KIT | KIT-Bibliothek | Impressum | Datenschutz

A localized orthogonal decomposition method for heterogeneous Stokes problems

Hauck, Moritz 1; Lozinski, Alexei
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper, we propose a multiscale method for heterogeneous Stokes problems. The method is based on the Localized Orthogonal Decomposition (LOD) methodology and has approximation properties independent of the regularity of the coefficients. We apply the LOD to an appropriate reformulation of the Stokes problem, which allows us to construct exponentially decaying basis functions for the velocity approximation while using a piecewise constant pressure approximation. The exponential decay motivates a localization of the basis computation, which is essential for the practical realization of the method. We perform a rigorous a priori error analysis and prove optimal convergence rates for the velocity approximation and a post-processed pressure approximation, provided that the supports of the basis functions are logarithmically increased with the desired accuracy. Numerical experiments support the theoretical results of this paper.


Volltext §
DOI: 10.5445/IR/1000182313
Veröffentlicht am 10.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 06.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000182313
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 24 S.
Serie CRC 1173 Preprint ; 2025/24
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Forschungsdaten/Software
Siehe auch
Schlagwörter Stokes problem, flow around obstacles, multiscale method, a priori error analysis, exponential decay
Nachgewiesen in OpenAlex
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page