KIT | KIT-Bibliothek | Impressum | Datenschutz

Global solutions to nonconservative NLS with non-decaying initial data

Hirsch, Rafael 1; Kunstmann, Peer ORCID iD icon 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We investigate the long-time behavior of solutions to nonconservative nonlinear Schrödinger equations (NLS) of the form $$i\partial_t u = -\partial^2_xu-u^p,\quad p\in\mathbb{N}, p\ge2.$$
We focus on initial data that are neither localized nor periodic. Our approach is based on the work [13] by Jaquette, Lessard and Takayasu, where they used a perturbative analysis around the explicit spatially homogeneous solution of the associated ODE. We establish global existence results and asymptotic decay of solutions in a general Banach algebra setting. Applications include small data global well-posedness results for almost periodic initial data, which seem to be the first in a nonconservative NLS framework. Applications to (almost) periodic initial data with localized perturbations are also presented.


Volltext §
DOI: 10.5445/IR/1000182423
Veröffentlicht am 17.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 06.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000182423
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 18 S.
Serie CRC 1173 Preprint ; 2025/25
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Schlagwörter Nonlinear Schrödinger equations, nonconservative evolution equations, global well-posedness, asymptotic decay, almost periodic functions, non-decaying initial data
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page