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Dataset link: https://gitlab.kit.edu/kit/mpp Dislocation-mediated plastic deformation governs the mechanical response and microstructural evolution in
tribological contacts, yet linking these effects across scales remains challenging. We present a dislocation-based
crystal plasticity model that couples micro-scale dislocation dynamics with macro-scale plastic deformation
under sliding conditions. By incorporating crystallographic effects on dislocation mobility and capturing
subsurface dislocation transport and trace line formation, the model reveals intricate microstructural features
that influence plastic deformation, surface topography, and contact area evolution. Unlike continuum-scale
simulations, which lack the resolution to capture microstructural details, or discrete simulations, which
fail to couple microstructure-driven plasticity with tribological contact, this model bridges these gaps.
Leveraging an implicit macro-micro coupling mechanism, a flux vector splitting-based numerical scheme,
and a penalty contact boundary condition, this work provides a foundation for predictive modeling capturing
dislocation-driven deformation under tribological contact.
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1. Introduction

Plastic deformation is a key factor influencing tribological contact
mechanics [1-4], as it determines surface topography and stress dis-
tribution during sliding. To accurately predict plastic deformation in
tribological contact scenarios, dislocation characteristics must be care-
fully considered, as dislocation glide is a primary mechanism driving
plastic deformation.

Main dislocation processes induced by tribological loading include
dislocation transport phenomena, where dislocations are retained
within the stress field beneath the moving asperity and move along with
the sliding motions, as demonstrated by [2] using discrete dislocation
dynamic (DDD) simulations. Additionally, the formation of one or
more dislocation trace lines (DTLs) parallel to the sliding direction,
representing accumulated dislocation densities at specific depths, in-
dicates discrete crystal rotation changes. And the discontinuities in
crystal orientations further result in the formation of sub-grains. This
phenomenon has been widely observed in experimental studies [5-7].

A similar loading scenario is the indentation loading. At the scale
of single crystalline materials, existing modeling approaches include
continuum crystal plasticity models [8-11], DDD [2-4,12], and molec-
ular dynamics (MD) [13-17]. The main challenge in predicting material

response under tribological contact using continuum crystal plastic-
ity methods lies in their assumption that plastic strain occurs only
when the applied stress exceeds a threshold. These methods neglect
the detailed motion and dynamics of dislocations. [2] points out that
the continuum approaches fail to effectively account for dislocation
transport. Likewise, [3] notes that a surface pile-up, the result of
plastic deformation under tribology loading, strongly depends on the
crystal orientation. However, standard crystal plasticity methods are
less sensitive to crystallographic effects and tend to underestimate
pile-ups compared to discrete simulations. This limitation arises from
the coarse-graining process, which reduces the localization of plastic
mechanisms compared to discrete level simulations. However, another
challenge arises in discrete-level simulations, which often simplify
tribological contact using superposed analytical solutions, such as the
Green’s function method [18]. These models typically assume purely
elastic deformation and idealized geometries. For instance, Hamilton’s
solution [19] predicts stress fields for a spherical surface sliding against
a semi-infinite plane, resulting in a circular contact area. However, such
models neglect plastic deformation and changes in surface geometry
during sliding, leading to inaccuracies in stress field predictions once
plastic deformation occurs. Additionally, as highlighted in [4], elastic
models often estimate that under small loads, the true contact area
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Nomenclature

ﬁeb ﬂpl

Elastic and plastic part of displacement
gradient

Vector of the GND density and its screw
and edge component on slip system s
Orthogonal vector of the GND density of
slip system s

c Cauchy stress tensor

Total, elastic and plastic strain

S S S
K7, Kscrew’ Kedge

)

Etots €el> €pl

[z Body force
nyp The surface normal of the domain 0B
tg Prescribed surface traction (Neumann

boundary condition)

tns tp Normal and tangential surface traction

u Displacement field

up Prescribed displacement (Dirichlet bound-
ary condition)

Celem Element size

ys Plastic slip of slip system s

T, The domain for the contact surface

The ¢th eigenvalue and its correspond-
ing eigenvector with the sign « along the
direction ¢

(Fr*) é Numerical flux with the sign « in element i
along the direction ¢

C Anisotropic elasticity tensor

AS Dislocation alignment tensor of slip system

S

Cindent> Rindent The center coordinate and radius of the

indenter

Js The Jacobian matrix split along the direc-
tion ¢

Ms Schmidt tensor

N The face outward normal for face of
element located at (i, j, k) for face f

Q; The wunknown vector for CDD PDEs

([ps,k's I8, kS - ds,qS]T) in element i

Xprojected The projected point on the indenter for
node x

Fapplied The applied force on the indenter

9(x) The gap function for node x

Kijs Lattice curvature and dislocation (Nye’s)
tensor

Ltroke The stroke length of sliding

q® Dislocation curvature density of slip system
]

Vglid The sliding speed of indenter

is much smaller than the nominal contact area, with contact pressure
significantly exceeding the nominal pressure.

In this study, we introduce a dislocation-based crystal plasticity
model based on the continuum dislocation dynamics (CDD) approach,
embedded into a numerical efficient simulation framework to ana-
lyze macro- and micro-scale material behavior considering tribological
contact mechanics. To enhance numerical stability, we derived a nu-
merical scheme using the flux vector splitting method for solving
CDD problems. An implicit coupling mechanism was implemented,
enabling larger simulation time steps and accurately capturing the
influence of dislocation evolution on plastic deformation. To model
material responses under tribological contact conditions, we introduced

U, v Shear modulus and Poisson’s ratio

Heriction Coulomb friction coefficient

o Penalty parameter

0Bp, 0By Domains applied Dirichlet and Neumann
boundary condition

p° Mobile dislocation density on slip system s

P3sp Statistically stored dislocation density on
slip system s

78 The effective resolved shear stress of slip
system s

T Tisnt Resolved shear stress due to external load-
ing and internal interaction on slip system
s

e T Mean field stress and back stress on slip
system s

r; The yield stress of slip system s

b, b° Burger’s vector and its length of slip system
s

dindent Sliding direction of the indenter

B Drag coefficient of the velocity law

L, Ly, L, x, y, and z dimension of the material

Mindent The iteration scaling factor for contact
search

vS Isotropic dislocation velocity on slip system
s

D> Pys @ Crystal rotation around the x—(SD),
y—(ND), and z—directions

Eforces Sy Iteration tolerance for macro scale force
balance and implicit coupling

Eindent Iteration tolerance for the force balance on
the indenter

{ds, 15, m®} The orthonormal basis of slip system s

o Interaction parameters for latent hardening

between slip systems s and g

D’ Material parameter for Tli

T, AT Time and time step size for the macro time
series

t, At Time and time step size for the micro time
series

N, M Discretization number of macro and micro
time series

a penalty contact method with a Neumann boundary condition. We
show that this approach effectively bridges the gap between macro-
and micro-scale behaviors in tribological contact mechanics. Our model
successfully simulates the accumulation of geometrically necessary dis-
location (GND) densities beneath the indented surface, aligning with
the locations of DTLs observed in experiments. It also captures dislo-
cation transport phenomena and the plastic deformation induced by
microstructural evolution under both symmetrical and asymmetrical
crystal orientations.

2. Methodology

In this section, we introduce the dislocation-based crystal plasticity
formulation using CDD theory. We outline the numerical scheme with a
focus on deriving numerical fluxes for the partial differential equations
in a CDD problem and the implicit coupling between macro- and
micro-scales. Additionally, we detail the boundary conditions applied
to model tribological contact, also the material parameters and system
setup used in this study. The plasticity model is implemented using
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the M++ library [20], a parallel finite element software optimized for
high-performance computing environments.

2.1. Fundamental of continuum dislocation dynamic based crystal plasticity
model

We decompose the deformation gradient tensor (Du) into an elastic
(Ber) and a plastic (B,) component as

Du = ﬁel + ﬁpl' (€))

Here, u denotes the displacement field. The total infinitesimal strain
€o; 1S defined as €., = sym(Du), where the elastic strain ¢ is €, =
sym(f,), and the plastic strain &, is &, = sym(fp,)). The macro force
equilibrium equation with the body force f5 is expressed as

~V.o={fs. @

where o represents the Cauchy stress tensor, given by ¢ = C [g; — epl],
and C is the anisotropic elasticity tensor. The boundary conditions
necessary for resolving Eq. (2) include the Dirichlet boundary condition
(Eq. (3a)) for prescribed displacement field up on 0B, and Neumann
boundary condition (Eq. (3b)) for prescribed surface traction t5 on 0By

u=up onodBy (3a)

c-nyp =tg ondBy, (3b)

where n,y5 is the surface normal of the domain 0B. The plastic strain
€pl can be determined by calculating B, based on the microstructure
evolution. The plastic distortion tensor f; is obtained by summing the
plastic slip, y® of a slip system s, across all slip systems

N
By = ), "M )
s=1

where M® is the Schmidt tensor, M = d° ® mS. In this context, the
orientations of the slip systems are defined by the orthonormal basis
{d5,1°>, m*} based on the face-centered cubic (FCC) crystal structure,
where m* is the slip plane normal and d5 = 1 b* is the slip direction.
Here, b® is the Burger’s vector with length b®, and IS = m® xd® is the line
direction. The plastic slip y® arises from dislocation motion on the slip
system s, linking dislocation motion to plastic deformation. According
to Orowan’s equation, the plastic slip rate d,y* can be calculated by the
following equation

oyy® = v°b°pS, (5)

where v® is the isotropic dislocation velocity, and p° is the mobile
dislocation density on slip system s. The mobile dislocation density p°
consists of the statistically stored dislocation (SSD) density p;SD and the
GND density

o= 1K1+ plgpe ©
where &% = 5., d° + x5, I° denotes the vector of the GND density.
Based on the CDD formulation in [21], the evolution of p°, x5, and the
dislocation curvature density q° is governed by the following PDEs

0,0°=-V- (vsxj_) +vq® with K"j_ =x5xm, (7a)

o,k% =V X (p°v°m®), (7b)
S

0,q° =-V- <q—xivs +ASVVS> . (7¢)
oS

Modeling the evolution of %, we employ the closure assumptions
according to [22], with the dislocation alignment tensor AS given by

K= 13|2 (7 + 1K) £ @Kk + (5 — Ik°]) &5 ® &%) ®
K

(following the notation in [23]). The dislocation curvature density,
derived from high-dimensional CDD theory [21], represents the sum
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of the local curvatures of all dislocation lines contained within the
volume.

To calculate v® on slip system s in Egs. (5) and (7), a formulation for
the velocity law is needed to characterize the relationship between the
stress state and vS. Following [22], we assume a linear-viscous model
of over-damped dislocation motion. Therefore, a linear dependency
between the effective resolved shear stress 75 and v° is applied if 75
exceeds the yield stress T; on the slip system. The velocity law can be
expressed as

b_s S| — 75) qi S H S S
W= { B(lT | Ty)SIgn('r) if | 78| > 1y

1 S < S‘
0 if |78| <7

©)

Here, B is the drag coefficient.
75 can be expressed as the superposition of shear stress due to ex-

ternal loading 7g and internal shear stresses z} of the microstructure

S _ .S s
T = Text + Tint* 1o

S

75, is the projection of ¢ on slip system s via the Schmidt law, 75, = o :

M. The internal stress 73 = 7; +7; ; is divided into a long-range (mean
field stress, Trsnf) and a short-range (back stress, rg) component. szn :
is the stress induced by a mean-field approach to maintain geometric
consistency across coarse-grained volumes, as described in [24]. For
systems with strong gradients of plastic distortion, the model can be
enhanced by introducing short-range correction stresses z; as proposed

by [25,26] as the back stress term, and it is given by

bs VK'Sd
I, (f (- & an
27(1 —v) P3sp
with
L (felem, s dge) , (12)
where ¢, is the size of an averaging volume, i.e. the size of an

element. y is the shear modulus and v is the Poisson’s ratio.

The yield stress 7y incorporates Franciosi’s formulation to include
latent hardening, accounting for hardening effects due to interactions
among different slip systems [27]. This formulation uses a matrix
of interaction parameters a,,, considering interactions in addition to
Taylor-type hardening [28]. The expression for the individual yield
stress T; on slip system s is given by

5= D T = D ag b’V a3)
g g

where Tgs represents the latent hardening from interactions between
slip systems g and s. For FCC crystals, the matrix a,, includes six
coefficients, reflecting different types of reactions such as Lomer locks,
Hirth locks, and glissile junctions for forest interactions, along with self,
coplanar, and collinear interactions.

2.2. Discretization scheme of the macro and micro problem

The model is divided into a macro and a micro problem. The macro
problem involves solving the force equilibrium (Eq. (2)), while the
micro problem addresses the CDD problem (Eq. (7)). These two scales
are interconnected through the micro-state variable y* and the macro-
state variable v* using Orowan’s equation (Eq. (5)) on each slip system
s.

In the following, we describe the discretization scheme for both the
macro and micro problems (Eq. (2)) as well as the approximation of the
system discretized using a typical semi-discrete approach. We consider
the discretization process in two stages, first discretizing the PDEs only
in space and then discretizing in time.

For the space discretization, the macro problem is discretized over
the spatial domain using a conforming finite element method with La-
grange discretization [29] to retain the continuity of macroscopic field
variables such as displacement, stress, strain, and dislocation velocity.
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Then, the resulting semi-discrete system is discretized and solved using
a nonlinear time integrator with the implicit Euler method [30].

The micro (CDD) problem, as shown in Eq. (7), consists of a set of
hyperbolic partial differential equations (PDEs) describing dislocation
evolutions. Unlike the macro problem, the PDEs for the micro problem
are firstly discretized over the spatial domain using the discontinuous
Galerkin method [31,32] to retain mass conservation while resolving
dislocation dynamics. The resulting system is then solved using a
diagonal implicit Runge-Kutta scheme time integrator [33].

For the time discretization, the time series for the macroscopic
problem is denoted as T. This series consists of discrete time points
T such that T € {0,...,Ty,....Ty}, where T, = n- AT and AT is the
step size for the macro time series. For the microscopic problem, the
time series is denoted as . This series consists of discrete time points ¢
such that 7 € {0, ..., ¢y, ...,y | within the span of one macro time step,
where ¢, = m - At and At is the step size for the micro time series. To
distinguish the micro time steps within each macro time step, we use
the notation ¢} = T,, + m - at. This relationship can be represented as
{15, 9, ... 8%

0 _ 1
O ety =Tt

Lty =Ty o Ty, Ty ). (14)

For both macro and micro problem, within each time step, the problems
are approximated linearly. Each linear system is solved iteratively using
the generalized minimal residual (GMRES) method [34].

We now describe the approximation system for the micro (CDD)
problem. Following the derivation of [22,35], the evolution of the
dislocation field variables in a single slip system s can be evaluated by
resolving the PDEs of a CDD problem (Eq. (7)) within one micro time
step, the CDD problem for each slip system s can be written as

0 Q(x,y,2z,0) + VF(Q(x,y,2z,1)) = S (Q(x, ¥, 2, 1)), (15)

where the unknown vector is Q = [p®, k- I,k - d°, qS]T. The flux vector
F (Q) and the source vector S (Q) are both given as

VSKS I8 — v8kS . d v
vepS 0
F(Q = v L s@=| o | ae)

¢ L S . 4
p—s(—x-l+x~d) ASAVS

By decomposing the flux direction of Eq. (15) into the components
along d® and 15, we can rewrite Eq. (15) as

0Q + [VisF(Q] I + [VgsF (Q)] & =S(Q), an

where VisF(Q) = VF(Q) - I° and V4F (Q) = VF(Q) - d°.

In the domain of a finite element cell 2 with the boundary (faces)
08 of each cell, integration by parts yields the corresponding weak
formulation

/atQ’I’dV+ 2/ N-F*(Q)’I’dA—/F(Q)V'l’dV=/S‘l’dV,
Q 2 Q Q

faces

(18)

where ¥ are smooth test functions with sufficient continuity, F* rep-
resents the numerical flux on 02, V and A indicate the volume and
surface area of cell €2, and N is the face normal on 9Q.

We now describe the choice of the numerical flux functions F*
required for the discontinuous Galerkin scheme to solve the PDEs of
the CDD problem. The CDD problem can be re-written as a quasi-linear
form as

JF (Q)

0 Q+J(QVQ=SQ), JWQ= Q (19)
where J (Q) is the Jacobian matrix

0 v =V 0

vS 0 0 0
J (Q) = —vS 0 0 0 (20)

0

(=]

0 Z—:(-x5~ls+x5-d5)
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By decomposing the quasi-linear form (Eq. (19)) along the direc-
tions of d° and I¥, we obtain the following expression

0Q +Jps (Qss) [Vis (Qis)] +Jas (Qas) [Vas (Qas)] =S Q). (21)
and
0 v 0 0 —v 0
Js=|v 0 0 . Jp=|-v 0 0 .
0 0 Z(-xF) 0 0 Sk
o’ o
Qs =|x5 1|, Qp=|xs a. (22)
q° q°

The eigenvalues of both J;s and J4s are denoted as /1](5 ) and Afji)

m_V wm_v @ _,0 _
A = > (=x*-P), Ay = 5 (k°-d%), A =4y =-V°,

3 3
/11(5) = ,1;3 =V (23)

The corresponding eigenvectors for the directions I° and d° are denoted
as K:f ) and Kff;) respectively. They are

0 -1 1
1 2 3
KP=lof, KP?=|1[ KY=|1,
1 0 0
0 1 -1
1 2 3
KY=fo]. KP=[1]. KQ=|1[ (24)
1 0 0

We find that the CDD problem is a linearly degenerate system since for
all # along both I° and d° directions it holds

vi{ QK @=0, ¥Q and ¢= (I, d). (25)

This implies that the characteristic field of the CDD problem always
results in a contact discontinuity, with no possibility of shock or rar-
efaction formation under any conditions. Consequently, the general
solution can be obtained without the need to account for shock or
rarefaction wave formations [36, Chapter 2.4].

After analyzing the characteristics of the flux, we proceed to derive
the numerical flux F* for the CDD problem using an upwind numerical
method. Note that this is positivity preserving which is an important
physical property of the density evolution. The numerical flux on
the faces 0Q of an element is computed based on the direction of
information propagation within each cell. To determine the upwind
flux direction, we apply the Flux Vector Splitting method as described
in [36, Chapter 8]. This method simplifies the identification of up-
wind directions compared to Godunov-type methods, resulting in more
straightforward scheme determining the flux direction. We demonstrate
the flux direction centered on the cell located at (i, j, k) across the six
inner faces at i + %, j+ %, and k + %, as depicted in Fig. 1.

For simplicity, we first showcase the flux direction along the x-
direction only, as shown in Fig. 1. The flux in the y- and z-directions can
be determined analogously. We denote the x-direction net numerical
flux originated within cell positioned at (i, j, k) as F}. We can first split
F; into the positive and negative directions as detailed in [36],

F/ =F*+F". (26)
Then we further decompose F;* and F*~ along the directions of I and
d® as Eq. (21)

F} = (F70)s + (F77) g5 + (F7)ps + (F)) s @7
where

) =K,A%K;'
( i )4)

SAGKSD with a = (+, -)

and ¢ = (I, d°}. 28)
D) @ B :
b K¢ , K4> ], and A; are the diagonal

matrices of the positive (i.e., Af[”) and negative (i.e., /li:)_) eigenvalues

The eigenvector matrix K, = [K



S.-H. Lee et al.

Tribology International 209 (2025) 110731

i—1 i i+1
— =X (Pt ) (@) | (857 s (1) (B ) (@) | (Fi7y) s (@i41)
A v A v w v
I’ 7 Q) FEAQ) |Ff (@) B (Qi) | Fi (Qigr) FEAQiy)
- > |- > | = —>
# 4 # q # 4
d’ (r:l )ds (Qi-1) (FT_ )18 (i) (F;kJr)dS (Q:) ( ,+1) Q1)
. 1 . 1
1 — 5 1+ E

Fig. 1. Illustration of flux splitting at the inner faces along the x-direction. The numerical flux is first split into positive (marked in red) and negative (marked in blue) components,
then further decomposed along the line direction I* and the slip (Burger’s) direction d°. The contribution terms to the fluxes at the interfaces i + % and i — % are shown.

along the direction ¢, and is given by

,1;5”* 0 0 Afb”_ 0 0
A=l 0 @ o A=l 0 @ o (29)
¢ ¢ ’ [ (] :
0 0 Ag” 0 0 ,1;3)‘

For the full upwind flux, the eigenvalues are decomposed into four
directions, combining positive/negative contributions and line/Burger’s
directions, as follows

@) « )+ @)— —_ (15 S
/1 /1 /1¢ s ¢={P, d°} (30)
such that Af” > 0 and ig% <0, and the definition for ﬂ(jH and ﬂ(j)*
are given by

}‘E;H ﬂ(f) + M(f)l) A(f)* (A(f)

3G S Uy = 12D. &3]

As illustrated in Fig. 1, the numerical flux on face i + % is contributed
by the positive flux from cell at position i, denoted as Fi* (Q;), and
the negative flux from cell at position i + 1, denoted as F; (Qis1)-
Therefore, the numerical flux on face i + % is

F* | =F*(Q)+F, (Q)

o () Q)+ (B (@) + () (@) + (B (@it

(32)

similarly, the numerical flux on face i — % is

F1_7 = F’H' (Ql 1) + F*_ (Ql)
= (Ff_)ls (Q,) + (F;‘k_)ds (Q,) + (F:'] )15 (Qifl) + (F:kf] )ds (Qifl) .
(33)

We now analyze the numerical flux in a fully three-dimensional setting.
The geometric relationship between the target cell at (i, j, k) and its
neighboring cells is depicted in Fig. 2(a). Since there is no out-of-
plane dislocation movement, the three-dimensional flux problem can
be simplified to the flux on a plane where the normal aligns with the
slip plane normal, n®, shown as the plane in Fig. 2(a). The net numerical
flux across the six inner faces (0€2) of the cell positioned at (i, j, k) is
depicted in Fig. 2(b). As seen in this figure, the direction for splitting
the numerical flux is determined by the face outward normal, N;, where
f={i+ % i— %,j+ %,j— % k+ % k— %} and the directions of I¥ and
dS. This results in the numerical flux on each face being split into four
components: combinations of positive/negative and line/Burger’s direc-
tions, as shown in Eq. (27). Thus, for a hexahedron cell with six faces,
the total numerical flux computation involves 24 terms. Consequently,

the second term in Eq. (18) is split into 24 terms calculated based on
the sign of velocity, N, I°, and d° as

/ N;-F*(Q¥dA = (€Z)]
Q2

3 {Jerr)
< e ) (Q,-)' |dS.Nf|}
wsign (IS-—Ng) s
2, (e 3o
n(dS-—Ng) s
<Ff+f% f)ds (Qﬁ%)‘m .Nf|}
ssign(I°-—Ng) s
{[l) o s
< *slgnd -=N¢) > (QF—]>‘|d54Nf|}’
a 2

P 1
{l_i’j_i’k_i}‘

face

[1° - Nl

+

+

+

+

+

where f* = {i+ 3, j+3, k+3} and f~ =
2.3. Implicit coupling between the macro and micro problems

To couple the macro and the micro problem in our numerical
scheme, we develop an implicit coupling method. This approach ad-
dresses the limitations of explicit coupling, which restricts the time
step size and can lead to inaccuracies or divergence in extensive
simulations [35]. By using implicit coupling, we can simulate larger
deformations, such as those seen in tribological loading, with improved
stability and accuracy.

The implicit-coupling algorithm is shown in Algorithm 1. At each
macro time step T,, with step size AT, the macro problem is solved using
the implicit Euler method to compute the displacement field u. The
solution u for Eq. (2) is considered converged when the internal force
deviates from the external force imposed by the boundary conditions
by no more than &;..

Using the resulting macro stress field, we proceed to solve the micro
(CDD) problem at micro time steps t?n with step size at. For each slip
system s, we first compute 7% (Eq. (10)) and T; (Eq. (13)) from the
macro stress field. Based on these, v° (Eq. (9)) is computed. Next, the
dislocation evolution PDEs (Eq. (7)) rates are solved using a diagonally
implicit Runge-Kutta method, followed by updating the plastic slip (Eq.
(5)). The 7% and 75 are then recomputed to check for any overshoot
beyond the yield surface. If overshooting occurs, the micro time step is
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Fig. 2. Geometric relationship between the target cell at (i, j, k) and its neighboring cells, highlighting the alignment of the slip plane, and their relationship to the line direction
I, and the slip (Burgers) direction d°. (a) 3D representation of the target cell at (i, j, k) and the slip plane, where the net numerical flux is plotted. (b) Visualization of the net
numerical flux on the slip plane n®, with flux splitting determined by the face outward normal N, the line direction I, and the slip direction d°.
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Fig. 3. Illustration of the correction process for overshooting outside the yield surface in relation to dislocation dynamics over each micro time step.

repeated (i.e., tfn, ..., t0) until 7° returns to the yield surface r}s, within
a tolerance &, or the micro time series reaches the next macro time
step.

The computation in the micro time series is served as a micro
iteration for the implicit coupling algorithm. And for each micro time
step calculation, there are three mechanisms narrowing the gap be-
tween 7% and 73, as shown in Fig. 3. First, plastic slip increases after
each micro time step atz, driven by dislocation kinematics. The slip
increment, calculated using Eq. (5), represents the swept area by dislo-
cations within at, reducing the stress state via microstructure relaxation
and mapping 75 back onto the yield surface (blue arrow in Fig. 3).
Second, isotropic hardening arises from microstructural evolution and
dislocation reactions across slip systems (latent hardening) within at,
expanding the yield surface via a Taylor-type model in the Franciosi’s
formulation (green arrow in Fig. 3). Finally, kinematic hardening re-
sults from dislocation heterogeneity under the numerical discretization
scale, shifting the yield surface (red arrow in Fig. 3).

2.4. Boundary condition for simulating contact problems

To simulate tribological loading, we model a force-controlled con-
tact problem by applying Neumann boundary conditions along with
a penalty contact criterion. This approach calculates the interaction
between the deformable material and a rigid, analytically defined
spherical indenter. The system setup is illustrated in Fig. 4(a). The

indenter is characterized by its center coordinates, C;,gen, and radius,
Rindent- The indented material is a rectangular box with dimensions L.,
L,, and L , with the contact surface, I, highlighted in yellow in Fig.
4(a).

The iterative algorithm for computing contact interactions is out-
lined in Algorithm 2. At the beginning of each macro time step T,
initialization is performed: the applied force, Fppjieq, is predefined as a
function of T;,, while the penalty force, F,enaiy, is initially set to zero.
And the net force applied on the indenter, Fpo¢ = Fpenatty = Fapplied-

After initialization, the iteration proceeds in three main steps: up-
dating the indenter’s position, evaluating the gap function §(x) at each
node x on I, and updating ..., and Fe.. This process is repeated
until F, falls within the tolerance threshold, & qen;-

To update the indenter’s position, the net force on the indenter,
Fnet = Tpenalty — Fapplieds i first computed. Cipgen; is then updated as
Cindent := Cindent + NI:T&’ (35)

indent
where M 4en¢ i the iteration scaling factor for contact search.
Evaluating §(x) at each node x on I, consists of two steps, as
illustrated in Fig. 4(b). First, the projected point Xprgiecred> Fepresenting
the projection of x onto the indenter, is computed. Then, the penetra-
tion is assessed. Penetration occurs at x if the inner product between
(X = Xprojected) AN (Cindent = Xprojected) 15 POsitive, indicating that the
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Algorithm 1 Algorithm for the implicit-coupled elastoplasticity model.

Input:
problem.

Input:

1:
forn=0,...,N do

Dirichlet boundary condition up, or the Neumann boundary condition tg at time 7}, for Equation (3) for each n <N to solve the macro

" Initial condition for [ps, xS 15, kS - ds,qs] are specified for all slip systems s and all elements at 7 = 0 to solve the micro problem.

2: T
Initialize macro problem:
T~‘;nAT,t<=t'l‘, and u < up(T) or 6 - nyp < tg(T), m = 1.
3:
repeat
4:
Update plastic deformation based on the plastic slip of each slip system:
£p(T) < sym (Zil 0 MS).
5:
Solve macro problem for u to achieve force balance (implicit Euler):
5.1 update stress state o(T') < C [£4,(T) — £,4(T)].
5.2 find u that satisfies || f5 + Vo (T)|| < &oree (Equation (2)).
6:
for all slip system s do
7:
Update dislocation velocity:
7.1 calculate 7% from Equation (10) and r; from Equation (13).
7.2 if |25] > r;
v < 2| - 73)sign(z®)
else
V() « 0.
8:
if v8(r) # 0 then
9:
Solve micro (CDD) problem (implicit RK):
compute d,p%, 9,«5%, and 9,q° by solving Equation (7).
10: .
Update microstructure:
p5(t) < pS(to1q) + 0,0° - AL, k5(1) < K5(tyq) + 0,k5 - AL, (1) < q5(tgq) + 0,Q° - At
11:
Evaluate plastic slip:
9,75(t) < v3(1)b®p%(r) (Equation (5))
12:
Evaluate resolved shear stress:
update 7% from Equation (10) and r; from Equation (13).
13: B
fga=tand m :=m+1
14: .
until max(|z5 — T;I) <é,orm=M
15:
n:=n+1l
Output: . . . . . . .
The displacement field u at each time step T influenced by external loading and microstructure evolution.
Output:

Dislocation densities evolution [ps, S5k ds,qs] for all slip systems s at each time step 7.

angle between the two vectors is less than 90°. In this case, §(x) is
defined as

G(x)=x— Xprojected- (36)

If the inner product is zero or negative, penetration does not occur. We
then set §(x) to be a zero vector.

Once the penetration criterion has been evaluated for all nodes on
I, the penalty force Fpepa1ry is updated as the sum of the gap function
over I',, weighted by the penalty parameter w, such that

Stpenally = Z w09(X)~ (37)
I,

In the end, we update the F,... on the indentaer as the difference
between Fypplied and Fpenalty- If Tpe falls within a tolerance &ipgenr> as
illustrated in Fig. 4(c), the Neumann boundary condition (Eq. (3b)) is
updated as

o nyp =ty = —5(x), (38)

where #y denoted the normal traction, which is always normal to the
indenter surface. Then we start to solve the macro problem (as shown
in Step 3 in Algorithm 1).

If &, does not fall within a tolerance & 4enr, the indenter’s position
is further updated, and the process is repeated until the tolerance level
&indent 1S reached. As a result, the applied force Fpyjieq is distributed
onto the material as a Neumann boundary condition, while the force
exerted on the indenter is simultaneously balanced by the penalty
force. To demonstrate the numerical stability, a convergence test for
the contact boundary condition has been conducted, as detailed in
Appendix A.2.

2.5. Boundary condition for simulating tribological problems

The boundary conditions for simulating a tribological contact prob-
lem can be assumed the same as described in Section 2.4, with the
center of the indenter, C;,4e, slides along the x-direction at a speed of
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Fig. 4. Contact boundary condition. (a) 3D geometry representation of the material with an indenter contacting at the top surface I,. (b) Illustration of the penetration condition,
introducing a gap function §(x) between the indenter and I,. (c) Upon achieving convergence, the penalty force JF, balances with the applied force .4 determining the

penalty
equilibrium position of the indenter and allowing the Neumann boundary I, to be updated using the value of Fpepayy-

Algorithm 2 Algorithm using Neumann boundary condition combined with a penalty contact criterion.

Input:
T, ?pplled(T)’ lndent(T)

.
Initialize contact module:
EFapplied < gapplied(T)’ Cindent < Cindent(T)’ :Tpenally <0, iErnel enally — Yapplied
2:
repeat

Update the position of the indenter:
Cmdent < Cmdent +

Mmdent
forallxe I, do

Evaluate §(x):
5.1 calculate the projected point Xyrgiected < Rindent * ”’;:gi—ﬁ;‘i” + Cindent
5.2 if (X - Xprojected) : (Cindent - Xprc»jected) >0
penetration occur, §(x) < x — x
else
penetration not occur, §(x) < 0

projected

Update Fcpqy and . for the indenter:
Fpenatty € 2r, @oS() for all x on I,

3“net = ?penalty ~ applied

7: .
until |F .| < &ndent

8:
Update the Neumann boundary condition:
tg <ty = —0y5(x)

Output:
WP The Neumann boundary condition induced by contact and continue on Step 3 in Algorithm 1.

Vgia- Accordingly, Ci,gen, is initialized as Ci,gen := Cindent + AXindent at Ly oke is the stroke length of sliding. To model frictional forces, a
the beginning of each macro time step T,. frictional traction t; is superposed on the normal traction #y calculated
in Eq. (38). A Coulomb friction model is employed to compute tg,

_ introducing a tangential traction proportional to ty, scaled by the

AXindent = (VslidAT) dindent’ (39) friction cogfficientgyfrimon. N Y
The direction of # is tangential to the surface normal of the indenter
where dj;gen is the sliding direction of the indenter it is defined as and depends on the sliding direction, making it path-dependent. Specif-
ically, the direction of ty is defined as the inverse of the projection of

(1,0, 0), % =0 (mod?2) djpgene ONto the plane orthogonal to ty. Therefore, t is expressed as
d; = e (40)
e (=1,0,0, %‘:}i =1 (mod?2) Ip = _”frictionltNl [dindent - <dindent : |z_N> t_N] . (41)
. NPALY
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Fig. 5. Simulation setup for a tribological problem. Black arrows indicate the loading
and sliding direction of the indenter under global coordinate, red arrows represent the
crystal orientation of the material, and green arrows denote the material dimensions.
ND refers to the crystal normal direction aligned with the global loading direction, and
SD refers to the crystal direction aligned with the global sliding direction.

To sum up, in order to simulate tribological loading together with
the effect of frictional force, the Neumann boundary condition
(Eq. (3b)) on the material is updated as

6 -nyp =ty +1Ip, (42)

where ty is the same as Eq. (38) induced by JF,pjieq> and #g is calculated
by Eq. (41) resulting from both ty and the sliding direction.

2.6. System setup simulating a tribological problem

A detailed overview on material parameters and numerical param-
eters used in the simulations is listed in Table 3.

We apply the tribological contact boundary condition on a sin-
gle crystalline copper sample. The material parameters include the
isotropic elastic constants y = 40 GPa and v = 0.367 and the anisotropic
elastic constants C,;;; = 168 GPa, C,,5, = 121 GPa, and C,3,; = 75 GPa.
For the micro problem, the drag coefficient B = 5 x 1073 sPa is used
as specified in Eq. (9). The coefficients of the latent hardening matrix
used in Eq. (13) follow the parameters in [37] and are listed in Table
3.

The simulation setup for the considered tribological system is de-
picted in Fig. 5. For this simulation, the indenter radius Rj,gen; 1S set to
20 pm with an initial position Cj,gen; = (9, 26, 9) pm. The applied force
remains constant throughout the sliding process, Fpplieq = 1 mN. The
stroke length L. is 6 pm, and the sliding speed v;4 is 15 mm/s. The
material dimensions are L, x L, x L, = 18 x 6 x 18 pm, with an initial
mobile dislocation density p = 1 pm~2 across all 12 slip systems. The
selected loading and material parameters result in a Hertzian contact
radius 0.5 pm, an elastic imprint depth of 0.3 pm, a maximum Hertzian
pressure of 1.6 GPa, and a maximum elastic shear stress of 522 MPa.

The numerical parameters for the contact boundary condition are
set as follows: The iteration scaling factor M;,gen; is chosen to be 26500,
and the penalty parameter w, is set to 5.0 mN/pm.

The force tolerance &4y is selected to be 1x 1076 mN. The friction
coefficient i iion 1S chosen to be 0.25 following the experimental
study [6].

The 12 slip systems of FCC crystals considered in this study are listed
in Table 1. To investigate the effect of crystal orientation, the crystal
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Table 1

Notation of the 12 FCC slip systems according to the Schmid & Boas notation.
Slip system (s) A4 A5 A2 B3 B6 B2
Plane normal m® 111) (111) (111) 111) arn 111
Slip direction d* [011] [101] [110] [011] [101] [110]
Slip system (s) C4 Cc6 Cl D3 D5 D1
Plane normal m® an an an a1 (11 at
Slip direction ds [011] [101] [110] [011] [101] [110]

Table 2

Crystal orientation setup for tribological problem.
Setup name ND SD
11, (111) (211]
111, @11 (101]
010, (010) [100]
010g (010) [101]

coordinate system is adjusted relative to the global coordinate system.
In Fig. 5, red arrows indicate the crystal coordinate system, while black
arrows represent the global coordinate system. In this context, ND
refers to the crystal ‘normal’ direction aligned with the global loading
direction, and SD refers to the crystal direction aligned with the global
sliding direction.

The setups for four crystal orientations analyzed in this study are
detailed in Table 2. The setup names are based on the normal direction
of the indented surface, with subscripts A and B indicating different
sliding directions. The associated Thompson tetrahedron corresponding
to the crystal coordinates are shown in Fig. 6.

Regarding the numerical discretization scheme, hexahedral ele-
ments with dimensions of 0.125 x 0.0625 x 0.125um are applied for
both the macro and micro problems simulating the tribological system
based on the results from convergence tests in Appendices A.1 and
A.2. We subdivide the dimensions of the element along the y-axis to
achieve a better resolution along the loading direction for observing the
dislocation features beneath the surface. The macro problem employs
Lagrange discretization with polynomial degree equal to one, while
the micro problem utilizes discontinuous Galerkin discretization with
polynomial degree equal to zero (finite volume). The simulation results
in this study represent sliding with varying stroke counts, as specified
in Section 3. Data was extracted after the material was unloaded and
had undergone adequate relaxation periods. For each stroke, we have
discretized the macro time domain with N = 120 and micro time
domain with M = 100. Both the macro- and micro-scale time steps
were selected based on numerical stability constraints and convergence
behavior observed in preliminary simulations. & ... is chosen to be
1x107°mN and &, is chosen to be 1 x 1076 GPa.

Regarding the computational resources used in this study, we uti-
lized 256 CPU cores and 46 GB peak memory usage calculating two
sliding strokes within approximately 23 h.

3. Results

To validate the simulation results, we first compare the numerical
predictions with experimental measurements using nano-indentation as
a benchmark. We then present results under tribological loading. At
the micro-scale, we examine dislocation accumulation, with a focus
on the formation of dislocation trace lines and dislocation transport
processes. At the macro-scale, we analyze plastic deformation, em-
phasizing both symmetrical and asymmetrical surface topographies
along sliding grooves, the influence of frictional forces under varying
crystallographic orientations, and the evolution of the contact area
during sliding.
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(a) 1114 (b) 111p

6

(c) 0104 (d) 010g

Fig. 6. Thompson tetrahedron illustrating the four crystal orientation setups. The color coding represents the plane normal directions: gray for (111), blue for (111), green for

(111), and pink for (111).

Table 3

Material, tribological loading, and numerical parameters used in the simulations.
Parameter Value Parameter Value
Material parameters
Ciiirs Ciiazs Cozns 168, 121, 75 GPa [38] v 0.367 [39]
U 40 GPa [39] b (for all s) 0.286 nm [40]
B 5% 1075 sPa [41] gt 0.122 [37]
Ahirth 0.07 [37] AL omer 0.122 [37]
gliss 0.137 [37] Aeonl 0.625 [37]
(T = 0) (for all s) 1pm=2 K5 (T = 0) (for all s) Opm=2
:r:dge(T =0) (for all s) Opm~2 q*(T = 0) (for all s) Opm™
L, xL, XL, 18 X 6 X 18 pm
Tribological loading parameters
Rindent 20 pm Cingent(T' = 0) (9, 26, 9) pm
F applied 1 mN Vid 15 mm/s
Lytroke 6pm Hiriction 0.25 [6]
Numerical parameters
N, M 120, 100 Eforce 1x10 mN
& 1x107° GPa o 5.0mN/pm
Mindem 26500 éindenl 1% 107 mN

3.1. Surface topographies induced by nano-indentation

In order to validate the proposed numerical model, we compare ex-
perimental observations for a nano-indentation test with the numerical
results derived by the force-controlled numerical model for three high
symmetric crystallographic planes: ND = (010), (110), and (111). In this
test, Fyppliea = 20 mN is applied with Ry gen, set to be 2 pm. The material
dimensions are defined as L, X L, X L, = 18 x 8 x 18 pm with an initial
dislocation density p* = 1 um~2 across all 12 slip systems.

Simulated surface topographies under nano-indentation are shown
in Figs. 7(a), 7(b), and 7(c), with the color scale indicating displace-
ment along the loading (y-) direction (red: out-of-plane, blue: in-plane).
The results capture the well-known anisotropic pile-up patterns con-
sistent with crystallographic orientation — fourfold symmetry for ND
= (010), twofold for ND = (110), and threefold for ND = (111) -
in agreement with experimental observations [42-44]. The simulated
profiles show good agreement with AFM measurements, e.g. by [43],
as illustrated in Fig. 7(d) (ND = (001)), Fig. 7(e) (ND = (011)), and Fig.
7(f) (ND = (111)).

Due to the symmetry of the Thompson tetrahedron, the simulated
surface profiles for ND = (010) and ND = (110) are expected to
correspond to those for ND = (001) and ND = (011), respectively.
Although the crystallographic orientation affects different slip systems
activated under the indentation, the slip geometries are crystallograph-
ically equivalent, leading to similar deformation patterns. The visible
in-plane rotation of 45° in the profiles for the simulation for ND =
(010) and the experiment for ND = (001) is therefore expected for the
considered orientations.

For ND = (111), the simulation result in Fig. 7(c) shows a three-
fold symmetry, whereas the experimental result in Fig. 7(f) exhibits a
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six-fold pattern. One possible explanation is the influence of indenta-
tion conditions. In our simulations, a six-fold symmetry also appears
under increased indentation load. Since the experimental study does
not specify the indenter size or load, a deviation in these quantities
is considered likely. However, the same three-fold symmetry as in
the present simulation has been also observed before in experimental
results in [45], which applied an indenter of similar size (3.4 pm
radius).

3.2. Dislocation trace line

We characterize the accumulation of GND densities at a specific
depth beneath and parallel to the sliding surface in Fig. 8 under the
setup 0104.

The subsurface dislocation density distributions for different num-
bers of sliding stokes is depicted in Fig. 8. Figs. 8(b) and 8(d) show the
cross after the first sliding stroke and Figs. 8(c) and 8(e) show the re-
sults after the ninth sliding stroke. It can be observed that the evolution
yields the formation of DTLs over one and multiple sliding process. The
data extraction path used here and the considered cross-section for the
figures are illustrated in Fig. 8(a).

Fig. 8(b) displays the distribution of the sum of the screw dislocation
density component of the GND density (X|«{ .| across the 12 slip
systems), the edge dislocation density component of the GND density
(Z]x dgel across the 12 slip systems), and the norm of the GND density
vector (X|k®| across the 12 slip systems) after the first sliding stroke.
Dislocation density is found to accumulate at a depth of approximately
0.312 pm beneath the deformed surface, primarily contributed by the
edge components. This GND accumulation we identify as a first DTL.
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()

Fig. 7. Comparison of simulation and experimental results for nano-indentation test. Top-view of the indentation-induced surface topographies in comparison with experimentally
observed data measured by [43]. (a), (b), and (c) are the simulation results while indenting on the planes with ND equals to (a) (010), (b) (110), and (c) (111). The black
dash-dotted line circles indicate the size and position of the indenter. And (d), (e), and (f) are AFM image measured by [43] with ND equals to (a) (001), (b) (011), and (c) (111).

The cross-sectional view of the edge GNDs (Z |« dge|) at the same time
step is provided in Fig. 8(d), where the accumulation line beneath and
parallel to the sliding surface at a certain depth is visible.

After the ninth sliding stroke, shown in Fig. 8(c), the boundary of
the first DTL becomes less distinct and shifts deeper into the surface,
now located at a depth of 0.403 pm. Additionally, a second dislocation
accumulation is observed at a depth of 1.768 um, which we identify as
the second DTL. Both DTLs are primarily composed of edge compo-
nents. The cross-sectional view of the edge GNDs at the same time step
is shown in Fig. 8(e).

3.3. Misorientation after the first sliding stroke

Crystal rotation is a key phenomenon in crystalline materials under
tribological loading. In this section, alongside the formation of disloca-
tion trace lines discussed in Section 3.2, we present the misorientation
distribution after the first sliding stroke, derived from the simulated «
field. The calculation procedure is detailed in Appendix B.

The magnitude for the lattice misorientation angle around the x-
direction (SD), |¢,|, is shown in Fig. 9(a); around the y-direction (ND),
l,| in Fig. 9(b); and around the z-direction, |g.| in Fig. 9(c). We can
see the pronounced crystal rotation occurs at a depth of around 439 nm.
The rotation around ND (|, |) has the highest value of around 11°.

Since the misorientation is computed from the GND distribution,
we also present the sum of the screw component GNDs (X [k o) I
Fig. 9(d). The results indicate that rotation around the x- (SD) and z-
directions is primarily driven by screw component GNDs, while rotation
around the y-direction (ND) mainly arises from edge component GNDs,
as shown in Fig. 8(d).
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3.4. Dislocation transport under tribological loading

We display the results for the dislocation transport process driven
by the stress field induced by tribological loading. Using the 010,
setup, we analyze the cross-section on the xz-plane (the ND-plane) at
y = 5.457 pum, where the position of the first DTL after one sliding stroke
has been found, as shown in Fig. 8(b).

Fig. 10 displays the evolution of dislocation density transport under
tribological loading. We depict the screw (first column) and edge (sec-
ond column) dislocation density components separately for clarity. The
results show how dislocations are transported following the indenter’s
sliding motion (indicated by the white arrows). It can be observed
that the edge component forms more stable dislocation accumulation
directly beneath but a bit behind the indenter center (indicated by the
yellow arrows) as well as in front of the contact area. In addition,
the dislocation accumulation moves along with the sliding motion.
Conversely, the screw dislocation density component tends to form
an accumulation in front of the contact area rather than beneath the
center, while also being transported with the indenter. Furthermore,
both edge and screw components form dislocation accumulation along
the sides of the sliding groove.

The results presented in Fig. 10 are depicted exemplarily for the
010, setup. However, the computations have been done for all four
setups as listed in Table 2. The different setups show qualitatively com-
parable dislocation density transport phenomenon and are for brevity
not shown here for all setups in detail. Only the dominant dislocation
density components beneath the indenter center, in front of the con-
tact area, and along the groove sides change according to the crystal
orientation.
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Fig. 8. Dislocation distribution along the y-axis (ND). (a) defines the data extraction path of dislocation densities for (b) and (c) and cross-section for (d) and (e). (b) and (c)
demonstrate different types of dislocation density distributions along the y-axis at T = 400ps and at T = 3600 ps respectively. (d) and (e) are the distribution of edge component
GND densities at the cross-section of xy-plane at z =9 pm when T =400ps and T = 3600 ps respectively.

3.5. Surface topographies induced by tribological loading under various
crystal orientations

To evaluate the sensitivity of crystal orientation to plastic deforma-
tion under tribological loading, we analyze the surface topographies
for the four crystallographic setups listed in Table 2. The topographies
are evaluated after one forward sliding stroke as shown in Fig. 11.
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The data was extracted along the z-axis at the sliding groove’s center
(x = 9pm, y = 6pum), as illustrated in Fig. 11(a). Surface profiles for
the setups with ND = (111) and (010) are presented in Figs. 11(b) and
11(d), respectively.

For ND = (l111), Fig. 11(b) shows the surface topographies of
setups 111, and 111g. In setup 111,, the surface pile-up along the
sliding groove is nearly symmetrical, whereas setup 1115 produces an
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Fig. 9. The magnitude of misorientation around (a) x- (SD), (b)y- (ND), and (c)z-directions after the first sliding stroke at the cross-section of xy-plane at z =9 pm when 7" = 400 ps.
For comparison, (d) shows the distribution of the screw component GNDs, complementing the edge component distribution presented in Fig. 8(d).

asymmetrical surface topography, with material pile-up on the right-
hand side (facing toward the SD direction) and sink-in on the left-hand
side. Additionally, the distribution of total plastic slip, X|y%| across all
12 slip systems, is shown for both setups. We find that setup 111y
exhibits an asymmetrical distribution of plastic slip as well. The side
with higher values of plastic slip corresponds to the material pile-up,
while the lower values of plastic slip correspond to the material sink-
in. Furthermore, a higher overall magnitude of plastic slip and deeper
groove can be observed compared to the setup 111,.

Because plastic deformation results from dislocation motion with
the velocity driven by resolved shear stress, in Fig. 11(c), we also show
the distributions of the total resolved shear stress X|z°| and dislocation
velocity X|v®| across all 12 slip systems for both setups. The results are
taken while the indenter was at x = 9 pm and z = 9 pm. Fig. 11(c)
shows that also the X|z%| and X|v®| distributions are influenced by
the crystallographic characteristics. The distribution correlate with the
plastic slip distribution X|y®| shown in Fig. 11(b).

For ND = (010), the surface topographies for both setups, 010, and
010g, exhibit symmetrical features as shown in Fig. 11(d). To further
explore the impact of frictional force on plastic deformation under
different sliding directions, we also plot the surface topographies of
these setups under two frictional conditions: g iion = 0 (no friction)
and pigicion = 0.25 (with friction) in Fig. 11(d). The result reveals that
frictional force significantly influences the plastic deformation in setup
0104, whereas its effect is less pronounced in setup 010g.

3.6. Tribological contact area evolution considering plastic deformation

To assess the evolution of the tribological contact area influenced
by plastic deformation, we demonstrate the changes in the contact
area over multiple sliding strokes for the crystallographic setup 010,,
as depicted in Fig. 12. The color legend represents the total strain
along the loading direction (y-axis), with the contact area shown as the
dark-blue region, corresponding to the highest strain along the loading
direction.
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Considering the initial condition of a perfectly flat surface,
Fig. 12(a) shows a nearly circular contact shape after the first half
stroke. As sliding continues, Figs. 12(b), 12(c), and 12(d) display the
evolution results of the contact area after 1.5, 3.5, and 8.5 strokes,
respectively. It can be observed in Fig. 12(a), that there is a gradual
transition of the contact area from a circular to an oval shape as the
number of strokes increases.

4. Discussion

4.1. The physical interpretation of the numerical flux derived using the flux
vector splitting method

In this section, we discuss the physical interpretation of the nu-
merical flux formulation derived using the upwind scheme through
the FVS method, as detailed in Section 2.2. The approach begins by
decomposing the Jacobian matrix J(Q) along I’ and d° into J;s and
Jas- We then solve the eigenvalue problem for J;s and J4s separately.
A second splitting further divides Jis and Jgs into positive and negative
eigenvalue components. Thus, the approach splits the numerical flux
on each face into four components, combining positive/negative and
line/Burger’s directions, as shown in Eq. (27). For a hexahedral cell
with six faces, this method leads to a total of 24 terms for the flux
computation, as detailed in Eq. (34). The terms represent either posi-
tive/negative contributions or are zero, depending on the flux direction.
This implies that the splitting simplifies the identification of inner face
flux directions, particularly in cases involving complex propagation
directions.

The numerical flux derived in this study builds upon the frame-
work for solving the eigenvalue problem, as detailed in [22,35]. By
employing a flux splitting method to identify inner face flux directions,
we achieve a stable numerical flux. A similar splitting concept has
been introduced by [46]. However, instead of integrating the splitting
process with solving the eigenvalue problem, [46] decomposes the
dislocation density into positive/negative and edge/screw components.
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Fig. 10. The screw and edge components of the dislocation density transported by the tribological loading given exemplarily for the setup 010,. The cross-section of observation
is on the xz-plane at y = 5.457 pm. The white arrow denotes the sliding direction of the indenter, while the yellow arrow indicates the indenter’s center.

Therefore, the method is limited by not accounting for the curvature
flux in the numerical flux derivation. It is remarked, that our approach
presented, however, includes the same numerical flux as the method
presented in [46] if the flux term for the curvature is neglected by
omitting the third components of the Jacobian matrices, Jis and Jgs.
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The numerical stability of dislocation transport computation using
the numerical scheme derived is examined through two benchmark
cases: the edge dislocation dipole wall separation (Appendix A.3) and
the dislocation loop expansion (Appendix A.4). From the two cases, we
show the derived numerical scheme demonstrates positivity preserving
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Fig. 11. Results after completing one sliding stroke under various crystallographic setups. (a) illustrates the data extraction path for all measurements. (b) presents the simulation
results for surface topography and the sum of plastic slip across all 12 slip systems for ND = (111). (c) shows the sum of resolved shear stress and dislocation velocity for ND
= (111) while the indenter is at the position of x =9 um. (d) depicts the surface topography for ND = (010), comparing conditions with and without frictional force.

and numerical stability under both the condition with and without the
effect of dislocation bow-out.

4.2. Dislocation trace line and crystal rotation in the subsurface area

Linear discontinuities, referred to as DTLs parallel to the surface,
have been reported in experimental studies, see [5-7], for copper under
tribological loading. These DTLs have been assumed to be dislocation
lines with accumulated Burgers vector density, causing contrast varia-
tions and marking discrete crystal rotation changes. Our simulations
show that this observation actually results from the excessive dislo-
cation density (k) accumulation already visible after the first sliding
stroke.

The presented model reveals that after one sliding stroke, GND
densities accumulate beneath the surface, forming the first DTL mainly
composed of edge components at a depth of 0.312pum for setup 010,,
as shown in Figs. 8(b) and 8(d). With an increased number of sliding
strokes to 9, a second DTL appears at a depth of 1.768 pm, as shown
in Figs. 8(c) and 8(e). Experimental studies have also been reported
the first DTL at depths of several hundred nanometers, consistent with
the GND accumulation in this study. However, the second DTL in
the simulation appears at a greater depth than typical experimental
observations are able to reveal, which usually report depths of less than
1 pm. The deviation in predicting the position of the second DTL may
stem from the absence of dynamic crystal rotation coupling with the
loading process in the current model. As misorientation develops after
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the first cycle (shown in Fig. 9), the resulting crystallographic mismatch
could affect subsequent dislocation behavior, especially as the sliding
stroke increase. Experimental studies have also found that the first DTL
appear after merely one sliding stoke, and with increasing number of
passes of stokes, a second DTL at a deeper position is visible [6]. It
is also in consistent with the results we observed with our simulation
model.

The presence of GND densities is consistent with lattice rotation,
as described by [47]. Fig. 9 shows the misorientation distribution
after the first sliding stroke, compared to the undeformed state. These
results demonstrate that the proposed model captures the onset of
crystal rotation, which marks the initiation of sub-grain formation
under tribological loading. Experimental studies have shown that, over
time, such rotations evolve into small-angle grain boundaries forming
sub-grains in the subsurface region. However, in this work, crystal
rotation is evaluated only through post-processing of the x distribution
so far. To improve accuracy of the model for crystal rotation and
sub-grain evolution under repeated sliding, future model development
should incorporate the dynamic coupling along the loading process and
continuous lattice rotation.

Currently, no existing simulation model, whether discrete or con-
tinuum, can fully capture the formation of DTLs and sub-grains under
tribological loading. This study demonstrates the potential of the pro-
posed dislocation-based crystal plasticity model to simulate the forma-
tion of these important microstructure features observed in tribology
experiments. Future work may support experimental studies to better
understand the formation of these features.
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Fig. 12. Evolution of the contact area under tribological loading over multiple strokes.

4.3. Dislocation transport and plastic deformation under tribological load-
ing

In Section 3.4, we illustrate the dislocation transport phenomenon
driven by tribological loading, as simulated using the dislocation-based
crystal plasticity model developed in this study. Similar phenomena
have been observed in DDD simulations due to the stress field induced
by an indenter’s sliding [2]. Notably, [2] also highlight that classical
continuum mechanics or standard crystal plasticity methods cannot ef-
fectively consider the effect of dislocation transport and cannot account
for plastic deformation associated with it. However, this phenomenon,
characterized by large-scale dislocation glide, is critical as dislocation
glide is a primary mechanism driving plastic deformation.

The plastic deformation caused by dislocation dynamics appears as
material pile-up and sink-in along the sliding groove. [3] highlights
that these behaviors depend heavily on crystal orientation. Standard
crystal plasticity methods, however, are usually not sensitive to crys-
tallographic effects under tribological loading. They are often not able
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to accurately predict dislocation pile-ups while discrete simulations are
not able to capture that large length scales. In Fig. 11(c), we show
that the dislocation velocity, driven by resolved shear stress, is strongly
influenced by the crystal orientation. This observation affects plastic
deformation and leads to the distinct symmetrical and asymmetrical
surface topographies observed in setups 111, and 111y in Fig. 11(b).
The symmetric and asymmetric plastic deformation can be inter-
preted using the Thompson tetrahedron, as illustrated in Figs. 6(a) and
6(b) for 111, and 111y, respectively. Facing the positive SD direction,
the 111y setup shows distinct slip system activity on both sides of the
sliding groove: slip systems parallel to the surface (2 and 4) dominate
on the left-hand side, while those nearly perpendicular to the surface
(1 and 3) dominate on the right. Consequently, the crystallographic
configuration of 111y results in deeper resolved shear stress influence
perpendicular to the surface on the right and a broader spread of
stress parallel to the surface on the left. This distribution leads to a
similar pattern of dislocation velocity and plastic slip, and therefore
plastic deformation on the surface under sliding. In contrast, the 111,



S.-H. Lee et al.

setup shows symmetrical dislocation mobility on both sides of the
groove, producing a nearly symmetrical pattern in surface topography.
Observing the Thompson tetrahedron for 010, and 0105 in Figs. 6(c)
and 6(d), these setups also exhibit symmetrical dislocation mobility and
result in symmetrical surface topography (Fig. 11(d)).

4.4. Influence of frictional force

In Fig. 11(d), the influence of a frictional force on the plastic
deformation of the surface topographies is observed for the two setups
with ND = (010) and different SD directions. As highlighted in [2], the
frictional force increases the stress state and shifts the zone of maxi-
mum stress closer to the surface. Consequently, the stress distribution
is altered due to frictional force. The result presented in Fig. 11(d)
shows that the sensitivity of plastic deformation to frictional force is
highly dependent on crystal orientation. This sensitivity indicates that
further investigations of the role of the friction coefficient in dislocation
transport and a systematic comparison for different crystal orientations
should be conducted for a deeper understanding.

4.5. Tribological contact area evolution considering plastic deformation

In Section 3.6, we illustrate the evolution of the contact area over
multiple sliding strokes under the symmetrical setup 010,. The transi-
tion from Figs. 12(a) to 12(b) shows a substantial transformation in the
contact area shape, changing from circular to oval even after a single
stroke under the conditions of this study. This transformation is driven
by surface plastic deformation caused by dislocation motion during
sliding, as captured by the simulation model (Fig. 10 in Section 3.4).
After the first stroke, the deformable material’s surface topography is
no longer flat (Section 3.5, blue solid curve in Fig. 11(d)). Instead,
surface pile-ups form along the sliding groove’s sides due to plastic
deformation, causing the indenter tip to contact the groove’s sides
before its center, resulting in an elongated, oval-shaped contact area
transverse to the groove.

Tribological contact characteristics are predominantly governed by
plastic deformation [1-4]. This study highlights limitations in many
approaches simplifying tribological contact using superposed analytical
solutions, such as the Green’s function method [18]. These models
often assume purely elastic deformation and idealized geometries. For
instance, Hamilton’s solution [19] predicts stress fields for a spherical
surface sliding against a semi-infinite plane, resulting in a circular
contact area. However, such models neglect plastic deformation and
surface geometry changes, leading to inaccuracies in stress fields once
plastic deformation occurs. Moreover, elastic models often underesti-
mate the true contact area and overestimate contact pressure under
small loads [4]. Experimental studies also struggle to measure true
contact area and pressure in non-transparent materials, leaving data
gaps. The proposed methodology addresses these limitations, providing
a realistic model for macro- and micro-scale material behavior under
tribological contact mechanics.

5. Conclusion

We present a computational simulation framework based on
dislocation-based crystal plasticity theory (CDD) to analyze macro- and
micro-scale material behavior under tribological contact mechanics. To
ensure numerical stability, we derived a numerical scheme using the
flux vector splitting method to solve the CDD problem. An implicit
coupling mechanism enables large simulation time steps and accurately
captures dislocation evolution’s influence on plasticity. To model mate-
rial response under contact conditions, a penalty contact method with
a Neumann boundary condition was introduced.

Using this model, we investigated material behavior under tribolog-
ical contact, leading to the following conclusions:
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» The proposed framework highlights and explains the formation
of DTLs and their evolution beneath the surface, aligning with
experimental observations of the position for the first DTL. This
demonstrates its potential as a continuum crystal plasticity model
for simulating microstructure feature in the subsurface region
under tribological contact.

The misorientation distribution after the first sliding stroke
demonstrates the model’s ability to predict the onset of sub-
grain formation. However, dynamic coupling with lattice rotation
during loading is needed for improved predictions under repeated
cycles.

The continuum model allows for explicit simulation of dislocation
transport phenomena, a key mechanism for understanding plastic
deformation under tribological loading. This has been realized
on that length scale for the first time by the continuum model,
in contrast to previous studies that were restricted to smaller
scales applying DDD and MD simulations. By accounting for the
effects of crystal orientation on resolved shear stress, dislocation
velocity, and plastic slip, the model predicts both symmetrical and
asymmetrical dislocation mobility and plastic deformation. This
framework provides a methodology for analyzing material behav-
iors under tribological contact, including dislocation features and
material pile-up and sink-in along sliding grooves under different
crystal orientations, bridging the gap between continuum and
discrete approaches.

The sensitivity of plastic deformation to frictional force varies
significantly with crystal orientation.

The simulation methodology overcomes the limitations of adapt-
ing traditional elastic and idealized analytical solutions by accu-
rately capturing the evolution of contact area and stress states
influenced by plastic deformation at each time step, providing
a more realistic and reliable approach for analyzing tribological
contact mechanics, especially in a larger deformation regime.

Although the present study is purely numerical, the proposed simu-
lation method provides a valuable foundation for connecting mesoscale
simulations with experimental observations. It enables detailed investi-
gation of subsurface processes in crystalline materials under tribologi-
cal loading and offers a pathway for future validation. The method can
assist in interpreting experimental findings related to microstructural
features such as dislocation trace lines, sub-grain structures, and dislo-
cation evolution under repeated loading. It also supports the analysis
of macroscopic characteristics like surface topography, as well as the
influence of different loading scenarios—such as the effect of frictional
forces under varying crystallographic conditions. By bridging numerical
simulations and experimental studies, the approach holds strong po-
tential for advancing the understanding of complex material behavior
under tribological loading.
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Appendix A. Numerical benchmark tests and properties

We present several benchmark test cases to verify both the physical
fidelity and stability of the numerical simulation with these tests. The
material parameters are the same as the ones detailed in Section 2.6.

A.1. Convergence test of the mechanical response under indentation loading

We demonstrate the convergence behavior of the numerical scheme
by simulating a displacement-controlled indentation problem, focus-
ing on testing the numerical stability of the scheme derived for the
micro-problem. To simplify the computational procedure, the boundary
condition described in Section 2.4 is modified to a Dirichlet boundary
condition. Specifically, the indenter is controlled by displacement, with
its movement linearly related to the macro time T, such that C; gen: =
[0, —0.005T, 0] pm. As illustrated in Fig. 4, once penetration is detected
(as shown in Fig. 4(b)), we impose the gap function as the Dirichlet
boundary condition instead of calculating the force balance. Therefore,
the Dirichlet boundary condition in Eq. (3a) becomes

up = —5(x). (A1)

The indenter is loaded for 50ns, reaching an indentation depth of
0.25 pm. The indenter is then held at this depth for 30ns to allow for
relaxation.

We test the displacement-controlled indentation problem at var-
ious spatial discretization levels. The macro problem uses Lagrange
discretization with polynomial degree one, while the micro problem
employs discontinuous Galerkin discretization with polynomial degree
one. The five discretization levels, with corresponding element sizes
and element counts, are listed in Table A.4.
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Table A.4
Overview of discretization levels with corresponding element sizes and number of
elements.

Level 0 1 2 3 4
Element size (pm) 1 0.5 0.25 0.125 0.0625
Number of elements 1000 8000 64000 512000 4096 000
Table A.5
Convergence test for the contact boundary condition.
Level 0 1 2 3 4
Indented depth (nm) 0.2486 0.2974 0.1811 0.1577 0.1498
Responding force (mN)  0.05789  0.05793  0.05767  0.05732  0.05732
Maximum of 7° (MPa) 4.2944 10.8495 11.1483 11.0401 11.4261

In Fig. A.13, the load-displacement curves demonstrate conver-
gence behavior as the number of elements increases. When the dis-
cretization level exceeds level 2, the load—displacement curves show
minimal differences, indicating sufficient convergence on the mechan-
ical response influenced by the microstructure.

A.2. Convergence test for the contact boundary condition

We also performed a convergence test to evaluate the force balance
between the applied force Fyypjie
deformed material under different discretization levels for the contact
boundary condition.

4 and the responding force from the

The test use the force-controlled indentation problem, where a force
of 0.05714 mN is applied with an indenter radius Rj,ge, Of set to be
0.5 pm. The material dimensions are defined as L, xL,xL, = 18x8x18 pm
with an initial dislocation density p° = 2 pm~2 across all 12 slip systems.

The tests under different discretization levels detailed in Table A.4
are summarized in Table A.5. These responses include the indented
depth (the deepest point of the indented material), the responding force
(calculated by integrating o, over the indented area on the deformed
material), and the maximum value of 7% throughout the material. The
results show that, although the force balance between Fp;jeq and
the responding force is achieved at discretization level 0, all other
mechanical responses converge when the discretization level exceeds
level 3.

2.5
Level
2.0 0
— 1
Z 2
1.5 4
BT —;
'g 4
3 1.0 4
—
0.5
0.0 =T T T
0 10 20 30

40 50 60 70 80

Time step

Fig. A.13. Convergence behavior in the load—displacement curves of solving indentation problem.
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Fig. A.14. Benchmark result simulating the movement of a straight edge dislocation dipole wall.

A.3. Edge dislocation dipole wall separation

We also simulate the movement of a straight edge dislocation dipole
wall. The system dimensions are 3.5 X 0.1 X 5um in the x-, y-, and z-
directions, with only one layer of elements. Each element is a 0.1 X
0.1x0.1 pm hexahedron, using Lagrange discretization with polynomial
degree equal to one and discontinuous Galerkin discretization with
polynomial degree equal to zero (finite volume). We consider one slip
system, with slip direction d! = (1,0,0) and line direction 1! = (0, 1,0).
We place edge dipole walls by assuming the initial condition for the
micro problem with an initial total dislocation density of p! = 50 pm~2
at positions ranging from x = 0.8 to 0.9 pm. For the macro problem, we
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assume a homogeneous external stress z3,, = 200 MPa throughout the
system, as described in Eq. (10).

Since the dislocation walls are subjected to homogeneous 77, they
remain straight without bowing out. This test verifies dislocation trans-
port across elements via the numerical flux detailed in Section 2.2
under simple conditions without dislocation bow-out. The results are
shown in Fig. A.14, where the orange curve represents p', and the
blue curve represents K; dge” At T =1 ns, most initial p! remain SSDs.

Over time, SSDs convert into positive/negative edge GNDs and move
into neighboring elements. During transport, i.e., at T = 5, 15, 30 ns,

p! matches K; dge without numerical error. This test demonstrates the
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Fig. A.15. Benchmark result simulating the expansion of a dislocation loop.

positivity-preserving nature of the derived numerical scheme without The loop has an initial radius of 2.5 pm, following the setup in [35]. The

dislocation bow-out. system dimensions are 10x0.2x 10 um along the x-, y-, and z-directions.

Each element is a 0.0625 x 0.0625 x 0.0625 pm hexahedron, with both

A.4. Dislocation loop expansion Lagrange and discontinuous Galerkin discretization with polynomial
degree equal to one applied.

We also simulate the expansion of a dislocation loop on a single slip The results in Figs. A.15(a) to A.15(d) show the evolution of p!,

system with slip direction d! = (1,0,0) and line direction 1' = (0, 1,0). q', and Kel dge” with «! .. following a similar trend. These results

20
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confirm that the proposed numerical scheme effectively converts the
curvature density q! into the total dislocation density p' during loop
expansion. The curvature density, introduced as a source term, com-
pensates for missing dislocation density as the loop expands without
causing divergence. This is demonstrated in the evolution of p' over
time (Fig. A.15(e)). Introducing the curvature term enhances positivity
preservation when dislocation bowing-out.

Appendix B. Calculation for misorientation from GND density

To facilitate comparison with experimental measurements such as
electron backscatter diffraction (EBSD) or transmission Kikuchi diffrac-
tion (TKD), we derive the misorientation field from the simulated GND
density distribution «.

Nye [47] characterize the lattice orientation change dg; with the
lattice curvature tensor X;; and the descritization length scale dx;
(dimension of the elements) along j

dop; = fK,-jdxj. (B.1)

And X; y has the relation with dislocation tensor (Nye’s tensor) «; ; as

1
y= iy (B.2)

X 8y Q-

From the simulation results proposed in this work, we calculate the
dislocation density with excessive Burgers vector as the GND density k*
for all slip systems from the CDD model. We can therefore estimate «;;
in terms of pure dislocations with screw and edge components based
on the derivation detailed in Section 4 of [48]

15®d5).

If we bring Eq. (B.3) back to Eq. (B.2), then to Eq. (B.1), we can
estimate the misorientation ¢ around x-(SD), y-(ND), and z-directions.

@ = 52, (Ko @ @ &° + 5 (B.3)

screw edge

Data availability

Simulation data and videos for all results will be available on
request. The source code for the dislocation-based crystal plasticity
simulation software realized in M++ is stored as a subproject under
https://gitlab.kit.edu/kit/mpp. Access rights may also be granted upon
reasonable request.
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