KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep Learning Based Surface Classification of Functionalized Polymer Coatings

Vaez, Safoura ORCID iD icon 1; Shahbazi, Diba 1; Koenig, Meike ORCID iD icon 1; Franzreb, Matthias ORCID iD icon 1; Lahann, Joerg 1
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)

Abstract:

Low-technology characterization of material surfaces poses a challenge of significant importance for many scientific fields such as medical implants, biosensors, and regenerative medicine. Simple, fast, and scalable surface analysis methods that can be applied to a wide range of functionalized polymer coatings would thus constitute a major scientific and technological advance. In this work, we studied stain patterns formed by depositing a defined protein solution onto various polymer surfaces. The images of the resulting drying droplet patterns were captured by polarized light microscopy and analyzed by a deep-learning neural network. In this proof-of-concept study, we used chemical vapor deposition polymerization to deposit ten structurally distinct polymer coatings that share an identical polymer backbone, but differ in their functional groups. Despite the relatively minute differences in their chemical structure, the CNN classification of the stain patterns was highly reproducible. Across all different polymers, the overall classification accuracy of the CNN was 96%. When challenging the CNN with images from an unknown polymer coating, i.e., poly[(4-bromo-p-xylylene)-co-(p-xylylene)], these surfaces were classified as halogenated or pseudohalogenated coatings with 95% accuracy. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000182275
Veröffentlicht am 27.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 13.05.2025
Sprache Englisch
Identifikator ISSN: 0743-7463, 1520-5827
KITopen-ID: 1000182275
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Langmuir
Verlag American Chemical Society (ACS)
Band 41
Heft 18
Seiten 11272–11283
Vorab online veröffentlicht am 30.04.2025
Nachgewiesen in Dimensions
Web of Science
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page