KIT | KIT-Bibliothek | Impressum | Datenschutz

Tiny Deep Ensemble: Uncertainty Estimation in Edge AI Accelerators via Ensembling Normalization Layers with Shared Weights

Ahmed, Soyed Tuhin ORCID iD icon 1; Hefenbrock, Michael 2; Tahoori, Mehdi B. 1
1 Institut für Technische Informatik (ITEC), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

The applications of artificial intelligence (AI) are rapidly evolving, and they are also commonly used in safety-critical domains, such as autonomous driving and medical diagnosis, where functional safety is paramount. In AI-driven systems, uncertainty estimation allows the user to avoid overconfidence predictions and achieve functional safety. Therefore, the robustness and reliability of model predictions can be improved. However, conventional uncertainty estimation methods, such as the deep ensemble method, impose high computation and accordingly hardware (latency and energy) overhead because they require the storage and processing of multiple models. Alternatively, Monte Carlo dropout (MC-dropout) methods, although having low memory overhead, necessitate numerous (~ 100) forward passes, leading to high computational overhead and latency. Thus, these approaches are not suitable for battery-powered edge devices with limited computing and memory resources. In this paper, we propose the Tiny-Deep Ensemble approach, a low-cost approach for uncertainty estimation on edge devices. In our approach, only normalization layers are ensembled M times, with all ensemble members sharing common weights and biases, leading to a significant decrease in storage requirements and latency. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000182394
Veröffentlicht am 17.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 09.04.2025
Sprache Englisch
Identifikator ISBN: 979-84-00-71077-3
ISSN: 1092-3152
KITopen-ID: 1000182394
Erschienen in Proceedings of the 43rd IEEE/ACM International Conference on Computer-Aided Design
Veranstaltung 43rd ACM/IEEE International Conference on Computer Aided Design (ICCAD 2024), New York City, NY, USA, 27.10.2024 – 31.10.2024
Verlag Association for Computing Machinery (ACM)
Seiten 1–9
Schlagwörter Deep Ensemble, BatchEnsemble, TinyML, Uncertainty Estimation, MC-Dropout
Nachgewiesen in OpenAlex
Dimensions
Scopus
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page