KIT | KIT-Bibliothek | Impressum | Datenschutz

A New Genetic Algorithm for the Reduction of Dynamic Power System Models

Weber, Moritz ORCID iD icon 1; Çakmak, Hüseyin K. ORCID iD icon 1; Kühnapfel, Uwe ORCID iD icon 1; Hagenmeyer, Veit ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

The development of new power grid components and solutions requires dynamic grid simulations, including vast transmission grids. These simulations are often prohibitively computationally expensive. For this, model reduction is a common solution. On the other hand, geographic information becomes increasingly important in grid simulation with an increasing share of renewable energy sources. However, this information has only been considered in reduction methods for static simulations so far. Therefore, we introduce a new parameter optimization method based on a new genetic algorithm that enables dynamic simulations for models previously reduced with such static topology-preserving reduction methods. The new method optimizes the selection and parameters of synchronous machine controls to approximate the original system behavior. We evaluate the new method using a standard IEEE benchmark model and demonstrate its applicability with a real-world transmission grid model with more than 300 nodes.


Download
Originalveröffentlichung
DOI: 10.36227/techrxiv.174961629.91798872/v1
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000182341
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Vorab online veröffentlicht am 11.06.2025
Schlagwörter dynamic model reduction, genetic algorithm, power system simulation
Nachgewiesen in OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page