KIT | KIT-Bibliothek | Impressum | Datenschutz

Understanding stability and reactivity of transition metal single-atoms on graphene

Morais, Wesley Oliveira; Felix, João Paulo Cerqueira; Silva, Gabriel Reynald da; Bastos, Carlos Maciel de Oliveira; Dias, Alexandre C.; Flores, Efracio Mamani; Rêgo, Celso R. C. 1; Sousa, Vinícius da Silva Ramos de; Guedes-Sobrinho, Diego; Piotrowski, Maurício J.
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Recently, single-atom catalysts (SACs) based on transition metals (TMs) have been identified as highly active catalysts with excellent atomic efficiency, reduced consumption of expensive materials, well-defined active centers, and tunable activity and selectivity. Furthermore, when carbon-based supports (including graphene-derived materials) are employed in SACs, their unique structural and electronic properties, such as high electrical conductivity and mechanical strength, can be integrated. However, for this application, the primary objective is to maintain proper stability-reactivity balance, ensuring the system remains stable while preserving its high chemical activity. In this context, we explore the adsorption behavior of TM single atoms (Co, Ni, Rh, Pd, Ir, Pt) on pristine graphene (pGR), hexagonal boron nitride (hBN), and graphene with monovacancies (GRm) using DFT-PBE+D3 calculations. From the adsorption energy trends, we observe weak chemisorption on pGR and physisorption on hBN, with adsorption energies ranging from 0.5 eV (Co/hBN) to 1.80 eV (Rh/pGR). In contrast, the adsorption strength is significantly enhanced on GRm (strong chemisorption), with adsorption energies reaching up to 9.11 eV for Ir/GRm, attributed to the strong defect-induced reactivity and improved orbital overlap. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000182255
Veröffentlicht am 17.06.2025
Originalveröffentlichung
DOI: 10.1038/s41598-025-00126-y
Scopus
Zitationen: 1
Web of Science
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2045-2322
KITopen-ID: 1000182255
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Scientific Reports
Verlag Nature Research
Band 15
Heft 1
Seiten 15496
Vorab online veröffentlicht am 03.05.2025
Nachgewiesen in Web of Science
Scopus
Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page