KIT | KIT-Bibliothek | Impressum | Datenschutz

Probabilistic and Explainable Machine Learning for Tabular Power Grid Data

Nikoltchovska, Alexandra ORCID iD icon 1; Pütz, Sebastian 1; Li, Xiao 1; Hagenmeyer, Veit ORCID iD icon 1; Schäfer, Benjamin ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Modeling power grid frequency stability is becoming increasingly challenging due to the integration of renewable energy sources. Machine learning approaches, such as gradient-boosted trees, have shown promise in analyzing the complex characteristics of power systems. However, these models are inherently deterministic, providing only point estimates. Meanwhile, the task of capturing the underlying uncertainty, particularly through (deep) probabilistic models, is still underexplored, despite its potential to better account for the stochastic nature of power grid dynamics. In this paper, we first compare the performance of TabNet, a deep learning architecture designed for tabular data, to XGBoost for modeling power grid frequency stability. We then present TabNetProba: a probabilistic extension of TabNet, that enables uncertainty-aware estimates comparable to NGBoost. Using these (trained) models, we leverage explainable artificial intelligence (XAI) to analyze the drivers influencing grid stability and identify sources of uncertainty in two major European synchronous areas: Continental Europe and the Nordic region. Our results demonstrate that TabNetProba achieves competitive performance with state-of-the-art methods while providing reliable uncertainty estimates. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000182463
Veröffentlicht am 18.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 17.06.2025
Sprache Englisch
Identifikator ISBN: 979-84-00-71125-1
KITopen-ID: 1000182463
HGF-Programm 46.21.04 (POF IV, LK 01) HAICU
Erschienen in Proceedings of the 16th ACM International Conference on Future and Sustainable Energy Systems, Rotterdam, 17th-20th June 2025
Veranstaltung 16th ACM International Conference on Future and Sustainable Energy Systems (ACM e-Energy 2025), Rotterdam, Niederlande, 17.06.2025 – 20.06.2025
Verlag Association for Computing Machinery (ACM)
Seiten 213–231
Vorab online veröffentlicht am 16.06.2025
Schlagwörter power grid frequency stability, probabilistic machine learning, explainable artificial intelligence, tabular data, deep learning, TabNetProba
Nachgewiesen in Dimensions
OpenAlex
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page