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Abstract Modern phenomenological damage models
use Lode parameter L and triaxiality η to describe the
stress state of an isotropic material. Value pairs in the
region between L , η = (0, 0) and L , η = (0, 1√

3
) in

plane stress condition can lead to ambiguous descrip-
tions of the deformation. The case of simple shear is
not defined separately. By using the difference in angles
between the principal strain and principal stress axes,
cases of coaxial stretch superposed with simple shear
can be distinguished from cases of coaxial stretch with-
out simple shear. In the case of anisotropic material or
large elements, the distinction between these ambigu-
ous cases can be utilized to optimize failure models.
This study proposes a method to recover the defor-
mation gradient and shear direction for proportional
and non-proportional loading with an elastoplastic von
Mises material. The deformation gradient is suitable
for distinguishing stress states with simple shear from
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1 Introduction

Established phenomenological damage models rely on
the use of triaxiality η and Lode parameter L to describe
the stress state Bai and Wierzbicki (2008); Mohr and
Marcadet (2015); Lian et al. (2013); Lou et al. (2012);
Brünig et al. (2016); Liu et al. (2022); Ganjiani and
Homayounfard (2021); Cao et al. (2014). The calcula-
tion of these values is commonly based on the princi-
pal stresses σ1, σ2 and σ3, with triaxiality η calculated
as the ratio between the mean stress and von Mises
stress, that is η = σ1+σ2+σ3

3
√

0.5((σ1−σ2)2+(σ2−σ3)2+(σ3−σ1)2)

and Lode parameter L calculated with L = 2σ2−σ1−σ3
σ1−σ3

.
The calibration of phenomenological damage models is
a challenging task because it requires extensive testing
programs to cover a wide range of stress states. The
resulting fracture locus is often highly dependent on
the selection of calibration tests. A proportional loading
path that ensures constant values of triaxiality and Lode
parameter is important to perform a reliable calibration
of the damage model. Therefore, many studies deal
with the design of test setups and specimen geometries
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to achieve specific stress states Traphöner et al. (2021);
Roth and Mohr (2016). For example, proportional load-
ing paths for simple shear can be achieved by using
disc specimens under torsional loading Traphöner et al.
(2018, 2021); Yin et al. (2015); Grolleau et al. (2022).
In some cases, a variety of conditions can be produced
with the same specimen geometry by rotating the speci-
men during loading Anderson et al. (2017) or by apply-
ing forces along two different axes Brünig et al. (2016);
Barsoum and Faleskog (2007). In addition to selecting
the right calibration tests, the specimens must be pre-
pared and manufactured with high accuracy. A deficient
surface quality of the testing specimens Traphöner et al.
(2018) or edge cracking effects Habibi et al. (2023) can
have detrimental effects on the fracture strain and influ-
ence the shape of the fracture locus.

Wierzbicki and Xue (2005) proposed the construc-
tion of a failure surface that describes the plastic failure
strain ε

pl
eq as a function of the stress state. The stress

state is described by triaxiality and Lode parameter.
The principal values of the Cauchy stress tensor are
σ1, σ2 and σ3. The principal stress values are used to
calculate the mean stress σm and the von Mises equiv-
alent stress σvM . These values serve to calculate the
triaxiality η as the ratio between mean stress and von
Mises stress. Three variations of expressing the Lode
parameter are common in literature; the Lode parame-
ter as the distance between origin and deviatoric plane
in Haigh-Westergaard stress space ξ , the normalized
Lode angle θ̄ and the Lode parameter L . Additionally,
in geology Lode’s ratio ν is used. The Lode parame-
ter was introduced in 1926 to describe deformed metal
Lode (1926). But it was more commonly used in struc-
tural geology, where it is used to describe the ellipsoidal
shape of the 3D representation of strain Elliott (1972).
The interpretation of the Lode parameter is to define
whether the strain ellipsoid is oblate, prolate, or spher-
ical (Fig. 1). Diagrams, such as the Hsu / Hossack dia-
gram and the Flinn diagram indicate the ratio of stretch
in the principal stretch directions in dependence of a
strain intensity value ε. These diagrams are common
tools in geology Hsu (1966); Hossack (1968); Ramsay
and Huber (2003).

One commonly overlooked aspect is that a stress
state described by Lode parameter L and triaxiality η

is ambiguous. This ambiguity is particularly noticeable
for shear. The stress state typically referred to as shear,
is described by Lode parameter L and triaxiality η both
at zero. However, this stress state can result from either

Fig. 1 The Hsu diagram describes the shape of the strain ellip-
soid via Lode’s ratio ν = (2ε2 − ε1 − ε3)/(ε1 − ε3)

pure shear or simple shear Butcher and Abedini (2019).
Pure shear results, when a square stretches in one direc-
tion, so that all angles remain at right angles and the
edge in direction of zero stress keeps its length. Sim-
ple shear results when two sides of a square slide in
opposite directions, so that all opposite edges remain
parallel to one another. This stress state is what we typ-
ically think of when we talk about shear.

However, any value pair of Lode parameter and tri-
axiality in the range of L , η = (0, 0) and L , η =
(0, 1√

3
) in plane stress condition can result from a

superposed deformation of stretch and simple shear. In
(Fig. 2) the triaxiality η and Lode parameter L are eval-
uated using the equations explained above. The strain
paths describing the stress state during the deformation
of the two cubic elements coincide. It seems unintuitive
that the stress state described by L , η = (−1, 1

3 ), which
is known as a uniaxial stress state, can have a simple
shear component. This issue is typically not addressed.
All stress states described by the same value pair of
Lode parameter and triaxiality are assumed to describe
the same stress state, regardless of whether simple shear
is present. Two animated versions of the deformations
corresponding to uniaxial tension shown in Fig. 2 can
be found in Electronic Supplementary Material 1 (for
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Fig. 2 Different deformations of initially cubic elements follow-
ing identical proportional strain paths at L , η = (−1, 1

3 ) under
plane stress with a von Mises material

2D view) and Electronic Supplementary Material 2 (for
3D view).

Current descriptions of stress states using Lode
parameter and triaxiality are not suitable for finding
the presence and magnitude of simple shear. When
transforming deformation gradients to strain tensors the
information regarding simple shear is lost. Therefore,
this problem persists when Lode parameter and triaxi-
ality are calculated in strain space Lou et al. (2014). It is
treated the same way as a body undergoing pure shear
and rigid body rotation Ramsay and Huber (2003). To
identify the presence of a simple shear component it is
necessary to calculate the angular difference between
the principal stress and principal strain axes. The prin-
cipal stress and principal strain axes will always remain
coaxial without simple shear, but they will diverge as
simple shear progresses Ramsay and Huber (2003).

Unit cell calculations performed by Vigneshwaran
and Benzerga (2023) show that the magnitude of the
shear component for a shear-tension loading affects the
onset of localization and ductility. The need to distin-
guish simple shear and pure shear is in accordance with
geology studies Ramsay and Huber (2003). During
simple shear, some directions in the material undergo
sequences of shortening and stretching. Whereas in
pure shear, all directions progressively either lengthen
or shorten Ramsay and Huber (2003).

Fig. 3 Failure loci obtained from traversing different paths of an
isotropic material under plane stress loading conditions (adapted
from Butcher and Abedini (2019) Fig. 15, used under CC BY 4.0)

In Butcher and Abedini (2019) the authors con-
cluded that Lode angle and stress triaxiality are insuf-
ficient to uniquely describe a stress state. Their study
revealed that the fracture locus for plane stress can-
not be described by a 2D failure curve as previously
assumed. Even for plane stress, the fracture locus must
be described by three dimensions. From their study in
Butcher and Abedini (2019) it is evident that the discon-
tinuity at uniaxial stress of the plane stress failure curve,
as commonly described in literature Bai and Wierzbicki
(2008), is an artifact of mixing coaxial and non-coaxial
calibration tests. Specifically, when characterization
tests of simple shear (non-coaxial) for L , η = (0, 0)

and uniaxial loading (coaxial) L , η = (−1, 1
3 ) are uti-

lized to calibrate the failure curve, a discontinuity and
local maximum at uniaxial tension results. If only cali-
bration tests with no simple shear component were uti-
lized to calibrate the failure curve, the value of equiv-
alent strain at triaxility η = 0 would be higher and the
failure curve would transition to values η > 1

3 without
the formation of a peak. They concluded that distin-
guishing between simple shear and pure shear is nec-
essary when developing failure models and proposed a
failure surface for plane stress based on triaxiality and
a newly introduced normalized shear angle parameter,
which takes the coaxilaity into consideration. However,
to calculate this normalized shear angle parameter the
shear deformation needs to be oriented parallel to one
of the local coordinate axes and loading needs to remain
proportional. These conditions can rarely be expected
in practical applications.
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The present paper will show a method to retrieve
information regarding simple shear for isotropic incom-
pressible materials under plane stress for deformations
resulting from superposed simple shear and coaxial
stretch for proportional and non-proportional loading.
This presented method is robust to rigid body rotation
and translation. Boundary conditions are presented to
create one-element tests for specific stress states with
and without simple shear for plane stress in regions of
low triaxialities.

2 Materials and Methods

In this section, we will look at established equations
and parameters to describe the stress state of a material.
The equations and parameters will be discussed in the
context of simple shear.

2.1 Stress states defined by Lode parameter and
triaxiality

Phenomenological failure models use different vari-
ables derived from the stress invariants to describe the
stress state of a material. Failure models developed by
Johnson-Cook Johnson and Cook (1985) or Hancock-
Mackenzie Hancock and Mackenzie (1976) describe
a fracture strain dependent on triaxiality. Triaxiality
depends on the first invariant of the stress tensor I1 and
the second invariant of the deviatoric stress tensor J2.
These descriptions of the fracture locus were extended
by Bai and Wierzbicki to include the dependence on the
Lode parameter Wierzbicki and Xue (2005). The Lode
parameter is a measure derived from the third invariant
of the stress tensor J3.

p = −1

3
I1 = −σm = −1

3
(σ1 + σ2 + σ3) (1)

q = √
3J2 = σvMises

=
√

1

2

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]

(2)

r =
[

27

2
(σ1 − σm) · (σ2 − σm) · (σ3 − σm)

] 1
3

(3)

η = − p

q
(4)

ξ = J3

2

(
3

J2

) 3
2 =

(
r

q

)3

= cos(3θ) (5)

θ = 1 − 6θ

π
= 2

π
arccos ξ (6)

Lσ = 3 · tan(θ) − √
3

tan(θ) + √
3

(7)

In material science, the Lode parameter is com-
monly defined in terms of stress values as seen in
Eqs. 5 to 7. The definition of Lode parameter and tri-
axiality depending on strain values was introduced to
materials science by Lou et al. Lou et al. (2014). The
equation to calculate the Lode parameter is based on
true strain increments (Eq. 8).

Lε = 3dε2

dε1 − dε3
(8)

The values dε1, dε2, dε3 are the increments of prin-
cipal true strain. Their indices describe the order of
their magnitudes with ε1 ≥ ε2 ≥ ε3. These values do
not contain information about the direction or orienta-
tion of the principal strain axis. Under the assumption
of proportional loading, the triaxiality ηε can then be
calculated with Eq. (9), which was derived in Lou et al.
(2014). The exact definition of ηε depends on which
principal stress equals zero.

ηε (Lε) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 3−Lε

3·
√

Lε
2+3

, σ1 = 0

− 2·Lε

3·
√

Lε
2+3

, σ2 = 0

3+Lε

3·
√

Lε
2+3

, σ3 = 0

(9)

However, Lode parameter and triaxiality can not be
arbitrarily transformed from stress space to strain space
and vice versa when the underlying deformation gradi-
ent superposes simple shear and coaxial stretch. There-
fore, we will be using the subscript ε throughout this
study, to indicate Lε calculated by Eq. (8) and Lσ calcu-
lated by 7. These two equations can give two different
results and are not always interchangeable.

2.2 Stress states defined in a spherical coordinate
system

In Butcher and Abedini (2019), the authors identified
the ambiguous nature of Lσ , ησ descriptions for stress
states and aimed to create a framework that allows to
differentiate the shear and normal part by using a spher-
ical coordinate system (4). The framework is limited
to plane stress states and assumes σ3 to be zero. The
spherical coordinates were calculated with Eq. (10) and
Eq. (11). The radius is the von Mises stress in plane
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Fig. 4 Spherical coordinate system for stress states in plane
stress according to Butcher and Abedini (2019)

stress. The shear angle ψS and normal angle φN can
assume values between 0◦ and 90◦.

σ12 = σvM,pσ · cos ψS

σ11 = σvM,pσ · cos φN · cos ψS

σ22 = σvM,pσ · sin φN · sin ψS (10)

σvM,pσ =
√

0.5 · (
(σ11 − σ22)2 + σ11

2 + σ22
2 + 6σ12

2
)

(11)

Any stress tensor can be presented in this coordinate
system by a point on the yield surface. Some points on
this surface represent special stress states. These stress
states are indicated in Fig. 5. Therefore, the equivalent
plastic strain depends on the path traversed on the yield
surface. Three paths are shown in Fig. 5.

The authors showed that even for plane stress, the
fracture locus must be described by three dimensions,
where the strain to fracture is dependent on two param-
eters, i.e. ψS , φN or ψS , ησ . We will show that using
ψS , ησ the stress state descriptions are not unique, but a
fracture locus defined in ψS , φN is advantageous com-
pared to the Lσ , ησ fracture locus in plane stress.

2.3 Deformation gradient

So far, we have not seen a distinctive treatment of sim-
ple shear for cases in which simple shear is superposed

Fig. 5 Fracture loci generated along paths with coaxial and non-
coaxial stress states (adapted from Butcher and Abedini (2019)
Fig. 14, used under CC BY 4.0)

with uniaxial stretch. The question is how simple shear
is defined, what its physical meaning is, and where in
the definitions of stress state, that we have used up to
this point, we can find the simple shear component.

We have already defined simple shear as a defor-
mation that moves two opposite edges of an element
and transforms it into a parallelogram. The resulting
strain is rotational. A rotational strain means that the
principal axis of strain will rotate during deforma-
tion. In structural geology, the deformation history is
described as progressive deformation and deals with
various changes of the deformation gradient over time
Ramberg (1975); Elliott (1972). Pure shear is a defor-
mation where each side of the deformed cubed remains
constant in area size, while the aspect ratio of the sides
may differ but remain rectangular. The resulting strain
is irrotational. Any 2D deformation that can neither be
classified as simple shear nor pure shear is called gen-
eral shear.
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In the components of the deformation gradient, sim-
ple shear can easily be spotted when either of the off-
diagonal entries is different from zero. To get from the
deformation gradient to our familiar terms of describ-
ing the stress state with Lode parameter and triaxiality,
several transformations are required. These transfor-
mations will get us to the principal strain tensor, which
we can then use to derive our familiar quantities of the
Lode parameter and triaxiality.

First, the deformation gradient containing a super-
position of simple shear along the x-axis with uniaxial
stretch in the xy - plane is defined (Eq. 12). The stretch
is only uniaxial in the xy - plane and a change in length
also occurs in z-direction. According to our nomen-
clature introduced in Fig. 8 this loading case is simple
shear with parallel uniaxial stretch.

F =
⎡

⎣
1 + dx γ 0

0 1 0
0 0 1

1+dx

⎤

⎦ (12)

The polar decomposition of the deformation gradi-
ent F will decompose the deformation gradient into a
rigid body rotation tensor and a stretch tensor (Eq. 13).
For a right-hand polar decomposition, the element is
first stretched then rotated, i.e. F = R · U ; for a left-
hand polar decomposition, the element is first rotated
then stretched, i.e. F = V · R. Where U is called the
right stretch tensor and V the left stretch tensor.

F = R ·U = V · R (13)

With the eigenvalues of the stretch tensor λ1, λ2, λ3

the stretch tensor can be written in terms of engineering
strains (Eq. 14).

U =
⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦

=
⎡

⎣
1 + ε1,eng 0 0

0 1 + ε2,eng 0
0 0 1 + ε3,eng

⎤

⎦

(14)

The engineering strains are readily transformed into
true strains with ε1,true = log(ε1,eng + 1), giving us
the principal strain tensor (Eq. 15).

εprinc =
⎡

⎣
ε1,true 0 0

0 ε2,true 0
0 0 ε3,true

⎤

⎦ (15)

As we can see, the principal strain tensor does not
contain any information about the original orientation

of the element. In fact, at this point, the information
of simple shear is only contained in the rigid body
rotation tensor R (Eq. 13). The true strain tensor can
be rotated back to the original coordinate system with
εxyz = RT · εprinc · R. But that would not provide
information about the original shear involved. It would
simply change the directions we define as x, y, and z.
With this approach, we are not able to see whether we
are dealing with simple shear or whether the element
just rotated in space because of rigid body movement.

To illustrate this, the transformations for three defor-
mation gradients are presented (Fig. 6). Lode parameter
and triaxiality were calculated by finite element simu-
lation. We can now see that for all these three cases we
arrive at the same pair of Lode angle and triaxiality. The
information about simple shear seems to be lost. Our
common quantities do not provide any way to recover
this information.

We will aim to find a way to distinguish these three
cases. We will also look at different deformation gra-
dients superposing simple shear with uniaxial stretch
in the plane of non-zero stresses and how to find defor-
mation gradients for each case at any Lode parameter
and triaxiality pair.

2.4 Mohr’s circle for strains

Means Means (1982, 1983) demonstrated how Mohr’s
circle can be used to represent asymmetric second-
order tensors. This representation is especially useful
for visualizing the deformation gradient Eq. (16). This
version of Mohr’s circle is commonly used in geol-
ogy to describe the final deformation state of a vol-
ume of rock Passchier (1988). In the field of geology,
the issue that simple shear has to be treated separately
from pure shear has been discussed as early as 1975
Hancock and Mackenzie (1976); Ramberg (1975). To
construct Mohr’s circle, first the points {F11,−F21} and
{F22, F12} (Fig. 7), which are the components of the
deformation gradient F , are drawn in a cartesian coor-
dinate system. Both of these points lie on a circle. With
the components of F the radius R of the circle and the
center of the circle on {S, Q} can be calculated. We
can find the rigid body rotation indicated by β. For
pure shear, there is no rotation and β is 0. The reader
is referred to Electronic Supplementary Material 3 for
an animated explanation for the construction of Mohr’s
circle of strain.
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Fig. 6 Three stress states
described by Lσ = −1 and
ησ = 0.333 resulting from
different deformation
gradients with a von Mises
material

It is important to note that two strain axes, which are
90◦ apart on the deformed element, are located 180◦
apart on Mohr’s circle. This is called the double angles
method. At the beginning of the deformation, the circle
is oriented so that the horizontal line is parallel to the
instantaneous stretch axis (ISA).

F =
⎡

⎣
F11 F12 0
0 F22 0
0 0 1

F11·F22

⎤

⎦ (16)

Mohr’s circle of strain provides an easy and fast
way to assess, whether the deformation is simple shear,
general shear or pure shear. There is a number which
serves to distinguish simple shear, general shear and
pure shear. This number is called kinematic vorticity
number and is defined as

Wk = Q

R
(17)

Depending on the value of the vorticity number, the
deformation is categorized as Wk = 0: pure shear,
0 < Wk < 1: general shear or Wk = 1: simple
shear. We will introduce a new parameter to describe
the stretch/shear ratio of elongation. The parameter fr
appears in one of the diagonal entries of the deforma-
tion gradient. For simple shear superimposed with per-
pendicular uniaxial stretch F11 is 1 (Eq. 18), for simple
shear superimposed with parallel uniaxial stretch F22

is 1 (Eq. 19).

F11 = 1 and F22 = 1 + fr · v0 · dt (18)

F11 = 1 + fr · v0 · dt and F22 = 1 (19)

The values of principal stretch can be calculated
from geometric relationships. The principal stretches
in the xy-plane can be calculated as e1 = T + R
and e2 = T − R. These stretch values can be directly
converted to natural strains by taking their logarithm.

Fig. 7 Mohr’s circle for strains constructed from deformation
gradient

Therefore, the principal strains are ε1 = log(e1) and
ε2 = log(e2). It should be noted that even though
we are not looking at plane strain, we are still using
a 2D representation of Mohr’s circle. We assume that
any rotation taking place is happening in the xy-plane.
While the strain in z-direction varies, due to incom-
pressibility it is always uniquely related to the x and y
values. The deformation in the z-direction results from
the deformations given in x and y-direction. The indi-
cators for simple shear are Wk and/or β. These values
appear in Mohr’s circle of strain because the deforma-
tion gradient is asymmetric.

123



   43 Page 8 of 20 L. Schuster, S. Münstermann

Fig. 8 Nomenclature for different loading cases

2.5 Scope of stress states

The distinction between simple shear and coaxial
stretch is relevant for various 3D stress states. To con-
cisely present the key findings, the scope of this study
is reduced to a subset of 2D stress states. In this study
all cases which are discussed satisfy the following con-
ditions:

• Constant volume / Incompressibility
(
1 + ε1,eng

) (
1 + ε2,eng

) (
1 + ε3,eng

) = 1

ε1,true + ε2,true + ε3,true = 0
(20)

• Plane stress condition

σ =
⎡

⎣
σ11 σ12 0
σ12 σ22 0
0 0 0

⎤

⎦ (21)

ξσ = −27

2
ησ

(
ησ

2 − 1

3

)
(22)

• Superposition of simple shear with uniaxial stretch
in the plane of non-zero stresses, i.e. the length of
one side remains constant (lde f = l0) (Fig. 8)

• The loading is proportional, i.e. Lσ and ησ remain
constant during deformation

• An elastoplastic von Mises material is assumed

Eq. (22) was derived by Bai and Wierzbicki (2008)
and relates Lode parameter and triaxiality for plane
stress condition. The material is assumed to be isotropic
and behave according to a von Mises material.

Table 1 Swift-Voce parameters for DP600 Schuster et al. (2024)

A ε0 n k0 Q β0 α

DP600 1045 0.001 0.36 797 418 43 0.64

2.6 Finite Element Simulation

A set of one-element finite element simulations is pre-
sented to validate the theoretical considerations. A
dual-phase steel with an ultimate tensile yield strength
of 600 MPa is a common steel grade found in the auto-
motive industry and serves as an example. The consid-
erations hold true for any other ductile material. The
elastoplastic material behavior is described by a Swift-
Voce relationship (Eq. 23). The parameters for DP600
are found in Table 1.

σS−V = α · A (
ε0 + εp

)n

+ (1 − α) · (k0 + Q(1 − e−β0εp )) (23)

The first addend in Eq. (23) contains the Swift param-
eters A, ε0, n , the second addend contains the Voce
parameters k0, Q, β0. Parameter α describes how much
each addend contributes to σS−V . These parameters are
material dependent. One-element tests are set up to cal-
culate variations of proportional loading for different
Lσ , ησ pairs. The edge lengths of the elements are 1
mm. Elements with reduced integration of type C3D8R
were used. The solver is ABAQUS 2020/Explicit.

Fig. 9 shows the node numbering and the coordinate
system for the one element tests. Depending on the
stress state, different velocities for different directions
are applied to the nodes. The node numbered “1” is
always fixed in space.

For a material defined through the *PLASTIC key-
word in ABAQUS/Explicit, the calculation of stress
components is based on the Jaumann rate of change of
Kirchhoff stress. This algorithm splits the stress rate
into a sum of a corotational rate and a rotational rate.
For large deformations with rotation of the material this
can lead to errors in the stress output Butcher and Abe-
dini (2017); Bažant and Vorel (2014) . For an estimation
of the error the results of normal stress and shear stress
of a cube under simple shear with the DP600 material
are shown in Fig. 10. The expected value for normal
stress is zero but is calculated as about 5 MPa at an
effective plastic strain of 0.8. This can be considered
negligible compared to the shear stress which is about
600 MPa. Larger errors might occur if a VUMAT is
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Fig. 9 Definition of coordinate system and node numbering for
one element tests

Fig. 10 Results of shear stress (top) and normal stresses (bot-
tom) for a simple shear deformation with DP600 showing inac-
curacies caused by Jaumann rate algorithm

employed, which uses the Green-Naghdi algorithm. In
this study however, all simulations are performed with
the built-in plasticity model of ABAQUS/Explicit.

3 Results

We will look at how simple shear affects the results of
the Lode parameter and triaxiality when these values
are defined in stress space or strain space. Then we will
derive a method to retrieve simple shear information
from finite element results. This method uses the fact,

that the principal axes of strain and stress do not remain
colinear with increasing deformation.

3.1 Superposition of simple shear and tension and the
effect on Lode angle and triaxiality

As we have seen, different deformations can lead
to identical value pairs of Lode Lσ and triaxiality
ησ , which suggests that the stress states are identical
(Fig. 6). The goal is to find a measure that makes it
possible to reconstruct the deformation gradient when
simple shear is superposed with uniaxial stretch in the
plane of non-zero stresses. We know that in the pres-
ence of simple shear, the deformation is rotational. This
means that the directions of the principal strain and
stress axis diverge. For coaxial stretch, both eigenvec-
tors of strain and stress tensor stay colinear, while for
superposed simple shear and uniaxial stretch, the eigen-
vectors diverge. We can use this angular difference to
give us information about simple shear. This approach
still works when the element moves during loading.
The deformation gradient can be recovered with this
approach, even when additional rigid body rotation in
the absence of deformation occurs. The offset between
principal strain axis and principal stress axis is a direct
result of simple shear. We will refer to this offset as
�α.

3.2 Offset between principal stress and principal
strain axis reveals simple shear

Fig. 11 shows the evolution of �α, Lσ and Lε for a
cubic element, which was deformed with a superposi-
tion of simple shear with perpendicular stretch with
a stretch/shear elongation ratio of fr = 0.707. To
achieve this deformation the nodes numbered 5,6,7 and
8 were displaced in positive y-direction. Simultane-
ously, nodes 6 and 7 were also displaced in x-direction.
For the volume to remain constant, nodes 3,4,7 and 8
were allowed to move in z-direciton. We can see that
the Lode parameter Lσ calculated from principal stress
(Eq. 7) and the Lode parameter Lε calculated from prin-
cipal strain increments (Eq. 8) differ. While the Lode
parameter Lσ remains constant, the Lode parameter Lε

increases as the deformation of the element progresses.
This is a result of the principal axes of strain and stress
not remaining colinear. All stress cases, where these
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Fig. 11 Evolution of deformation resulting in an offset between
principal axes

two axes remain colinear have identical values for Lσ

and Lε. Simple shear is the reason why the two axes
diverge and therefore the reason we see a difference in
Lode parameters Lσ and Lε. In conclusion, the differ-
ence between principal stress and principal strain axis
�α reveals the presence of simple shear.

While we can now distinguish a case with and with-
out simple shear, information about whether the super-
posed stretch is in parallel or perpendicular to the shear
direction cannot be recovered with only �α. The angu-
lar difference �α turns out to be the same for both
variations (superpositions with parallel / perpendicular
stretch). Whether we are dealing with parallel or per-
pendicular stretch is contained in the absolute value of
the principal stress axis direction ασ . The angle is mea-
sured as the angular distance from the x-axis, which is
the horizontal axis in our case. An absolute value of
ασ lower than 45◦ means that the superposed stretch
is applied along the x-axis parallel to the shear direc-
tion, an absolute value higher than 45◦ means that the
superposed stretch is applied along the y-axis, perpen-
dicular to the shear direction. There is a geometrical
interpretation of the deformation gradient as we have
seen in Mohr’s circle Section 2.4. This will help to
interpret why the value of Lode parameter changes in
strain space but not in stress space. It will be discussed
in the next section.

Fig. 12 Evolution of deformation resulting in an offset between
principal axes

3.3 Identifying offset �α in Mohr’s circle for strains

From geometric dependencies in Mohr’s circle
Fig. 12, we can conclude that the angle ασ can be cal-
culated from the stretch/shear elongation ratio fr . This
relationship holds true when the superposition is com-
prised of simple shear and uniaxial stretch. For super-
position with perpendicular stretch, we set F11 to 1 in
the deformation gradient Eq. (16). For superposition
with parallel stretch, we set F22 to 1. The value for F21

is 0 in both cases. The resulting equations for ασ are
shown in Eq. (24). For simple shear without stretch, i.e.
fr = 0, the principal direction of stress is 45◦, because
the second addend vanishes. For perpendicular stretch
the sign of the second term is positive, for parallel ten-
sion the sign of the second addend is negative. In 3.5
we will calculate fr for arbitrary values of Lσ and give
specific values fr for stress states of particular interest.

αIσ A =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

π
4 − 0.5 arctan ( fr ) , simple shear

+ parallel stretch
π
4 + 0.5 arctan ( fr ) , simple shear

+ perpendicular

stretch

(24)

We will call this angle the angle of the instanta-
neous stress axis αIσ A, in analogy with the instanta-
neous stretch axis used in geology. The angle of instan-
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Fig. 13 Evolution of deformation for simple shear + parallel stretch (left), coaxial stretch (middle) and simple shear + perpendicular
stretch (right).

taneous stress axis αIσ A describes the angle between
the shear direction and the principal stress direction.
The direction of principal stress ασ / αIσ A remains
constant during the deformation (Fig. 13), while the
direction of principal strain αε varies. As the deforma-
tion progresses the angle of principal strain direction
decreases, while the difference between the two prin-
cipal axes �α increases. The deformation gradient has
an asymmetric entry that moves the center of Mohr’s
circle in the vertical direction, which informs the value
of kinematic vorticity Wk and thus gives information
about simple shear.

3.4 Relationship between �α and stress state

We have seen that the Lode parameter Lσ calculated
from Eq. (7) remains constant and so does the angle of
the principal stress direction ασ . In this section, we will
aim to find a relationship between Lσ and ασ , which
will then facilitate giving us a value for the stretch/shear
elongation ratio fr to set an arbitrary stress state. Next,
we will define a relationship between Lε and ασ , �α

which will provide the link between Lode parameter
defined from stress values and Lode parameter defined
from strain values. We know that Lσ and Lε are equal
in the beginning and only diverge as the deformation
progresses. We use this fact to modify Eq. (8). With a
vanishingly small time increment and a constant value
of Lσ the equation can be written as follows

Lσ = 3 ε2

ε1 − ε3
(25)

Since we are assuming an incompressible material,
we can write the true strain values in relation to the

stretches with ε1 = log (e1′), ε2 = log (e2′), ε3 =
log

(
1

e1′·e2′

)
. Applying logarithmic rules, the equation

can be written as

Lσ = 3 log (e2)

log
(
e1

2·e2
) (26)

In 2.5 we have narrowed the scope of our study to
a subset of superposed deformations. The next sim-
plifications therefore only apply to superposed simple
shear with uniaxial stretch in the plane of non-zero
stresses. From Mohr’s circle we can use e1′ = T + R,
e2′ = T − R and e3′ = 1

e1·e2
. We are using the indices

1′, 2′, 3′ because these stretch values are not ordered in
magnitude. The order of magnitude is dependent on the
shear/stretch elongation ratio. From Mohr’s circle, we
can substitute T and R and introduce ασ , fr and b into
the equation. The value of b is the shear deformation
and equal to the entry F12 in the deformation gradient
(Eq. 12). At the beginning of deformation b is vanish-
ingly small. By determining the limit of the equation
with b → 0 we arrive at

• T + R > 1
T 2−R2 > T − R and triaxiality ησ ≤ 1

3

and shear ratio fr ≤ 1
2
√

2
≈ 0.354

Lσ = −3 · fr · sin(2ασ ) (27)

Lσ = − 3 · fr√
fr 2 + 1

(28)

• T + R > T − R > 1
T 2−R2 and triaxiality ησ ≥ 1

3

and shear ratio fr ≥ 1
2
√

2
≈ 0.354

Lσ = −3 (1 − fr · sin(2ασ ))

3 · fr · sin (2ασ ) + 1
(29)

Lσ = 3 · fr − 3 ·
√

fr 2 + 1
√

fr 2 + 1 + 3 · fr
(30)
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These equations meet at fr = 1
2
√

2
≈ 0.354 which

results in a Lode parameter of Lσ = −1.
To get the Lode parameter Lε depending on ασ and

�α we go back to Eq. (8) and define the strain incre-
ments depending on the change in angular difference
between principal strain and stress axis. Using stretch
definitions and employing logarithmic rules we arrive
at

Lε =
3 log

(
e2,i

e2,i−1

)

log

((
e1,i

e1,i−1

)2 · e2,i
e2,i−1

) (31)

with
e1,i

e1,i−1
=

(
csc (2�αi ) + csc (2ασ )

csc (2�αi−1) + csc (2ασ )

)(
ti
ti−1

)
(32)

and(
ti−1

ti

)
= cot (2�αi ) − cot (2ασ )

cot (2�αi−1) − cot (2ασ )
(33)

Again, we distinguish two cases, since the equation
for the second principal strain differs

• T + R > 1
T 2−R2 > T − R and triaxiality ησ ≤ 1

3

and shear ratio fr ≤ 1
2
√

2
≈ 0.354

e2,i

e2,i−1
=

(
csc2 (2�αi−1) − csc2 (2ασ )

csc2 (2�αi ) − csc2 (2ασ )

)(
ti−1

ti

)2

(34)

• T + R > T − R > 1
T 2−R2 and triaxiality ησ ≥ 1

3

and shear ratio fr ≥ 1
2
√

2
≈ 0.354

e2,i

e2,i−1
=

(
csc (2�αi ) − csc (2ασ )

csc (2�αi−1) − csc (2ασ )

) (
ti
ti−1

)

(35)

As we can see the Lode parameter Lε only depends
on the angles of principal stress direction ασ and
the angular difference �α between principal stress
and strain direction. This difference �α = ασ − αε

increases with shear deformation. We will validate
these equations with finite element simulations in Sec-
tion 2.6.

With Eq. (28) and Eq. (30) it is possible to calcu-
late the exact values of fr for a specific value pair
Lσ , ησ with triaxiality calculated for plane stress from
Eq. (22). A variety of different stress states with their
corresponding Lσ , ησ , fr values is shown in Fig. 2.
We can arrive at the same pair of Lσ , ησ for different
deformations in the range of Lσ , ησ = (0, 0) and Lσ ,
ησ = (0, 1√

3
).

3.5 Setting up one-element tests for specific stress
states

In this section we will present boundary conditions
to create one-element tests for specific stress states.
The equations to create velocity curves for the moving
nodes to obtain specific stress states with and without
superposed simple shear are presented. Then we calcu-
late the stretch / shear elongation ratio fr for arbitrary
stress states defined by Lode parameter Lσ and triaxi-
ality ησ .

3.5.1 Coaxial stretch without simple shear

In this subsection we are working with coaxial stretch
without a shear component, therefore, the definitions
of Lε and Lσ are interchangeable. We choose the y-
direction to apply a constant velocity v0. The result-
ing displacement in y-direction is straightforward with
dy = v0 · dt .

The stretch in x-direction is derived from the rela-
tionship between true strain and engineering strain,
which have a logarithmic relationship. Depending on
whether we want a triaxiality of less than one-third or
higher than one-third this gives us the following equa-
tions.

dx =
{

(1 + dy)
Lσ +3
Lσ −3 − 1 , η ≤ 1

3

(1 + dy)−
Lσ +3
Lσ −3 −1 − 1 , η ≥ 1

3

(36)

So, for the prescribed motion we can calculate the
velocity in x-direction as.

vx (L , dt) = dx

dt
(37)

The velocity curves vx (L , dt) can be calculated and
entered in tabular form into ABAQUS. The velocity is
prescribed on nodes 2,3,6,7 (Fig. 14).

3.5.2 Simple shear superposed with uniaxial stretch

With equations established in Section 3.4 namely
Eq. (28) and Eq. (30), we can calculate the stretch/shear
elongation ratio fr for a desired value of Lode param-
eter Lσ . We rearrange these equations and obtain

fr (Lσ ) =

⎧
⎪⎨

⎪⎩

− Lσ√
9−Lσ

2
, η ≤ 1

3
√

−Lσ
2−6·Lσ −9

−8·Lσ
2+24·Lσ

, η ≥ 1
3

(38)

with −1 ≤ Lσ ≤ 0.

vγ = fr · v0 (39)
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Table 2 The deformed elements in each column depict a stress state with the same pair of Lode parameter Lσ and triaxiality ησ

Depending on whether the uniaxial stretch is super-
posed in parallel or perpendicular, the velocity is pre-
scribed on different nodes (Fig. 14). The analytical val-
ues for distinct Lσ , ησ pairs of five different stress
states are shown in 2. With sufficient accuracy the cor-
responding values for fr can be approximated with
fr (Lσ , ησ ) = 0. / 0.157 / 0.354 / 0.707 / 2.

3.6 Validation with Finite Element results

One-element tests have been carried out in
ABAQUS/Explicit with the boundary conditions
described in Fig. 14. There are five distinctive stress
states. Each of these stress states is realized by utilizing
three different variations of deformation. One variation
uses simple shear superposed with parallel stretch, the
second uses simple shear superposed with perpendic-
ular stretch and the third uses coaxial stretch without
simple shear (Fig. 2). We will compare the finite ele-
ment results with analytical results to validate the equa-
tions and extract more information regarding differ-
ent descriptions of stress states involving simple shear.

The input file for the one-element tests is available as
Electronic Supplementary Material 4. The values for
the logarithmic strain components, which are labeled
“LE” and the stress components, which are labeled “S”
are directly output from the ABAQUS solver. All other
values (principal values, angles, Lode parameters) are
calculated in post-processing. For each time step the
principal strain increment was calculated. Those incre-
ments were sorted by magnitude and used in Eq. 8 to
get the Lode parameter Lε of the simulation.

The analytical solution was obtained as described in
Section 3.4. The angles of principal stress direction ασ

were calculated with Eq. (24) for a given stretch/shear
elongation ratio fr . The difference in principal angles
was calculated by polar decomposition of the defor-
mation gradient, which gives the rigid body rotation.
For our cases the rigid body rotation angle is identical
to the difference in principal value directions �α. The
curves of the analytical solution and numerical solution
coincide (Fig. 15, Fig. 16), which gives validity to the
developed equations in this study (Section 3.4).
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Fig. 14 Boundary conditions to create specific stress states

Fig. 15 The evolution of principal strain direction αε for differ-
ent stretch/shear ratios fr with increasing deformation

Fig. 16 The evolution of Lode parameter Lε for different
stretch/shear ratios fr with increasing deformation
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Remember that the Lode parameter also describes
the ratio of stretches in the three principal directions.
The Lode parameter Lε reveals that the relationship
between the three principal strains changes during
deformation when simple shear is present. This change
is easily interpreted by the rotation of the axis of prin-
cipal strains. But from Lode angle defined by princi-
pal stresses Lσ this change cannot be detected. For
an anisotropic material however, the relative change in
principal strain magnitudes can have significant impli-
cations. Note that for simple shear superposed with uni-
axial stretch, the difference in angles �α and the angle
in principal stress direction ασ are sufficient to calcu-
late Lode parameter Lε. This is valid within the scope
of our assumptions (Section 2.5).

A more familiar visualization of the stress state dur-
ing loading is strain paths. The strain path shows the
value of triaxiality and/or Lode parameter against the
equivalent plastic strain. If the strain path is a vertical
line the loading is called proportional. We have set up
all one-element tests to have proportional loading in
stress space. Since the elastic part is very small and
we want to get a visualization that is not dependent on
the material, we use the effective strain calculated from
logarithmic strains. In Fig. 17 and Fig. 18 both strain
paths in stress space and in strain space are presented.
The triaxiality calculated from principal strains ησ is
ouput by ABAQUS directly and is equal to the value
resulting from Eq. (22). The triaxiality ηε was calcu-
lated with Eq. (9). The strain paths are plotted until an
equivalent strain value of 0.76 is reached.

The individual strain paths in Fig. 17 and Fig. 18 are
discussed below.

• Lσ , ησ = (0, 0)

The strain paths for simple shear and coaxial stretch
are identical for the definition in stress space as well
as in strain space. Here it is interesting to point
out, that the difference in angles between principal
strain and stress direction is the largest for simple
shear. But that does not cause a shift in the value
of ηε. This is simply because the second principal
strain ε2 is always zero, which results in Lε remain-
ing zero throughout the deformation. That does not
mean that these stress states are identical. Because
of the rotation of the principal strain axis, the rate
at which equivalent strain and equivalent stress will
grow in relation to each other will differ.

• Lσ , ησ = (3 − 2
√

3, (−1 + √
3)/(3

√
2)) and

Lσ , ησ = (3 − 2
√

3,
√

2/3)

The strain paths at ησ ≈ 0.173 and ησ ≈ 0.471
have the same value of Lσ ≈ −0.464 and are dis-
cussed together. With increasing �α the value of ηε

increasingly differs from ησ when simple shear is
involved. For ησ ≈ 0.173 / fr = 0.157 the tri-
axiality ηε diverges faster than for ησ ≈ 0.471
/ fr = 0.707. The angular difference �α also
diverges faster for smaller triaxiality values than
for higher triaxiality values.

• Lσ , ησ = (−1, 1
3 )

We have discussed that during loading with fr =
0.354 which corresponds to the stress state Lσ , ησ =
(−1, 1

3 ) the ordering of dε1 > dε2 > dε3 changes
midway and so does the ordering of the stresses.
This leads to a discontinuity in the strain path with
ηε.

• Lσ , ησ = (0, 1√
3
)

In Fig. 17 the strain path does not coincide with
ησ = 1√

3
exactly. The value is about 0.561. Eq. (30)

cannot reach Lσ = 0 exactly. The equation asymp-
totically approaches 0 but never reaches it. How-
ever, a value of fr = 2.0 does provide a stress state
close to plane strain.

All parameters used to describe the stress state, i.e.
�α and triaxiality and Lode parameter can be described
as angular values (Section 2.1). Since we are consider-
ing the ordering of principal values, a lot of case distinc-
tions need to be considered in the different equations
for the stress state parameters. It remains an open ques-
tion whether describing Lode parameter and triaxiality
is a suitable framework to describe simple shear super-
posed with uniaxial stretch. Even with Lode parame-
ter and triaxiality defined in strain space, simple shear
Lσ , ησ = (0, 0) cannot be distinguished from coax-
ial stretch with Lσ , ησ = (0, 0) although they have
the largest difference in principal strain and principal
stress direction �α. Irrespective of the presence of a
shear component, the strain paths at Lσ , ησ = (0, 0)

coincide.

3.7 FE results in a spherical coordinate system

As we have seen in Section 2.6, descriptions of stress
states with Lode parameter / triaxiality do not provide
a way to distinguish simple shear and pure shear stress
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Fig. 17 Strain paths for one element tests with simple shear
superposed with parallel/perpendicular stretch

Fig. 18 Strain paths for one element tests with coaxial stretch

states. A stress state description utilizing a spherical
coordinate system as described in (Section 2.2) can
overcome these shortcomings. The same strain paths
resulting from the one-element tests in Fig. 2 were
calculated depending on the shear and normal angle
according to Eq. (10) and Eq. (11).

It was suggested that the shear angle ψS can be used
in combination with ησ for an isotropic material, but
Fig. 19a shows that this description of stress states with
ησ , ψS does not distinguish simple shear superposed
with parallel stretch from simple shear superposed with
perpendicular stretch. The strain paths for these stress
states coincide. The stress state description with ψS ,
φN is more suitable. The strain paths for each one-
element test appear as a distinct line in Fig. 19b. The
shear angle ψS is zero for one-element tests without
superposed stretch. The shear angle increases with an
increasing value of the stretch/shear elongation ratio

Fig. 19 Strain paths for combined shear and coaxial stretch
described by (a) �S, ησ and (b) �S,�N

fr . In other words, the highest rate of increase in non-
coaxiality occurs for ψS = 0◦ and toward higher values
of ψS the stress state tends toward coaxiality. For a
value of ψS = 90◦ the deformation is coaxial and there
is no component of simple shear. When simple shear
is superposed with parallel stretch, the normal angle
is φN ≈ 26.5◦, when simple shear is superposed with
perpendicular stretch the normal angle is φN ≈ 63.4◦.
The normal angle for simple shear is strictly speaking
not defined. Any value of φN satisfies Eq. (10) when
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Fig. 20 Steps for the reconstruction of a deformation gradient for a proportional loading

ψS = 0◦. From the numerical simulation of the simple
shear one-element test a value of φN ≈ −45◦ resulted.
The absolute value of φN is plotted in Fig. 19b for
simple shear in order to keep consistency with the rest
of the one-element tests.

A problem arises when the element is not oriented
parallel to the shear direction. The Cauchy stress is
defined in the global coordinate system and therefore
any rigid body rotation of the element will make it
impossible to use Eq. (10) and Eq. (11) directly. In

the next section, we will show how to recover the angle
that defines the shear direction by employing Eq. (24).

3.8 Reconstructing the shear direction from FE results

In the previous sections, we have clarified that sim-
ple shear can be interpreted as rigid body rotation and
shows up as an off-diagonal entry in the deformation
gradient. The Cauchy stress tensor and the logarithmic
strain tensor, which are commonly used in FE soft-
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ware as output results are symmetric and do not contain
information about rigid body deformation and in con-
sequence no information about simple shear. By com-
bining information from stress and strain tensor, the
deformation gradient and therefore information about
simple shear can be recovered.

3.8.1 Proportional loading

In the case of proportional loading, only the current val-
ues of the stress and strain tensor are needed to recon-
struct the deformation gradient. Fig. 20 describes the
necessary steps to calculate the deformation gradient.
The theoretical angle of principal stress direction is cal-
culated for the current triaxiality and Lode parameter.
Since the angle of principal stress direction remains
constant during proportional loading, this theoretical
angle can be used to determine the direction of shear.
The difference between the theoretical principal stress
angle and the actual principal stress angle is equal to the
inclination of the shear direction. This makes this pro-
cess robust toward deformation with rigid body rota-
tion.

For convenience, Equations (24,28,30) are rear-
ranged, so thatαIσ A can be calculated directly from Lσ .
Eq. (40) is valid for simple shear superposed with paral-
lel stretch; Eq. (41) is valid for simple shear superposed
with perpendicular stretch. The distinction between
superposed parallel stretch and perpendicular is imple-
mented by comparing the stress component in x and y
direction. The stress component with the higher mag-
nitude determines the direction of uniaxial stretch.

• simple shear + parallel stretch

αIσ A =1

2
arccos

(
− Lσ

3

)
, η ≤ 1

3

αIσ A =1

2
arccos

(
− −3 − Lσ

3 (Lσ − 1)

)
, η ≥ 1

3

(40)

• simple shear + perpendicular stretch

αIσ A = 1

2
arccos

(
Lσ

3

)
, η ≤ 1

3

αIσ A = 1

2
arccos

(
− −3 − Lσ

3 (1 − Lσ )

)
, η ≥ 1

3

(41)

3.8.2 Non-proportional loading

An additional one-element test is calculated (Electronic
Supplementary Material 5). This time the Lode parame-
ter does not remain constant. The Lode parameter varies

Fig. 21 Modified Step 4 to account for non-proportional loading
in recovering the deformation gradient

from 0 to -1 with Lσ = −
√

t
tmax

. The resulting strain

path is non-proportional. The steps are identical to the
steps in Fig. 20 except for step 4, which is replaced
by the step described in Fig. 21. For the calculation to
work, it is assumed that Lσ remains constant over an
infinitesimal time step. For non-proportional loading
the calculation of fr,k(Lσ,k , ησ,k) with Eq. (38) for the
current Lode parameter / triaxiality pair is required.
Additionally, the sum of fr,k needs to be calculated.
The resulting value of fr,sum is needed to calculate the
value of αIσ A, which is reached at time tk .

The difference between αIσ A,k calculated from the
current value pair of Lσ,k , ησ,k and the angle of princi-
pal direction ασ provides information about the angle
of the shear direction. Therefore, this calculation is also
robust against rigid body rotations.

4 Conclusion

In this study, we looked at several stress state examples,
which can be described by identical pairs of triaxiality
and Lode parameter. We saw that with this widely used
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description of stress states, it is not possible to distin-
guish stress states that involve simple shear. A method
to identify simple shear for different stress states was
presented. When simple shear is involved, the angle
between principal stress axis and principal strain axis
increases with progressing deformation. By using the
difference in angles, we can identify the shear direction.

Describing the stress state with spherical coordi-
nates allows us to decompose the stress state into shear
and normal part. It requires an evaluation of the stress
tensor oriented in alignment with the shear direction.
This is usually not the case. By comparing the instan-
taneous stress axis to the principal stress axis the shear
direction can be calculated. The present study provides
the steps on how to reconstruct the shear direction and
deformation gradient. These values can help to develop
failure models that require stress and strain tensors to
be oriented in alignment with the shear plane.

The results of the study should encourage the reader
to consider stress states with simple shear superposed
with coaxial stretch in the development and calibration
of failure models. There is limited knowledge on how
the presence of simple shear affects damage evolution.
One way to study the effect would be by numerical sim-
ulation of representative volume elements (RVE) with
voids. The present study provides boundary conditions
to set up one-element tests with specific values of sim-
ple shear superposed with uniaxial stretch in the plane
of non-zero stresses. These examples can be used to
create RVEs.

While the scope of this study has been narrowed to
only a certain range of stress states, it will be interest-
ing to see how these considerations about identifying
simple shear in various stress states can be expanded
to biaxial stretch in the plane of non-zero stresses and
stress states other than plane stress.

Supplementary information

ESM 1: 2D Animation demonstrating coaxial and non-
coaxial deformation of two unit cubes along identical
strain paths

ESM 2: 3D Animation demonstrating coaxial and
non-coaxial deformation of two unit cubes along iden-
tical strain paths

ESM 3: Animation demonstrating the construction
of Mohr’s circle

ESM 4: One-element tests Proportional

ESM 5: One-element tests Non proportional
ESM 6: ABAQUS input file for one-element tests

with proportional loading
ESM 7: ABAQUS input file for one-element tests

with non-proportional loading
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