KIT | KIT-Bibliothek | Impressum | Datenschutz

Decision-Focused Fine-Tuning of Time Series Foundation Models for Dispatchable Feeder Optimization

Beichter, Maximilian ; Friederich, Nils ORCID iD icon 1; Pinter, Janik ORCID iD icon 1; Werling, Dorina; Phipps, Kaleb ORCID iD icon 2; Beichter, Sebastian ORCID iD icon 1; Neumann, Oliver; Mikut, Ralf ORCID iD icon 1; Hagenmeyer, Veit ORCID iD icon 1; Heidrich, Benedikt
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)
2 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)

Abstract:

Time series foundation models provide a universal solution for generating forecasts to support optimization problems in energy systems. Those foundation models are typically trained in a prediction-focused manner to maximize forecast quality. In contrast, decision-focused learning directly improves the resulting value of the forecast in downstream optimization rather than merely maximizing forecasting quality. The practical integration of forecast values into forecasting models is challenging, particularly when addressing complex applications with diverse instances, such as buildings. This becomes even more complicated when instances possess specific characteristics that require instance-specific, tailored predictions to increase the forecast value. To tackle this challenge, we use decision-focused fine-tuning within time series foundation models to offer a scalable and efficient solution for decision-focused learning applied to the dispatchable feeder optimization problem. To obtain more robust predictions for scarce building data, we use Moirai as a state-of-the-art foundation model, which offers robust and generalized results with few-shot parameter-efficient fine-tuning. ... mehr


Volltext §
DOI: 10.5445/IR/1000182410
Veröffentlicht am 16.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Programmstrukturen und Datenorganisation (IPD)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000182410
HGF-Programm 37.12.01 (POF IV, LK 01) Digitalization & System Technology for Flexibility Solutions
Verlag arxiv
Umfang 33 S.
Schlagwörter Machine Learning (cs.LG), Artificial Intelligence (cs.AI), Machine Learning (stat.ML)
Nachgewiesen in arXiv
Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page