KIT | KIT-Bibliothek | Impressum | Datenschutz

Probabilistic Day-Ahead Battery Scheduling based on Mixed Random Variables for Enhanced Grid Operation

Pinter, Janik ORCID iD icon 1; Zahn, Frederik 1; Beichter, Maximilian 1; Mikut, Ralf ORCID iD icon 1; Hagenmeyer, Veit ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

The increasing penetration of renewable energy sources introduces significant challenges to power grid stability, primarily due to their inherent variability. A new opportunity for grid operation is the smart integration of electricity production combined with battery storages in residential buildings. This study explores how residential battery systems can aid in stabilizing the power grid by flexibly managing deviations from forecasted residential power consumption and PV generation. The key contribution of this work is the development of an analytical approach that enables the asymmetric allocation of quantified power uncertainties between a residential battery system and the power grid, introducing a new degree of freedom into the scheduling problem. This is accomplished by employing mixed random variables - characterized by both continuous and discrete events - to model battery and grid power uncertainties. These variables are embedded into a continuous stochastic optimization framework, which computes probabilistic schedules for battery operation and power exchange with the grid. Test cases demonstrate that the proposed framework can be used effectively to reduce and quantify grid uncertainties while minimizing electricity costs. ... mehr


Volltext §
DOI: 10.5445/IR/1000182386
Veröffentlicht am 16.06.2025
Originalveröffentlichung
DOI: 10.48550/arXiv.2411.12480
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 11.2024
Sprache Englisch
Identifikator KITopen-ID: 1000182386
Verlag arxiv
Umfang 12 S.
Schlagwörter Optimization and Control (math.OC), Systems and Control (eess.SY)
Nachgewiesen in OpenAlex
arXiv
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page