PDEs for the micro problem 
are firstly discretized over the spatial domain using the discontinuous 
Galerkin method [31,32] to retain mass conservation while resolving 
dislocation dynamics. The resulting system is then solved using a 
diagonal implicit Runge–Kutta scheme time integrator [33].

For the time discretization, the time series for the macroscopic 
problem is denoted as 𝑇 . This series consists of discrete time points 
𝑇  such that 𝑇 ∈

{

0,… , 𝑇n,… , 𝑇N
}

, where 𝑇n = n ⋅ ▵𝑇  and ▵𝑇  is the 
step size for the macro time series. For the microscopic problem, the 
time series is denoted as 𝑡. This series consists of discrete time points 𝑡
such that 𝑡 ∈ {

0,… , 𝑡m,… , 𝑡M
} within the span of one macro time step, 

where 𝑡m = m ⋅ ▵𝑡 and ▵𝑡 is the step size for the micro time series. To 
distinguish the micro time steps within each macro time step, we use 
the notation 𝑡nm = 𝑇n +m ⋅ ▵𝑡. This relationship can be represented as 
{

𝑇0, 𝑡
0
1, … , 𝑡0m, … , 𝑡0M = 𝑇1, … , 𝑡1𝑚, … , 𝑡1𝑀 = 𝑇2, … , 𝑇n, … , 𝑇N

}

. (14)

For both macro and micro problem, within each time step, the problems 
are approximated linearly. Each linear system is solved iteratively using 
the generalized minimal residual (GMRES) method [34].

We now describe the approximation system for the micro (CDD) 
problem. Following the derivation of [22,35], the evolution of the 
dislocation field variables in a single slip system s can be evaluated by 
resolving the PDEs of a CDD problem (Eq.  (7)) within one micro time 
step, the CDD problem for each slip system s can be written as 
𝜕t𝐐(𝑥, 𝑦, 𝑧, 𝑡) + ∇𝐅 (𝐐(𝑥, 𝑦, 𝑧, 𝑡)) = 𝐒 (𝐐(𝑥, 𝑦, 𝑧, 𝑡)) , (15)

where the unknown vector is 𝐐 =
[

𝜌s,𝜿s ⋅ 𝐥s,𝜿s ⋅ 𝐝s, qs
]𝑇 . The flux vector 

𝐅 (𝐐) and the source vector 𝐒 (𝐐) are both given as 

𝐅 (𝐐) =

⎡

⎢

⎢

⎢

⎢

⎣

vs𝜿s ⋅ 𝐥s − vs𝜿s ⋅ 𝐝s
vs𝜌s
−vs𝜌s

vsqs
𝜌s (−𝜿s ⋅ 𝐥s + 𝜿s ⋅ 𝐝s)

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐒 (𝐐) =

⎡

⎢

⎢

⎢

⎢

⎣

vsqs
0
0

𝐀s𝛥vs

⎤

⎥

⎥

⎥

⎥

⎦

. (16)

By decomposing the flux direction of Eq.  (15) into the components 
along 𝐝s and 𝐥s, we can rewrite Eq.  (15) as 
𝜕t𝐐 +

[

∇𝐥s𝐅 (𝐐)
]

𝐥s +
[

∇𝐝s𝐅 (𝐐)
]

𝐝s = 𝐒 (𝐐) , (17)

where ∇𝐥s𝐅 (𝐐) = ∇𝐅 (𝐐) ⋅ 𝐥s and ∇𝐝s𝐅 (𝐐) = ∇𝐅 (𝐐) ⋅ 𝐝s.
In the domain of a finite element cell 𝛺 with the boundary (faces) 

𝜕𝛺 of each cell, integration by parts yields the corresponding weak 
formulation 

∫𝛺
𝜕t𝐐𝛹 𝑑𝑉 +

∑

faces
∫𝜕𝛺

𝐍 ⋅ 𝐅∗ (𝐐)𝛹 𝑑𝐴 − ∫𝛺
𝐅 (𝐐) ∇𝛹 𝑑𝑉 = ∫𝛺

𝐒𝛹 𝑑𝑉 ,

(18)

where 𝛹 are smooth test functions with sufficient continuity, 𝐅∗ rep-
resents the numerical flux on 𝜕𝛺, 𝑉  and 𝐴 indicate the volume and 
surface area of cell 𝛺, and 𝐍 is the face normal on 𝜕𝛺.

We now describe the choice of the numerical flux functions 𝐅∗

required for the discontinuous Galerkin scheme to solve the PDEs of 
the CDD problem. The CDD problem can be re-written as a quasi-linear 
form as 

𝜕t𝐐 + 𝐉 (𝐐) ∇𝐐 = 𝐒 (𝐐) , 𝐉 (𝐐) =
𝜕𝐅 (𝐐)
𝜕𝐐

, (19)

where 𝐉 (𝐐) is the Jacobian matrix 

𝐉 (𝐐) =

⎡

⎢

⎢

⎢

⎢

0 vs −vs 0
vs 0 0 0
−vs 0 0 0
0 0 0 vs (−𝜿s ⋅ 𝐥s + 𝜿s ⋅ 𝐝s)

⎤

⎥

⎥

⎥

⎥

. (20)
⎣ 𝜌s ⎦

4 
By decomposing the quasi-linear form (Eq.  (19)) along the direc-
tions of 𝐝s and 𝐥s, we obtain the following expression 
𝜕t𝐐 + 𝐉𝐥s

(

𝐐𝐥s
) [

∇𝐥s
(

𝐐𝐥s
)]

+ 𝐉𝐝s
(

𝐐𝐝s
) [

∇𝐝s
(

𝐐𝐝s
)]

= 𝐒 (𝐐) , (21)

and

𝐉𝐥s =
⎡

⎢

⎢

⎢

⎣

0 vs 0
vs 0 0
0 0 vs

𝜌s (−𝜿
s ⋅ 𝐥s)

⎤

⎥

⎥

⎥

⎦

, 𝐉𝐝s =
⎡

⎢

⎢

⎢

⎣

0 −vs 0
−vs 0 0
0 0 vs

𝜌s (𝜿
s ⋅ 𝐝s)

⎤

⎥

⎥

⎥

⎦

,

𝐐𝐥s =
⎡

⎢

⎢

⎣

𝜌s

𝜿s ⋅ 𝐥s
qs

⎤

⎥

⎥

⎦

, 𝐐𝐝s =
⎡

⎢

⎢

⎣

𝜌s

𝜿s ⋅ 𝐝s
qs

⎤

⎥

⎥

⎦

. (22)

The eigenvalues of both 𝐉𝐥s  and 𝐉𝐝s  are denoted as 𝜆(𝓁)𝐥s  and 𝜆(𝓁)𝐝s

𝜆(1)𝐥s = vs
𝜌s

(

−𝜿s ⋅ 𝐥s
)

, 𝜆(1)𝐝s = vs
𝜌s

(

𝜿s ⋅ 𝐝s
)

, 𝜆(2)𝐥s = 𝜆(2)𝐝s = −vs,

𝜆(3)𝐥s = 𝜆(3)𝐝s = vs. (23)

The corresponding eigenvectors for the directions 𝐥s and 𝐝s are denoted 
as 𝐊(𝓁)

𝐥s  and 𝐊(𝓁)
𝐝s  respectively. They are

𝐊(1)
𝐥s =

⎛

⎜

⎜

⎝

0
0
1

⎞

⎟

⎟

⎠

, 𝐊(2)
𝐥s =

⎛

⎜

⎜

⎝

−1
1
0

⎞

⎟

⎟

⎠

, 𝐊(3)
𝐥s =

⎛

⎜

⎜

⎝

1
1
0

⎞

⎟

⎟

⎠

,

𝐊(1)
𝐝s =

⎛

⎜

⎜

⎝

0
0
1

⎞

⎟

⎟

⎠

, 𝐊(2)
𝐝s =

⎛

⎜

⎜

⎝

1
1
0

⎞

⎟

⎟

⎠

, 𝐊(3)
𝐝s =

⎛

⎜

⎜

⎝

−1
1
0

⎞

⎟

⎟

⎠

. (24)

We find that the CDD problem is a linearly degenerate system since for 
all 𝓁 along both 𝐥s and 𝐝s directions it holds 
∇𝜆(𝓁)𝜙 (𝐐) ⋅𝐊(𝓁)

𝜙 (𝐐) = 0, ∀𝐐 and 𝜙 = {𝐥s, 𝐝s}. (25)

This implies that the characteristic field of the CDD problem always 
results in a contact discontinuity, with no possibility of shock or rar-
efaction formation under any conditions. Consequently, the general 
solution can be obtained without the need to account for shock or 
rarefaction wave formations [36, Chapter 2.4].

After analyzing the characteristics of the flux, we proceed to derive 
the numerical flux 𝐅∗ for the CDD problem using an upwind numerical 
method. Note that this is positivity preserving which is an important 
physical property of the density evolution. The numerical flux on 
the faces 𝜕𝛺 of an element is computed based on the direction of 
information propagation within each cell. To determine the upwind 
flux direction, we apply the Flux Vector Splitting method as described 
in [36, Chapter 8]. This method simplifies the identification of up-
wind directions compared to Godunov-type methods, resulting in more 
straightforward scheme determining the flux direction. We demonstrate 
the flux direction centered on the cell located at (𝑖, 𝑗, 𝑘) across the six 
inner faces at 𝑖 ± 1

2 , 𝑗 ±
1
2 , and 𝑘 ± 1

2 , as depicted in Fig.  1.
For simplicity, we first showcase the flux direction along the 𝑥-

direction only, as shown in Fig.  1. The flux in the 𝑦- and 𝑧-directions can 
be determined analogously. We denote the 𝑥-direction net numerical 
flux originated within cell positioned at (𝑖, 𝑗, 𝑘) as 𝐅∗

𝑖 . We can first split 
𝐅∗
𝑖  into the positive and negative directions as detailed in [36], 

𝐅∗
𝑖 = 𝐅∗+

𝑖 + 𝐅∗−
𝑖 . (26)

Then we further decompose 𝐅∗+
𝑖  and 𝐅∗−

𝑖  along the directions of 𝐥s and 
𝐝s as Eq.  (21)
𝐅∗
𝑖 =

(

𝐅∗+
𝑖
)

𝐥s +
(

𝐅∗+
𝑖
)

𝐝s +
(

𝐅∗−
𝑖
)

𝐥s +
(

𝐅∗−
𝑖
)

𝐝s , (27)

where 
(

𝐅∗𝛼
𝑖
)

𝜙 = 𝐊𝜙𝛬
𝛼
𝜙𝐊

−1
𝜙 with 𝛼 = {+, −} and 𝜙 = {𝐥s, 𝐝s} . (28)

The eigenvector matrix 𝐊𝜙 = [𝐊(1)
𝜙 , 𝐊(2)

𝜙 , 𝐊(3)
𝜙 ], and 𝛬𝛼

𝜙 are the diagonal 
matrices of the positive (i.e., 𝜆(𝓁)+) and negative (i.e., 𝜆(𝓁)−) eigenvalues 
𝜙 𝜙
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Fig. 1. Illustration of flux splitting at the inner faces along the 𝑥-direction. The numerical flux is first split into positive (marked in red) and negative (marked in blue) components, 
then further decomposed along the line direction 𝐥s and the slip (Burger’s) direction 𝐝s. The contribution terms to the fluxes at the interfaces 𝑖 + 1

2
 and 𝑖 − 1

2
 are shown.
along the direction 𝜙, and is given by 

𝛬+
𝜙 =

⎡

⎢

⎢

⎢

⎣

𝜆(1)+𝜙 0 0
0 𝜆(2)+𝜙 0
0 0 𝜆(3)+𝜙

⎤

⎥

⎥

⎥

⎦

, 𝛬−
𝜙 =

⎡

⎢

⎢

⎢

⎣

𝜆(1)−𝜙 0 0
0 𝜆(2)−𝜙 0
0 0 𝜆(3)−𝜙

⎤

⎥

⎥

⎥

⎦

. (29)

For the full upwind flux, the eigenvalues are decomposed into four 
directions, combining positive/negative contributions and line/Burger’s 
directions, as follows 

𝜆(𝓁)𝜙 = 𝜆(𝓁)+𝜙 + 𝜆(𝓁)−𝜙 , 𝜙 = {𝐥s, 𝐝s} (30)

such that 𝜆(𝓁)+𝜙 ≥ 0 and 𝜆(𝓁)−𝜙 ≤ 0, and the definition for 𝜆(𝓁)+𝜙  and 𝜆(𝓁)−𝜙
are given by 

𝜆(𝓁)+𝜙 = 1
2
(𝜆(𝓁)𝜙 + |𝜆(𝓁)𝜙 |), 𝜆(𝓁)−𝜙 = 1

2
(𝜆(𝓁)𝜙 − |𝜆(𝓁)𝜙 |). (31)

As illustrated in Fig.  1, the numerical flux on face 𝑖 + 1
2  is contributed 

by the positive flux from cell at position 𝑖, denoted as 𝐅∗+
𝑖

(

𝐐𝑖
)

, and 
the negative flux from cell at position 𝑖 + 1, denoted as 𝐅∗−

𝑖+1
(

𝐐𝑖+1
)

. 
Therefore, the numerical flux on face 𝑖 + 1

2  is

𝐅∗
𝑖+ 1

2
= 𝐅∗+

𝑖
(

𝐐𝑖
)

+ 𝐅∗−
𝑖+1

(

𝐐𝑖+1
)

=
(

𝐅∗+
𝑖
)

𝐥s
(

𝐐𝑖
)

+
(

𝐅∗+
𝑖
)

𝐝s
(

𝐐𝑖
)

+
(

𝐅∗−
𝑖+1

)

𝐥s
(

𝐐𝑖+1
)

+
(

𝐅∗−
𝑖+1

)

𝐝s
(

𝐐𝑖+1
)

,

(32)

similarly, the numerical flux on face 𝑖 − 1
2  is

𝐅∗
𝑖− 1

2
= 𝐅∗+

𝑖−1
(

𝐐𝑖−1
)

+ 𝐅∗−
𝑖

(

𝐐𝑖
)

=
(

𝐅∗−
𝑖
)

𝐥s
(

𝐐𝑖
)

+
(

𝐅∗−
𝑖
)

𝐝s
(

𝐐𝑖
)

+
(

𝐅∗+
𝑖−1

)

𝐥s
(

𝐐𝑖−1
)

+
(

𝐅∗+
𝑖−1

)

𝐝s
(

𝐐𝑖−1
)

.

(33)

We now analyze the numerical flux in a fully three-dimensional setting. 
The geometric relationship between the target cell at (𝑖, 𝑗, 𝑘) and its 
neighboring cells is depicted in Fig.  2(a). Since there is no out-of-
plane dislocation movement, the three-dimensional flux problem can 
be simplified to the flux on a plane where the normal aligns with the 
slip plane normal, 𝐧s, shown as the plane in Fig.  2(a). The net numerical 
flux across the six inner faces (𝜕𝛺) of the cell positioned at (𝑖, 𝑗, 𝑘) is 
depicted in Fig.  2(b). As seen in this figure, the direction for splitting 
the numerical flux is determined by the face outward normal, 𝐍f, where 
f = {𝑖 + 1

2 , 𝑖 −
1
2 , 𝑗 +

1
2 , 𝑗 −

1
2 , 𝑘 + 1

2 , 𝑘 − 1
2 } and the directions of 𝐥s and 

𝐝s. This results in the numerical flux on each face being split into four 
components: combinations of positive/negative and line/Burger’s direc-
tions, as shown in Eq.  (27). Thus, for a hexahedron cell with six faces, 
the total numerical flux computation involves 24 terms. Consequently, 
5 
the second term in Eq.  (18) is split into 24 terms calculated based on 
the sign of velocity, 𝐍f, ls, and ds as
∑

face
∫𝜕𝛺

𝐍f ⋅ 𝐅∗ (𝐐)𝛹 d𝐴 = (34)

−
∑

f

{

|

|

|

|

|

(

𝐅∗sign
(

𝐥s⋅𝐍f
)

𝑖

)

𝐥s

(

𝐐𝑖
)

|

|

|

|

|

|𝐥s ⋅ 𝐍f|

+
|

|

|

|

|

(

𝐅∗sign
(

𝐝s⋅𝐍f
)

𝑖

)

𝐝s

(

𝐐𝑖
)

|

|

|

|

|

|𝐝s ⋅ 𝐍f|
}

+
∑

f+

{

|

|

|

|

|

(

𝐅∗sign
(

𝐥s⋅−𝐍f
)

f++ 1
2

)

𝐥s

(

𝐐f++ 1
2

)

|

|

|

|

|

|𝐥s ⋅ 𝐍f|

+
|

|

|

|

|

(

𝐅∗sign
(

𝐝s⋅−𝐍f
)

f++ 1
2

)

𝐝s

(

𝐐f++ 1
2

)

|

|

|

|

|

|𝐝s ⋅ 𝐍f|
}

+
∑

f−

{

|

|

|

|

|

(

𝐅∗sign
(

𝐥s⋅−𝐍f
)

f−− 1
2

)

𝐥s

(

𝐐f−− 1
2

)

|

|

|

|

|

|𝐥s ⋅ 𝐍f|

+
|

|

|

|

|

(

𝐅∗sign
(

𝐝s⋅−𝐍f
)

f−− 1
2

)

𝐝s

(

𝐐f−− 1
2

)

|

|

|

|

|

|𝐝s ⋅ 𝐍f|
}

,

where f+ = {𝑖 + 1
2 , 𝑗 +

1
2 , 𝑘 + 1

2 } and f
− = {𝑖 − 1

2 , 𝑗 −
1
2 , 𝑘 − 1

2 }.

2.3. Implicit coupling between the macro and micro problems

To couple the macro and the micro problem in our numerical 
scheme, we develop an implicit coupling method. This approach ad-
dresses the limitations of explicit coupling, which restricts the time 
step size and can lead to inaccuracies or divergence in extensive 
simulations [35]. By using implicit coupling, we can simulate larger 
deformations, such as those seen in tribological loading, with improved 
stability and accuracy.

The implicit-coupling algorithm is shown in Algorithm 1. At each 
macro time step 𝑇n with step size ▵𝑇 , the macro problem is solved using 
the implicit Euler method to compute the displacement field 𝒖. The 
solution 𝒖 for Eq.  (2) is considered converged when the internal force 
deviates from the external force imposed by the boundary conditions 
by no more than 𝜉force.

Using the resulting macro stress field, we proceed to solve the micro 
(CDD) problem at micro time steps 𝑡0m with step size ▵𝑡. For each slip 
system s, we first compute 𝜏s (Eq.  (10)) and 𝜏sy (Eq.  (13)) from the 
macro stress field. Based on these, vs (Eq.  (9)) is computed. Next, the 
dislocation evolution PDEs (Eq.  (7)) rates are solved using a diagonally 
implicit Runge–Kutta method, followed by updating the plastic slip (Eq. 
(5)). The 𝜏s and 𝜏sy are then recomputed to check for any overshoot 
beyond the yield surface. If overshooting occurs, the micro time step is 
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Fig. 2. Geometric relationship between the target cell at (𝑖, 𝑗, 𝑘) and its neighboring cells, highlighting the alignment of the slip plane, and their relationship to the line direction 
𝐥s, and the slip (Burgers) direction 𝐝s. (a) 3D representation of the target cell at (𝑖, 𝑗, 𝑘) and the slip plane, where the net numerical flux is plotted. (b) Visualization of the net 
numerical flux on the slip plane 𝐧s, with flux splitting determined by the face outward normal 𝐍f, the line direction 𝐥s, and the slip direction 𝐝s.
Fig. 3. Illustration of the correction process for overshooting outside the yield surface in relation to dislocation dynamics over each micro time step.
repeated (i.e., 𝑡2m, . . . , 𝑡nm) until 𝜏s returns to the yield surface 𝜏sy within 
a tolerance 𝜉y, or the micro time series reaches the next macro time 
step.

The computation in the micro time series is served as a micro 
iteration for the implicit coupling algorithm. And for each micro time 
step calculation, there are three mechanisms narrowing the gap be-
tween 𝜏s and 𝜏sy, as shown in Fig.  3. First, plastic slip increases after 
each micro time step ▵𝑡, driven by dislocation kinematics. The slip 
increment, calculated using Eq.  (5), represents the swept area by dislo-
cations within ▵𝑡, reducing the stress state via microstructure relaxation 
and mapping 𝜏s back onto the yield surface (blue arrow in Fig.  3). 
Second, isotropic hardening arises from microstructural evolution and 
dislocation reactions across slip systems (latent hardening) within ▵𝑡, 
expanding the yield surface via a Taylor-type model in the Franciosi’s 
formulation (green arrow in Fig.  3). Finally, kinematic hardening re-
sults from dislocation heterogeneity under the numerical discretization 
scale, shifting the yield surface (red arrow in Fig.  3).

2.4. Boundary condition for simulating contact problems

To simulate tribological loading, we model a force-controlled con-
tact problem by applying Neumann boundary conditions along with 
a penalty contact criterion. This approach calculates the interaction 
between the deformable material and a rigid, analytically defined 
spherical indenter. The system setup is illustrated in Fig.  4(a). The 
6 
indenter is characterized by its center coordinates, 𝐂indent, and radius, 
Rindent. The indented material is a rectangular box with dimensions L𝑥, 
L𝑦, and L𝑧, with the contact surface, 𝛤𝑐 , highlighted in yellow in Fig. 
4(a).

The iterative algorithm for computing contact interactions is out-
lined in Algorithm 2. At the beginning of each macro time step 𝑇n, 
initialization is performed: the applied force, Fapplied, is predefined as a 
function of 𝑇n, while the penalty force, Fpenalty, is initially set to zero. 
And the net force applied on the indenter, Fnet = Fpenalty − Fapplied.

After initialization, the iteration proceeds in three main steps: up-
dating the indenter’s position, evaluating the gap function G(𝐱) at each 
node 𝐱 on 𝛤𝑐 , and updating Fpenalty and Fnet. This process is repeated 
until Fnet falls within the tolerance threshold, 𝜉indent.

To update the indenter’s position, the net force on the indenter, 
Fnet = Fpenalty − Fapplied, is first computed. 𝐂indent is then updated as 

𝐂indent ∶= 𝐂indent +
Fnet
Mindent

, (35)

where Mindent is the iteration scaling factor for contact search.
Evaluating G(𝐱) at each node 𝐱 on 𝛤𝑐 consists of two steps, as 

illustrated in Fig.  4(b). First, the projected point 𝐱projected, representing 
the projection of 𝐱 onto the indenter, is computed. Then, the penetra-
tion is assessed. Penetration occurs at 𝐱 if the inner product between 
(

𝐱 − 𝐱
) and (𝐂 − 𝐱

) is positive, indicating that the 
projected indent projected
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Algorithm 1 Algorithm for the implicit-coupled elastoplasticity model.
Input:

Dirichlet boundary condition 𝒖D or the Neumann boundary condition 𝒕S at time 𝑇n for Equation (3) for each n ≦ N to solve the macro 
problem.

Input:
Initial condition for [𝜌s,𝜿s ⋅ ls,𝜿s ⋅ ds, qs] are specified for all slip systems s and all elements at 𝑇 = 0 to solve the micro problem.

1:
for 𝑛 = 0,… ,N do

2:  
Initialize macro problem:
 𝑇 ⇐ n▵𝑇 , 𝑡 ⇐ 𝑡n1 , and 𝒖 ⇐ 𝒖D(𝑇 ) or 𝝈 ⋅ 𝒏𝜕B ⇐ 𝒕S(𝑇 ), m = 1.

3:  repeat
4:  

Update plastic deformation based on the plastic slip of each slip system:
 𝜺pl(𝑇 ) ⇐ sym

(

∑12
s=1 𝛾

s (𝑡)𝐌s
)

.
5:  

Solve macro problem for 𝒖 to achieve force balance (implicit Euler):
 5.1 update stress state 𝝈(𝑇 ) ⇐ C

[

𝜺tot(𝑇 ) − 𝜺pl(𝑇 )
]

.
 5.2 find 𝒖 that satisfies ‖𝒇B + ∇𝝈(𝑇 )‖ ≤ 𝜉force (Equation (2)).

6:  
for all slip system s do

7:  
Update dislocation velocity:
 7.1 calculate 𝜏s from Equation (10) and 𝜏sy from Equation (13).
 7.2 if |𝜏s| > 𝜏sy
 vs(𝑡) ⇐ bs

B (|𝜏
s
| − 𝜏sy) sign(𝜏s)

  else
 vs(𝑡) ⇐ 0.

8:  
if vs(𝑡) ≠ 0 then

9:  
Solve micro (CDD) problem (implicit RK):
  compute 𝜕𝑡𝜌s, 𝜕𝑡𝜿s, and 𝜕𝑡qs by solving Equation (7).

10:  
Update microstructure:
 𝜌s(𝑡) ⇐ 𝜌s(𝑡old) + 𝜕𝑡𝜌s ⋅ ▵𝑡, 𝜿s(𝑡) ⇐ 𝜿s(𝑡old) + 𝜕𝑡𝜿s ⋅ ▵𝑡, qs(𝑡) ⇐ qs(𝑡old) + 𝜕𝑡qs ⋅ ▵𝑡

11:  
Evaluate plastic slip:
 𝜕𝑡𝛾s(𝑡) ⇐ vs(𝑡)bs𝜌s(𝑡) (Equation (5))

12:  
Evaluate resolved shear stress:
  update 𝜏s from Equation (10) and 𝜏sy from Equation (13). 

13:  
𝑡old = 𝑡 and m ∶= m + 1

14:  
until max(|𝜏s − 𝜏sy|) ≤ 𝜉y or m = M

15:  n ∶= n + 1
Output:

The displacement field 𝒖 at each time step 𝑇  influenced by external loading and microstructure evolution.
Output:

Dislocation densities evolution [𝜌s,𝜿s ⋅ ls,𝜿s ⋅ ds, qs] for all slip systems s at each time step 𝑡.
angle between the two vectors is less than 90◦. In this case, G(𝐱) is 
defined as 

G(𝐱) = 𝐱 − 𝐱projected. (36)

If the inner product is zero or negative, penetration does not occur. We 
then set G(𝐱) to be a zero vector.

Once the penetration criterion has been evaluated for all nodes on 
𝛤𝑐 , the penalty force Fpenalty is updated as the sum of the gap function 
over 𝛤𝑐 , weighted by the penalty parameter 𝜔0, such that 

Fpenalty =
∑

𝛤𝑐

𝜔0G(𝐱). (37)

In the end, we update the Fnet on the indentaer as the difference 
between Fapplied and Fpenalty. If Fnet falls within a tolerance 𝜉indent, as 
illustrated in Fig.  4(c), the Neumann boundary condition (Eq.  (3b)) is 
updated as 

𝝈 ⋅ 𝒏 = 𝒕 = −𝜔 G(𝐱), (38)
𝜕B N 0

7 
where 𝒕N denoted the normal traction, which is always normal to the 
indenter surface. Then we start to solve the macro problem (as shown 
in Step 3 in Algorithm 1).

If Fnet does not fall within a tolerance 𝜉indent, the indenter’s position 
is further updated, and the process is repeated until the tolerance level 
𝜉indent is reached. As a result, the applied force Fapplied is distributed 
onto the material as a Neumann boundary condition, while the force 
exerted on the indenter is simultaneously balanced by the penalty 
force. To demonstrate the numerical stability, a convergence test for 
the contact boundary condition has been conducted, as detailed in
Appendix  A.2.

2.5. Boundary condition for simulating tribological problems

The boundary conditions for simulating a tribological contact prob-
lem can be assumed the same as described in Section 2.4, with the 
center of the indenter, 𝐂 , slides along the 𝑥-direction at a speed of 
indent
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Fig. 4. Contact boundary condition. (a) 3D geometry representation of the material with an indenter contacting at the top surface 𝛤𝑐 . (b) Illustration of the penetration condition, 
introducing a gap function G(𝐱) between the indenter and 𝛤𝑐 . (c) Upon achieving convergence, the penalty force Fpenalty balances with the applied force Fapplied determining the 
equilibrium position of the indenter and allowing the Neumann boundary 𝛤𝑐 to be updated using the value of Fpenalty.
Algorithm 2 Algorithm using Neumann boundary condition combined with a penalty contact criterion.
Input:

𝑇 , Fapplied(𝑇 ), Cindent(𝑇 ).
1:
Initialize contact module:
 Fapplied ⇐ Fapplied(𝑇 ), Cindent ⇐ Cindent(𝑇 ), Fpenalty ⇐ 0, Fnet ⇐ Fpenalty − Fapplied

2: repeat
3:  

Update the position of the indenter:
 Cindent ⇐ Cindent +

Fnet
Mindent

4:  
for all 𝐱 ∈ 𝛤𝑐 do

5:  
Evaluate G(𝐱):
 5.1 calculate the projected point 𝐱projected ⇐ R𝑖𝑛𝑑𝑒𝑛𝑡 ⋅

𝐱−Cindent
‖

‖

𝐱−Cindent‖‖
+ Cindent

 5.2 if (𝐱 − 𝐱projected
)

⋅
(

Cindent − 𝐱projected
)

> 0
  penetration occur, G(𝐱) ⇐ 𝐱 − 𝐱projected
  else
  penetration not occur, G(𝐱) ⇐ 0

6:  
Update Fpenalty and Fnet for the indenter:
 Fpenalty ⇐

∑

𝛤𝑐
𝜔0G(𝐱) for all 𝐱 on 𝛤𝑐

 Fnet = Fpenalty − Fapplied
7:
until |Fnet | ≤ 𝜉indent

8:
Update the Neumann boundary condition:
 𝒕S ⇐ 𝒕N = −𝜔0G(𝐱)

Output:
The Neumann boundary condition induced by contact and continue on Step 3 in Algorithm 1.
vslid. Accordingly, 𝐂indent is initialized as 𝐂indent ∶= 𝐂indent +▵xindent at 
the beginning of each macro time step 𝑇n. 

▵xindent =
(

vslid▵𝑇
)

𝐝indent, (39)

where 𝐝indent is the sliding direction of the indenter it is defined as 

𝐝indent =
⎧

⎪

⎨

⎪

(1, 0, 0) , vslid𝑇
Lstroke

≡ 0 (mod 2)

(−1, 0, 0) , vslid𝑇 ≡ 1 (mod 2)
(40)
⎩

Lstroke

8 
Lstroke is the stroke length of sliding. To model frictional forces, a 
frictional traction 𝒕F is superposed on the normal traction 𝒕N calculated 
in Eq.  (38). A Coulomb friction model is employed to compute 𝒕F, 
introducing a tangential traction proportional to 𝒕N, scaled by the 
friction coefficient 𝜇f riction.

The direction of 𝒕F is tangential to the surface normal of the indenter 
and depends on the sliding direction, making it path-dependent. Specif-
ically, the direction of 𝒕F is defined as the inverse of the projection of 
𝐝indent onto the plane orthogonal to 𝒕N. Therefore, 𝒕F is expressed as 

𝒕F = −𝜇f riction|𝒕N|
[

𝐝indent −
(

𝐝indent ⋅
𝒕N

)

𝒕N
]

. (41)

|𝒕N| |𝒕N|
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Fig. 5. Simulation setup for a tribological problem. Black arrows indicate the loading 
and sliding direction of the indenter under global coordinate, red arrows represent the 
crystal orientation of the material, and green arrows denote the material dimensions. 
ND refers to the crystal normal direction aligned with the global loading direction, and 
SD refers to the crystal direction aligned with the global sliding direction.

To sum up, in order to simulate tribological loading together with 
the effect of frictional force, the Neumann boundary condition
(Eq.  (3b)) on the material is updated as 
𝝈 ⋅ 𝒏𝜕B = 𝒕N + 𝒕F, (42)

where 𝒕N is the same as Eq.  (38) induced by Fapplied, and 𝒕F is calculated 
by Eq.  (41) resulting from both 𝒕N and the sliding direction.

2.6. System setup simulating a tribological problem

A detailed overview on material parameters and numerical param-
eters used in the simulations is listed in Table  3.

We apply the tribological contact boundary condition on a sin-
gle crystalline copper sample. The material parameters include the 
isotropic elastic constants 𝜇 = 40GPa and 𝜈 = 0.367 and the anisotropic 
elastic constants C1111 = 168GPa, C1122 = 121GPa, and C2323 = 75GPa. 
For the micro problem, the drag coefficient B = 5 × 10−5 sPa is used 
as specified in Eq.  (9). The coefficients of the latent hardening matrix 
used in Eq.  (13) follow the parameters in [37] and are listed in Table 
3.

The simulation setup for the considered tribological system is de-
picted in Fig.  5. For this simulation, the indenter radius Rindent is set to 
20 μm with an initial position 𝐂indent = (9, 26, 9) μm. The applied force 
remains constant throughout the sliding process, Fapplied = 1mN. The 
stroke length Lstroke is 6 μm, and the sliding speed vslid is 15mm∕s. The 
material dimensions are L𝑥 × L𝑦 × L𝑧 = 18 × 6 × 18 μm, with an initial 
mobile dislocation density 𝜌 = 1μm−2 across all 12 slip systems. The 
selected loading and material parameters result in a Hertzian contact 
radius 0.5 μm, an elastic imprint depth of 0.3 μm, a maximum Hertzian 
pressure of 1.6GPa, and a maximum elastic shear stress of 522MPa.

The numerical parameters for the contact boundary condition are 
set as follows: The iteration scaling factor Mindent is chosen to be 26500, 
and the penalty parameter 𝜔0 is set to 5.0mN∕μm.

The force tolerance 𝜉indent is selected to be 1×10−6mN. The friction 
coefficient 𝜇f riction is chosen to be 0.25 following the experimental 
study [6].

The 12 slip systems of FCC crystals considered in this study are listed 
in Table  1. To investigate the effect of crystal orientation, the crystal 
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Table 1
Notation of the 12 FCC slip systems according to the Schmid & Boas notation.
 Slip system (s) A4 A5 A2 B3 B6 B2  
 Plane normal 𝐦s (111) (111) (111) (111) (111) (111) 
 Slip direction 𝐝s [011] [101] [110] [011] [101] [110] 
 Slip system (s) C4 C6 C1 D3 D5 D1  
 Plane normal 𝐦s (111) (111) (111) (111) (111) (111) 
 Slip direction 𝐝s [011] [101] [110] [011] [101] [110] 

Table 2
Crystal orientation setup for tribological problem.
 Setup name ND SD  
 111A (111) [211] 
 111B (111) [101] 
 010A (010) [100] 
 010B (010) [101] 

coordinate system is adjusted relative to the global coordinate system. 
In Fig.  5, red arrows indicate the crystal coordinate system, while black 
arrows represent the global coordinate system. In this context, ND 
refers to the crystal ‘normal’ direction aligned with the global loading 
direction, and SD refers to the crystal direction aligned with the global 
sliding direction.

The setups for four crystal orientations analyzed in this study are 
detailed in Table  2. The setup names are based on the normal direction 
of the indented surface, with subscripts A and B indicating different 
sliding directions. The associated Thompson tetrahedron corresponding 
to the crystal coordinates are shown in Fig.  6.

Regarding the numerical discretization scheme, hexahedral ele-
ments with dimensions of 0.125 × 0.0625 × 0.125 μm are applied for 
both the macro and micro problems simulating the tribological system 
based on the results from convergence tests in Appendices  A.1 and
A.2. We subdivide the dimensions of the element along the 𝑦-axis to 
achieve a better resolution along the loading direction for observing the 
dislocation features beneath the surface. The macro problem employs 
Lagrange discretization with polynomial degree equal to one, while 
the micro problem utilizes discontinuous Galerkin discretization with 
polynomial degree equal to zero (finite volume). The simulation results 
in this study represent sliding with varying stroke counts, as specified 
in Section 3. Data was extracted after the material was unloaded and 
had undergone adequate relaxation periods. For each stroke, we have 
discretized the macro time domain with N = 120 and micro time 
domain with M = 100. Both the macro- and micro-scale time steps 
were selected based on numerical stability constraints and convergence 
behavior observed in preliminary simulations. 𝜉force is chosen to be 
1 × 10−6mN and 𝜉y is chosen to be 1 × 10−6 GPa.

Regarding the computational resources used in this study, we uti-
lized 256 CPU cores and 46 GB peak memory usage calculating two 
sliding strokes within approximately 23 h.

3. Results

To validate the simulation results, we first compare the numerical 
predictions with experimental measurements using nano-indentation as 
a benchmark. We then present results under tribological loading. At 
the micro-scale, we examine dislocation accumulation, with a focus 
on the formation of dislocation trace lines and dislocation transport 
processes. At the macro-scale, we analyze plastic deformation, em-
phasizing both symmetrical and asymmetrical surface topographies 
along sliding grooves, the influence of frictional forces under varying 
crystallographic orientations, and the evolution of the contact area 
during sliding.
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Fig. 6. Thompson tetrahedron illustrating the four crystal orientation setups. The color coding represents the plane normal directions: gray for (111), blue for (111), green for 
(111), and pink for (111).
Table 3
Material, tribological loading, and numerical parameters used in the simulations.
 Parameter Value Parameter Value  
 Material parameters
 C1111, C1122, C2323 168, 121, 75 GPa [38] 𝜈 0.367 [39]  
 𝜇 40 GPa [39] bs (for all s) 0.286 nm [40] 
 B 5 × 10−5 sPa [41] 𝑎self 0.122 [37]  
 𝑎Hirth 0.07 [37] 𝑎Lomer 0.122 [37]  
 𝑎gliss 0.137 [37] 𝑎coll 0.625 [37]  
 𝜌s(𝑇 = 0) (for all s) 1 μm−2 𝜅sscrew(𝑇 = 0) (for all s) 0 μm−2  
 𝜅sedge(𝑇 = 0) (for all s) 0 μm−2 qs(𝑇 = 0) (for all s) 0 μm−3  
 L𝑥 × L𝑦 × L𝑧 18 × 6 × 18 μm  
 Tribological loading parameters
 Rindent 20 μm 𝐂indent(𝑇 = 0) (9, 26, 9) μm  
 Fapplied 1 mN vslid 15 mm/s  
 Lstroke 6 μm 𝜇f riction 0.25 [6]  
 Numerical parameters
 N, M 120, 100 𝜉force 1 × 10−6mN  
 𝜉y 1 × 10−6 GPa 𝜔0 5.0mN∕μm  
 Mindent 26500 𝜉indent 1 × 10−6mN  
3.1. Surface topographies induced by nano-indentation

In order to validate the proposed numerical model, we compare ex-
perimental observations for a nano-indentation test with the numerical 
results derived by the force-controlled numerical model for three high 
symmetric crystallographic planes: ND = (010), (110), and (111). In this 
test, Fapplied = 20 mN is applied with Rindent set to be 2 μm. The material 
dimensions are defined as L𝑥 × L𝑦 × L𝑧 = 18 × 8 × 18 μm with an initial 
dislocation density 𝜌s = 1μm−2 across all 12 slip systems.

Simulated surface topographies under nano-indentation are shown 
in Figs.  7(a), 7(b), and 7(c), with the color scale indicating displace-
ment along the loading (𝑦-) direction (red: out-of-plane, blue: in-plane). 
The results capture the well-known anisotropic pile-up patterns con-
sistent with crystallographic orientation – fourfold symmetry for ND 
= (010), twofold for ND = (110), and threefold for ND = (111) – 
in agreement with experimental observations [42–44]. The simulated 
profiles show good agreement with AFM measurements, e.g. by [43], 
as illustrated in Fig.  7(d) (ND = (001)), Fig.  7(e) (ND = (011)), and Fig. 
7(f) (ND = (111)).

Due to the symmetry of the Thompson tetrahedron, the simulated 
surface profiles for ND = (010) and ND = (110) are expected to 
correspond to those for ND = (001) and ND = (011), respectively. 
Although the crystallographic orientation affects different slip systems 
activated under the indentation, the slip geometries are crystallograph-
ically equivalent, leading to similar deformation patterns. The visible 
in-plane rotation of 45◦ in the profiles for the simulation for ND =
(010) and the experiment for ND = (001) is therefore expected for the 
considered orientations.

For ND = (111), the simulation result in Fig.  7(c) shows a three-
fold symmetry, whereas the experimental result in Fig.  7(f) exhibits a 
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six-fold pattern. One possible explanation is the influence of indenta-
tion conditions. In our simulations, a six-fold symmetry also appears 
under increased indentation load. Since the experimental study does 
not specify the indenter size or load, a deviation in these quantities 
is considered likely. However, the same three-fold symmetry as in 
the present simulation has been also observed before in experimental 
results in [45], which applied an indenter of similar size (3.4 μm
radius).

3.2. Dislocation trace line

We characterize the accumulation of GND densities at a specific 
depth beneath and parallel to the sliding surface in Fig.  8 under the 
setup 010A.

The subsurface dislocation density distributions for different num-
bers of sliding stokes is depicted in Fig.  8. Figs.  8(b) and 8(d) show the 
cross after the first sliding stroke and Figs.  8(c) and 8(e) show the re-
sults after the ninth sliding stroke. It can be observed that the evolution 
yields the formation of DTLs over one and multiple sliding process. The 
data extraction path used here and the considered cross-section for the 
figures are illustrated in Fig.  8(a).

Fig.  8(b) displays the distribution of the sum of the screw dislocation 
density component of the GND density (𝛴|𝜅s

screw| across the 12 slip 
systems), the edge dislocation density component of the GND density 
(𝛴|𝜅s

edge| across the 12 slip systems), and the norm of the GND density 
vector (𝛴|𝜿s

| across the 12 slip systems) after the first sliding stroke. 
Dislocation density is found to accumulate at a depth of approximately 
0.312 μm beneath the deformed surface, primarily contributed by the 
edge components. This GND accumulation we identify as a first DTL. 
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Fig. 7. Comparison of simulation and experimental results for nano-indentation test. Top-view of the indentation-induced surface topographies in comparison with experimentally 
observed data measured by [43]. (a), (b), and (c) are the simulation results while indenting on the planes with ND equals to (a) (010), (b) (110), and (c) (111). The black 
dash-dotted line circles indicate the size and position of the indenter. And (d), (e), and (f) are AFM image measured by [43] with ND equals to (a) (001), (b) (011), and (c) (111).
The cross-sectional view of the edge GNDs (𝛴|𝜅s
edge|) at the same time 

step is provided in Fig.  8(d), where the accumulation line beneath and 
parallel to the sliding surface at a certain depth is visible.

After the ninth sliding stroke, shown in Fig.  8(c), the boundary of 
the first DTL becomes less distinct and shifts deeper into the surface, 
now located at a depth of 0.403 μm. Additionally, a second dislocation 
accumulation is observed at a depth of 1.768 μm, which we identify as 
the second DTL. Both DTLs are primarily composed of edge compo-
nents. The cross-sectional view of the edge GNDs at the same time step 
is shown in Fig.  8(e).

3.3. Misorientation after the first sliding stroke

Crystal rotation is a key phenomenon in crystalline materials under 
tribological loading. In this section, alongside the formation of disloca-
tion trace lines discussed in Section 3.2, we present the misorientation 
distribution after the first sliding stroke, derived from the simulated 𝜿
field. The calculation procedure is detailed in Appendix  B.

The magnitude for the lattice misorientation angle around the 𝑥-
direction (SD), |𝜑𝑥|, is shown in Fig.  9(a); around the 𝑦-direction (ND), 
|𝜑𝑦| in Fig.  9(b); and around the 𝑧-direction, |𝜑𝑧| in Fig.  9(c). We can 
see the pronounced crystal rotation occurs at a depth of around 439 nm. 
The rotation around ND (|𝜑𝑥|) has the highest value of around 11◦.

Since the misorientation is computed from the GND distribution, 
we also present the sum of the screw component GNDs (𝛴|𝜅s

screw|) in 
Fig.  9(d). The results indicate that rotation around the 𝑥- (SD) and 𝑧-
directions is primarily driven by screw component GNDs, while rotation 
around the 𝑦-direction (ND) mainly arises from edge component GNDs, 
as shown in Fig.  8(d).
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3.4. Dislocation transport under tribological loading

We display the results for the dislocation transport process driven 
by the stress field induced by tribological loading. Using the 010A
setup, we analyze the cross-section on the 𝑥𝑧-plane (the ND-plane) at 
𝑦 = 5.457 μm, where the position of the first DTL after one sliding stroke 
has been found, as shown in Fig.  8(b).

Fig.  10 displays the evolution of dislocation density transport under 
tribological loading. We depict the screw (first column) and edge (sec-
ond column) dislocation density components separately for clarity. The 
results show how dislocations are transported following the indenter’s 
sliding motion (indicated by the white arrows). It can be observed 
that the edge component forms more stable dislocation accumulation 
directly beneath but a bit behind the indenter center (indicated by the 
yellow arrows) as well as in front of the contact area. In addition, 
the dislocation accumulation moves along with the sliding motion. 
Conversely, the screw dislocation density component tends to form 
an accumulation in front of the contact area rather than beneath the 
center, while also being transported with the indenter. Furthermore, 
both edge and screw components form dislocation accumulation along 
the sides of the sliding groove.

The results presented in Fig.  10 are depicted exemplarily for the 
010A setup. However, the computations have been done for all four 
setups as listed in Table  2. The different setups show qualitatively com-
parable dislocation density transport phenomenon and are for brevity 
not shown here for all setups in detail. Only the dominant dislocation 
density components beneath the indenter center, in front of the con-
tact area, and along the groove sides change according to the crystal 
orientation.
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Fig. 8. Dislocation distribution along the 𝑦-axis (ND). (a) defines the data extraction path of dislocation densities for (b) and (c) and cross-section for (d) and (e). (b) and (c) 
demonstrate different types of dislocation density distributions along the 𝑦-axis at 𝑇 = 400 μs and at 𝑇 = 3600 μs respectively. (d) and (e) are the distribution of edge component 
GND densities at the cross-section of 𝑥𝑦-plane at 𝑧 = 9 μm when 𝑇 = 400 μs and 𝑇 = 3600 μs respectively.
3.5. Surface topographies induced by tribological loading under various 
crystal orientations

To evaluate the sensitivity of crystal orientation to plastic deforma-
tion under tribological loading, we analyze the surface topographies 
for the four crystallographic setups listed in Table  2. The topographies 
are evaluated after one forward sliding stroke as shown in Fig.  11. 
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The data was extracted along the 𝑧-axis at the sliding groove’s center 
(𝑥 = 9μm, 𝑦 = 6μm), as illustrated in Fig.  11(a). Surface profiles for 
the setups with ND = (111) and (010) are presented in Figs.  11(b) and 
11(d), respectively.

For ND = (111), Fig.  11(b) shows the surface topographies of 
setups 111A and 111B. In setup 111A, the surface pile-up along the 
sliding groove is nearly symmetrical, whereas setup 111  produces an 
B
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Fig. 9. The magnitude of misorientation around (a) 𝑥- (SD), (b)𝑦- (ND), and (c)𝑧-directions after the first sliding stroke at the cross-section of 𝑥𝑦-plane at 𝑧 = 9 μm when 𝑇 = 400 μs. 
For comparison, (d) shows the distribution of the screw component GNDs, complementing the edge component distribution presented in Fig.  8(d).
asymmetrical surface topography, with material pile-up on the right-
hand side (facing toward the SD direction) and sink-in on the left-hand 
side. Additionally, the distribution of total plastic slip, 𝛴|𝛾s| across all 
12 slip systems, is shown for both setups. We find that setup 111B
exhibits an asymmetrical distribution of plastic slip as well. The side 
with higher values of plastic slip corresponds to the material pile-up, 
while the lower values of plastic slip correspond to the material sink-
in. Furthermore, a higher overall magnitude of plastic slip and deeper 
groove can be observed compared to the setup 111A.

Because plastic deformation results from dislocation motion with 
the velocity driven by resolved shear stress, in Fig.  11(c), we also show 
the distributions of the total resolved shear stress 𝛴|𝜏s| and dislocation 
velocity 𝛴|vs| across all 12 slip systems for both setups. The results are 
taken while the indenter was at 𝑥 = 9 μm and 𝑧 = 9 μm. Fig.  11(c) 
shows that also the 𝛴|𝜏s| and 𝛴|vs| distributions are influenced by 
the crystallographic characteristics. The distribution correlate with the 
plastic slip distribution 𝛴|𝛾s| shown in Fig.  11(b).

For ND = (010), the surface topographies for both setups, 010A and 
010B, exhibit symmetrical features as shown in Fig.  11(d). To further 
explore the impact of frictional force on plastic deformation under 
different sliding directions, we also plot the surface topographies of 
these setups under two frictional conditions: 𝜇f riction = 0 (no friction) 
and 𝜇friction = 0.25 (with friction) in Fig.  11(d). The result reveals that 
frictional force significantly influences the plastic deformation in setup 
010A, whereas its effect is less pronounced in setup 010B.

3.6. Tribological contact area evolution considering plastic deformation

To assess the evolution of the tribological contact area influenced 
by plastic deformation, we demonstrate the changes in the contact 
area over multiple sliding strokes for the crystallographic setup 010A, 
as depicted in Fig.  12. The color legend represents the total strain 
along the loading direction (𝑦-axis), with the contact area shown as the 
dark-blue region, corresponding to the highest strain along the loading 
direction.
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Considering the initial condition of a perfectly flat surface,
Fig.  12(a) shows a nearly circular contact shape after the first half 
stroke. As sliding continues, Figs.  12(b), 12(c), and 12(d) display the 
evolution results of the contact area after 1.5, 3.5, and 8.5 strokes, 
respectively. It can be observed in Fig.  12(a), that there is a gradual 
transition of the contact area from a circular to an oval shape as the 
number of strokes increases.

4. Discussion

4.1. The physical interpretation of the numerical flux derived using the flux 
vector splitting method

In this section, we discuss the physical interpretation of the nu-
merical flux formulation derived using the upwind scheme through 
the FVS method, as detailed in Section 2.2. The approach begins by 
decomposing the Jacobian matrix 𝐉 (𝐐) along 𝐥s and 𝐝s into 𝐉𝐥s  and 
𝐉𝐝s . We then solve the eigenvalue problem for 𝐉𝐥s  and 𝐉𝐝s  separately. 
A second splitting further divides 𝐉𝐥s  and 𝐉𝐝s  into positive and negative 
eigenvalue components. Thus, the approach splits the numerical flux 
on each face into four components, combining positive/negative and 
line/Burger’s directions, as shown in Eq.  (27). For a hexahedral cell 
with six faces, this method leads to a total of 24 terms for the flux 
computation, as detailed in Eq.  (34). The terms represent either posi-
tive/negative contributions or are zero, depending on the flux direction. 
This implies that the splitting simplifies the identification of inner face 
flux directions, particularly in cases involving complex propagation 
directions.

The numerical flux derived in this study builds upon the frame-
work for solving the eigenvalue problem, as detailed in [22,35]. By 
employing a flux splitting method to identify inner face flux directions, 
we achieve a stable numerical flux. A similar splitting concept has 
been introduced by [46]. However, instead of integrating the splitting 
process with solving the eigenvalue problem, [46] decomposes the 
dislocation density into positive/negative and edge/screw components. 
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Fig. 10. The screw and edge components of the dislocation density transported by the tribological loading given exemplarily for the setup 010A. The cross-section of observation 
is on the 𝑥𝑧-plane at 𝑦 = 5.457 μm. The white arrow denotes the sliding direction of the indenter, while the yellow arrow indicates the indenter’s center.
Therefore, the method is limited by not accounting for the curvature 
flux in the numerical flux derivation. It is remarked, that our approach 
presented, however, includes the same numerical flux as the method 
presented in [46] if the flux term for the curvature is neglected by 
omitting the third components of the Jacobian matrices, 𝐉  and 𝐉 .
𝐥s 𝐝s
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The numerical stability of dislocation transport computation using 
the numerical scheme derived is examined through two benchmark 
cases: the edge dislocation dipole wall separation (Appendix  A.3) and 
the dislocation loop expansion (Appendix  A.4). From the two cases, we 
show the derived numerical scheme demonstrates positivity preserving 
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Fig. 11. Results after completing one sliding stroke under various crystallographic setups. (a) illustrates the data extraction path for all measurements. (b) presents the simulation 
results for surface topography and the sum of plastic slip across all 12 slip systems for ND = (111). (c) shows the sum of resolved shear stress and dislocation velocity for ND 
= (111) while the indenter is at the position of 𝑥 = 9μm. (d) depicts the surface topography for ND = (010), comparing conditions with and without frictional force.
and numerical stability under both the condition with and without the 
effect of dislocation bow-out.

4.2. Dislocation trace line and crystal rotation in the subsurface area

Linear discontinuities, referred to as DTLs parallel to the surface, 
have been reported in experimental studies, see [5–7], for copper under 
tribological loading. These DTLs have been assumed to be dislocation 
lines with accumulated Burgers vector density, causing contrast varia-
tions and marking discrete crystal rotation changes. Our simulations 
show that this observation actually results from the excessive dislo-
cation density (𝜿) accumulation already visible after the first sliding 
stroke.

The presented model reveals that after one sliding stroke, GND 
densities accumulate beneath the surface, forming the first DTL mainly 
composed of edge components at a depth of 0.312 μm for setup 010A, 
as shown in Figs.  8(b) and 8(d). With an increased number of sliding 
strokes to 9, a second DTL appears at a depth of 1.768 μm, as shown 
in Figs.  8(c) and 8(e). Experimental studies have also been reported 
the first DTL at depths of several hundred nanometers, consistent with 
the GND accumulation in this study. However, the second DTL in 
the simulation appears at a greater depth than typical experimental 
observations are able to reveal, which usually report depths of less than 
1 μm. The deviation in predicting the position of the second DTL may 
stem from the absence of dynamic crystal rotation coupling with the 
loading process in the current model. As misorientation develops after 
15 
the first cycle (shown in Fig.  9), the resulting crystallographic mismatch 
could affect subsequent dislocation behavior, especially as the sliding 
stroke increase. Experimental studies have also found that the first DTL 
appear after merely one sliding stoke, and with increasing number of 
passes of stokes, a second DTL at a deeper position is visible [6]. It 
is also in consistent with the results we observed with our simulation 
model.

The presence of GND densities is consistent with lattice rotation, 
as described by [47]. Fig.  9 shows the misorientation distribution 
after the first sliding stroke, compared to the undeformed state. These 
results demonstrate that the proposed model captures the onset of 
crystal rotation, which marks the initiation of sub-grain formation 
under tribological loading. Experimental studies have shown that, over 
time, such rotations evolve into small-angle grain boundaries forming 
sub-grains in the subsurface region. However, in this work, crystal 
rotation is evaluated only through post-processing of the 𝜿 distribution 
so far. To improve accuracy of the model for crystal rotation and 
sub-grain evolution under repeated sliding, future model development 
should incorporate the dynamic coupling along the loading process and 
continuous lattice rotation.

Currently, no existing simulation model, whether discrete or con-
tinuum, can fully capture the formation of DTLs and sub-grains under 
tribological loading. This study demonstrates the potential of the pro-
posed dislocation-based crystal plasticity model to simulate the forma-
tion of these important microstructure features observed in tribology 
experiments. Future work may support experimental studies to better 
understand the formation of these features.
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Fig. 12. Evolution of the contact area under tribological loading over multiple strokes.
4.3. Dislocation transport and plastic deformation under tribological load-
ing

In Section 3.4, we illustrate the dislocation transport phenomenon 
driven by tribological loading, as simulated using the dislocation-based 
crystal plasticity model developed in this study. Similar phenomena 
have been observed in DDD simulations due to the stress field induced 
by an indenter’s sliding [2]. Notably, [2] also highlight that classical 
continuum mechanics or standard crystal plasticity methods cannot ef-
fectively consider the effect of dislocation transport and cannot account 
for plastic deformation associated with it. However, this phenomenon, 
characterized by large-scale dislocation glide, is critical as dislocation 
glide is a primary mechanism driving plastic deformation.

The plastic deformation caused by dislocation dynamics appears as 
material pile-up and sink-in along the sliding groove. [3] highlights 
that these behaviors depend heavily on crystal orientation. Standard 
crystal plasticity methods, however, are usually not sensitive to crys-
tallographic effects under tribological loading. They are often not able 
16 
to accurately predict dislocation pile-ups while discrete simulations are 
not able to capture that large length scales. In Fig.  11(c), we show 
that the dislocation velocity, driven by resolved shear stress, is strongly 
influenced by the crystal orientation. This observation affects plastic 
deformation and leads to the distinct symmetrical and asymmetrical 
surface topographies observed in setups 111A and 111B in Fig.  11(b).

The symmetric and asymmetric plastic deformation can be inter-
preted using the Thompson tetrahedron, as illustrated in Figs.  6(a) and
6(b) for 111A and 111B, respectively. Facing the positive SD direction, 
the 111B setup shows distinct slip system activity on both sides of the 
sliding groove: slip systems parallel to the surface (2 and 4) dominate 
on the left-hand side, while those nearly perpendicular to the surface 
(1 and 3) dominate on the right. Consequently, the crystallographic 
configuration of 111B results in deeper resolved shear stress influence 
perpendicular to the surface on the right and a broader spread of 
stress parallel to the surface on the left. This distribution leads to a 
similar pattern of dislocation velocity and plastic slip, and therefore 
plastic deformation on the surface under sliding. In contrast, the 111
A
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setup shows symmetrical dislocation mobility on both sides of the 
groove, producing a nearly symmetrical pattern in surface topography. 
Observing the Thompson tetrahedron for 010A and 010B in Figs.  6(c)
and 6(d), these setups also exhibit symmetrical dislocation mobility and 
result in symmetrical surface topography (Fig.  11(d)).

4.4. Influence of frictional force

In Fig.  11(d), the influence of a frictional force on the plastic 
deformation of the surface topographies is observed for the two setups 
with ND = (010) and different SD directions. As highlighted in [2], the 
frictional force increases the stress state and shifts the zone of maxi-
mum stress closer to the surface. Consequently, the stress distribution 
is altered due to frictional force. The result presented in Fig.  11(d) 
shows that the sensitivity of plastic deformation to frictional force is 
highly dependent on crystal orientation. This sensitivity indicates that 
further investigations of the role of the friction coefficient in dislocation 
transport and a systematic comparison for different crystal orientations 
should be conducted for a deeper understanding.

4.5. Tribological contact area evolution considering plastic deformation

In Section 3.6, we illustrate the evolution of the contact area over 
multiple sliding strokes under the symmetrical setup 010A. The transi-
tion from Figs.  12(a) to 12(b) shows a substantial transformation in the 
contact area shape, changing from circular to oval even after a single 
stroke under the conditions of this study. This transformation is driven 
by surface plastic deformation caused by dislocation motion during 
sliding, as captured by the simulation model (Fig.  10 in Section 3.4). 
After the first stroke, the deformable material’s surface topography is 
no longer flat (Section 3.5, blue solid curve in Fig.  11(d)). Instead, 
surface pile-ups form along the sliding groove’s sides due to plastic 
deformation, causing the indenter tip to contact the groove’s sides 
before its center, resulting in an elongated, oval-shaped contact area 
transverse to the groove.

Tribological contact characteristics are predominantly governed by 
plastic deformation [1–4]. This study highlights limitations in many 
approaches simplifying tribological contact using superposed analytical 
solutions, such as the Green’s function method [18]. These models 
often assume purely elastic deformation and idealized geometries. For 
instance, Hamilton’s solution [19] predicts stress fields for a spherical 
surface sliding against a semi-infinite plane, resulting in a circular 
contact area. However, such models neglect plastic deformation and 
surface geometry changes, leading to inaccuracies in stress fields once 
plastic deformation occurs. Moreover, elastic models often underesti-
mate the true contact area and overestimate contact pressure under 
small loads [4]. Experimental studies also struggle to measure true 
contact area and pressure in non-transparent materials, leaving data 
gaps. The proposed methodology addresses these limitations, providing 
a realistic model for macro- and micro-scale material behavior under 
tribological contact mechanics.

5. Conclusion

We present a computational simulation framework based on
dislocation-based crystal plasticity theory (CDD) to analyze macro- and 
micro-scale material behavior under tribological contact mechanics. To 
ensure numerical stability, we derived a numerical scheme using the 
flux vector splitting method to solve the CDD problem. An implicit 
coupling mechanism enables large simulation time steps and accurately 
captures dislocation evolution’s influence on plasticity. To model mate-
rial response under contact conditions, a penalty contact method with 
a Neumann boundary condition was introduced.

Using this model, we investigated material behavior under tribolog-
ical contact, leading to the following conclusions:
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• The proposed framework highlights and explains the formation 
of DTLs and their evolution beneath the surface, aligning with 
experimental observations of the position for the first DTL. This 
demonstrates its potential as a continuum crystal plasticity model 
for simulating microstructure feature in the subsurface region 
under tribological contact.

• The misorientation distribution after the first sliding stroke
demonstrates the model’s ability to predict the onset of sub-
grain formation. However, dynamic coupling with lattice rotation 
during loading is needed for improved predictions under repeated 
cycles.

• The continuum model allows for explicit simulation of dislocation 
transport phenomena, a key mechanism for understanding plastic 
deformation under tribological loading. This has been realized 
on that length scale for the first time by the continuum model, 
in contrast to previous studies that were restricted to smaller 
scales applying DDD and MD simulations. By accounting for the 
effects of crystal orientation on resolved shear stress, dislocation 
velocity, and plastic slip, the model predicts both symmetrical and 
asymmetrical dislocation mobility and plastic deformation. This 
framework provides a methodology for analyzing material behav-
iors under tribological contact, including dislocation features and 
material pile-up and sink-in along sliding grooves under different 
crystal orientations, bridging the gap between continuum and 
discrete approaches.

• The sensitivity of plastic deformation to frictional force varies 
significantly with crystal orientation.

• The simulation methodology overcomes the limitations of adapt-
ing traditional elastic and idealized analytical solutions by accu-
rately capturing the evolution of contact area and stress states 
influenced by plastic deformation at each time step, providing 
a more realistic and reliable approach for analyzing tribological 
contact mechanics, especially in a larger deformation regime.

Although the present study is purely numerical, the proposed simu-
lation method provides a valuable foundation for connecting mesoscale 
simulations with experimental observations. It enables detailed investi-
gation of subsurface processes in crystalline materials under tribologi-
cal loading and offers a pathway for future validation. The method can 
assist in interpreting experimental findings related to microstructural 
features such as dislocation trace lines, sub-grain structures, and dislo-
cation evolution under repeated loading. It also supports the analysis 
of macroscopic characteristics like surface topography, as well as the 
influence of different loading scenarios—such as the effect of frictional 
forces under varying crystallographic conditions. By bridging numerical 
simulations and experimental studies, the approach holds strong po-
tential for advancing the understanding of complex material behavior 
under tribological loading.
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Appendix A. Numerical benchmark tests and properties

We present several benchmark test cases to verify both the physical 
fidelity and stability of the numerical simulation with these tests. The 
material parameters are the same as the ones detailed in Section 2.6.

A.1. Convergence test of the mechanical response under indentation loading

We demonstrate the convergence behavior of the numerical scheme 
by simulating a displacement-controlled indentation problem, focus-
ing on testing the numerical stability of the scheme derived for the 
micro-problem. To simplify the computational procedure, the boundary 
condition described in Section 2.4 is modified to a Dirichlet boundary 
condition. Specifically, the indenter is controlled by displacement, with 
its movement linearly related to the macro time 𝑇 , such that 𝐂indent =
[0, −0.005𝑇 , 0] μm. As illustrated in Fig.  4, once penetration is detected 
(as shown in Fig.  4(b)), we impose the gap function as the Dirichlet 
boundary condition instead of calculating the force balance. Therefore, 
the Dirichlet boundary condition in Eq.  (3a) becomes 
𝒖D = −G(𝐱). (A.1)

The indenter is loaded for 50ns, reaching an indentation depth of 
0.25 μm. The indenter is then held at this depth for 30ns to allow for 
relaxation.

We test the displacement-controlled indentation problem at var-
ious spatial discretization levels. The macro problem uses Lagrange 
discretization with polynomial degree one, while the micro problem 
employs discontinuous Galerkin discretization with polynomial degree 
one. The five discretization levels, with corresponding element sizes 
and element counts, are listed in Table  A.4.
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Table A.4
Overview of discretization levels with corresponding element sizes and number of 
elements.
 Level 0 1 2 3 4  
 Element size (μm) 1 0.5 0.25 0.125 0.0625  
 Number of elements 1 000 8000 64000 512000 4096000 

Table A.5
Convergence test for the contact boundary condition.
 Level 0 1 2 3 4  
 Indented depth (nm) 0.2486 0.2974 0.1811 0.1577 0.1498  
 Responding force (mN) 0.05789 0.05793 0.05767 0.05732 0.05732 
 Maximum of 𝜏s (MPa) 4.2944 10.8495 11.1483 11.0401 11.4261 

In Fig.  A.13, the load–displacement curves demonstrate conver-
gence behavior as the number of elements increases. When the dis-
cretization level exceeds level 2, the load–displacement curves show 
minimal differences, indicating sufficient convergence on the mechan-
ical response influenced by the microstructure.

A.2. Convergence test for the contact boundary condition

We also performed a convergence test to evaluate the force balance 
between the applied force Fapplied and the responding force from the 
deformed material under different discretization levels for the contact 
boundary condition.

The test use the force-controlled indentation problem, where a force 
of 0.05714 mN is applied with an indenter radius Rindent of set to be 
0.5 μm. The material dimensions are defined as L𝑥×L𝑦×L𝑧 = 18×8×18 μm
with an initial dislocation density 𝜌s = 2μm−2 across all 12 slip systems.

The tests under different discretization levels detailed in Table  A.4 
are summarized in Table  A.5. These responses include the indented 
depth (the deepest point of the indented material), the responding force 
(calculated by integrating 𝜎yy over the indented area on the deformed 
material), and the maximum value of 𝜏s throughout the material. The 
results show that, although the force balance between Fapplied and 
the responding force is achieved at discretization level 0, all other 
mechanical responses converge when the discretization level exceeds 
level 3.
Fig. A.13. Convergence behavior in the load–displacement curves of solving indentation problem.
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Fig. A.14. Benchmark result simulating the movement of a straight edge dislocation dipole wall.
A.3. Edge dislocation dipole wall separation

We also simulate the movement of a straight edge dislocation dipole 
wall. The system dimensions are 3.5 × 0.1 × 5 μm in the 𝑥-, 𝑦-, and 𝑧-
directions, with only one layer of elements. Each element is a 0.1 ×
0.1×0.1 μm hexahedron, using Lagrange discretization with polynomial 
degree equal to one and discontinuous Galerkin discretization with 
polynomial degree equal to zero (finite volume). We consider one slip 
system, with slip direction 𝐝1 = (1, 0, 0) and line direction 𝐥1 = (0, 1, 0). 
We place edge dipole walls by assuming the initial condition for the 
micro problem with an initial total dislocation density of 𝜌1 = 50 μm−2

at positions ranging from 𝑥 = 0.8 to 0.9 μm. For the macro problem, we 
19 
assume a homogeneous external stress 𝜏sext = 200 MPa throughout the 
system, as described in Eq.  (10).

Since the dislocation walls are subjected to homogeneous 𝜏sext, they 
remain straight without bowing out. This test verifies dislocation trans-
port across elements via the numerical flux detailed in Section 2.2 
under simple conditions without dislocation bow-out. The results are 
shown in Fig.  A.14, where the orange curve represents 𝜌1, and the 
blue curve represents 𝜅1edge. At 𝑇 = 1 ns, most initial 𝜌1 remain SSDs. 
Over time, SSDs convert into positive/negative edge GNDs and move 
into neighboring elements. During transport, i.e., at 𝑇 = 5, 15, 30 ns, 
𝜌1 matches 𝜅1  without numerical error. This test demonstrates the 
edge
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Fig. A.15. Benchmark result simulating the expansion of a dislocation loop.
positivity-preserving nature of the derived numerical scheme without 
dislocation bow-out.

A.4. Dislocation loop expansion

We also simulate the expansion of a dislocation loop on a single slip 
system with slip direction 𝐝1 = (1, 0, 0) and line direction 𝐥1 = (0, 1, 0). 
20 
The loop has an initial radius of 2.5 μm, following the setup in [35]. The 
system dimensions are 10×0.2×10 μm along the 𝑥-, 𝑦-, and 𝑧-directions. 
Each element is a 0.0625 × 0.0625 × 0.0625 μm hexahedron, with both 
Lagrange and discontinuous Galerkin discretization with polynomial 
degree equal to one applied.

The results in Figs.  A.15(a) to A.15(d) show the evolution of 𝜌1, 
q1, and 𝜅1 , with 𝜅1  following a similar trend. These results 
edge screw
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confirm that the proposed numerical scheme effectively converts the 
curvature density q1 into the total dislocation density 𝜌1 during loop 
expansion. The curvature density, introduced as a source term, com-
pensates for missing dislocation density as the loop expands without 
causing divergence. This is demonstrated in the evolution of 𝜌1 over 
time (Fig.  A.15(e)). Introducing the curvature term enhances positivity 
preservation when dislocation bowing-out.

Appendix B. Calculation for misorientation from GND density

To facilitate comparison with experimental measurements such as 
electron backscatter diffraction (EBSD) or transmission Kikuchi diffrac-
tion (TKD), we derive the misorientation field from the simulated GND 
density distribution 𝜿.

Nye [47] characterize the lattice orientation change d𝜑𝑖 with the 
lattice curvature tensor K𝑖𝑗 and the descritization length scale d𝑥𝑗
(dimension of the elements) along 𝑗
d𝜑𝑖 = K𝑖𝑗d𝑥𝑗 . (B.1)

And K𝑖𝑗 has the relation with dislocation tensor (Nye’s tensor) 𝛼𝑖𝑗 as 

K𝑖𝑗 = 𝛼𝑗𝑖 −
1
2
𝛿𝑖𝑗𝛼𝑘𝑘. (B.2)

From the simulation results proposed in this work, we calculate the 
dislocation density with excessive Burgers vector as the GND density 𝜿s

for all slip systems from the CDD model. We can therefore estimate 𝛼𝑖𝑗
in terms of pure dislocations with screw and edge components based 
on the derivation detailed in Section 4 of [48] 
𝛼𝑗𝑖 = 𝛴12

s=1

(

𝜅sscrew𝐝
s ⊗ 𝐝s + 𝜅sedge𝐥

s ⊗ 𝐝s
)

. (B.3)

If we bring Eq.  (B.3) back to Eq.  (B.2), then to Eq.  (B.1), we can 
estimate the misorientation 𝜑 around 𝑥-(SD), 𝑦-(ND), and 𝑧-directions.

Data availability

Simulation data and videos for all results will be available on 
request. The source code for the dislocation-based crystal plasticity 
simulation software realized in M++ is stored as a subproject under 
https://gitlab.kit.edu/kit/mpp. Access rights may also be granted upon 
reasonable request.
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