KIT | KIT-Bibliothek | Impressum | Datenschutz

Process‐Based Machine Learning Observationally Constrains Future Regional Warming Projections

Wilkinson, Sophie ; Nowack, Peer ORCID iD icon 1; Joshi, Manoj
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

We present the results of a novel process-based machine learning method to constrain climate model uncertainty in future regional temperature projections. Ridge-ERA5—a ridge regression model—learns coefficients to represent observed relationships between daily near-surface temperature anomalies and predictor variables from ERA5 reanalysis in Northern Hemisphere land regions. Combining the historically constrained Ridge-ERA5 coefficients with inputs from CMIP6 future projections enables a derivation of observational constraints on regional warming. Although the multi-model mean falls within the constrained range of temperatures in all tested regions, a subset of models which predict the greatest degree of warming tend to be excluded and decomposition of the constraint into predictor variable contributions suggests error-cancellation of feedbacks in some models and regions.


Verlagsausgabe §
DOI: 10.5445/IR/1000182296
Veröffentlicht am 06.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2993-5210
KITopen-ID: 1000182296
HGF-Programm 12.11.34 (POF IV, LK 01) Improved predictions from weather to climate scales
Weitere HGF-Programme 12.11.32 (POF IV, LK 01) Advancing atmospheric and Earth system models
Erschienen in Journal of Geophysical Research: Machine Learning and Computation
Verlag Wiley
Band 2
Heft 2
Seiten e2025JH000698
Vorab online veröffentlicht am 05.06.2025
Schlagwörter Observational constraints, climate change, uncertainty, machine learning, CMIP
Nachgewiesen in Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page