KIT | KIT-Bibliothek | Impressum | Datenschutz

Process‐Based Machine Learning Observationally Constrains Future Regional Warming Projections

Wilkinson, Sophie ; Nowack, Peer ORCID iD icon 1,2; Joshi, Manoj
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
2 Institut für Meteorologie und Klimaforschung Atmosphärische Spurengase und Fernerkundung (IMKASF), Karlsruher Institut für Technologie (KIT)

Abstract:

We present the results of a novel process-based machine learning method to constrain climate model uncertainty in future regional temperature projections. Ridge-ERA5—a ridge regression model—learns coefficients to represent observed relationships between daily near-surface temperature anomalies and predictor variables from ERA5 reanalysis in Northern Hemisphere land regions. Combining the historically constrained Ridge-ERA5 coefficients with inputs from CMIP6 future projections enables a derivation of observational constraints on regional warming. Although the multi-model mean falls within the constrained range of temperatures in all tested regions, a subset of models which predict the greatest degree of warming tend to be excluded and decomposition of the constraint into predictor variable contributions suggests error-cancellation of feedbacks in some models and regions.


Verlagsausgabe §
DOI: 10.5445/IR/1000182296
Veröffentlicht am 06.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Atmosphärische Spurengase und Fernerkundung (IMKASF)
Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2993-5210
KITopen-ID: 1000182296
HGF-Programm 12.11.34 (POF IV, LK 01) Improved predictions from weather to climate scales
Weitere HGF-Programme 12.11.32 (POF IV, LK 01) Advancing atmospheric and Earth system models
Erschienen in Journal of Geophysical Research: Machine Learning and Computation
Verlag Wiley
Band 2
Heft 2
Seiten e2025JH000698
Vorab online veröffentlicht am 05.06.2025
Schlagwörter Observational constraints, climate change, uncertainty, machine learning, CMIP
Nachgewiesen in Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page