KIT | KIT-Bibliothek | Impressum | Datenschutz

Evolutionary Approximation of Ternary Neurons for On-sensor Printed Neural Networks

Mrazek, Vojtech; Kokkinis, Argyris; Papanikolaou, Panagiotis; Vasicek, Zdenek; Siozios, Kostas; Tzimpragos, Georgios; Tahoori, Mehdi 1; Zervakis, Georgios
1 Institut für Technische Informatik (ITEC), Karlsruher Institut für Technologie (KIT)

Abstract:

Printed electronics offer ultra-low manufacturing costs and the potential for on-demand fabrication of flexible hardware. However, significant intrinsic constraints stemming from their large feature sizes and low integration density pose design challenges that hinder their practicality. In this work, we conduct a holistic exploration of printed neural network accelerators, starting from the analog-to-digital interface---a major area and power sink for sensor processing applications---and extending to networks of ternary neurons and their implementation. We propose bespoke ternary neural networks using approximate popcount and popcount-compare units, developed through a multi-phase evolutionary optimization approach and interfaced with sensors via customizable analog-to-binary converters. Our evaluation results show that the presented designs outperform the state of the art, achieving at least 6× improvement in area and 19× in power. To our knowledge, they represent the first open-source digital printed neural network classifiers capable of operating with existing printed energy harvesters.


Verlagsausgabe §
DOI: 10.5445/IR/1000182400
Veröffentlicht am 17.06.2025
Originalveröffentlichung
DOI: 10.1145/3676536.3676728
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 09.04.2025
Sprache Englisch
Identifikator ISBN: 979-84-00-71077-3
ISSN: 1092-3152
KITopen-ID: 1000182400
Erschienen in ICCAD '24: Proceedings of the 43rd IEEE/ACM International Conference on Computer-Aided Design
Veranstaltung 43rd ACM/IEEE International Conference on Computer Aided Design (ICCAD 2024), New York City, NY, USA, 27.10.2024 – 31.10.2024
Verlag Association for Computing Machinery (ACM)
Seiten 1–9
Serie Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design
Schlagwörter Approximate Computing, Electrolyte-gated FET, Printed Electronics, Low-Power Classifiers, Ternary Neural Networks
Nachgewiesen in OpenAlex
Dimensions
Scopus
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page