KIT | KIT-Bibliothek | Impressum | Datenschutz

opXRD: Open Experimental Powder X‐Ray Diffraction Database

Hollarek, Daniel; Schopmans, Henrik; Östreicher, Jona; Teufel, Jonas ORCID iD icon 1; Cao, Bin; Alwen, Adie; Schweidler, Simon ORCID iD icon 2; Singh, Mriganka; Kodalle, Tim; Hu, Hanlin; Heymans, Gregoire; Abdelsamie, Maged; Hardiagon, Arthur; Wieczorek, Alexander; Zhuk, Siarhei; Schwaiger, Ruth; Siol, Sebastian; Coudert, François-Xavier; Wolf, Moritz ORCID iD icon 3,4; ... mehr

Abstract:

Powder X-ray diffraction (pXRD) experiments are a cornerstone for materials structure characterization. Despite their widespread application, analyzing pXRD diffractograms still presents a significant challenge to automation and a bottleneck in high-throughput discovery in self-driving labs. Machine learning promises to resolve this bottleneck by enabling automated powder diffraction analysis. A notable difficulty in applying machine learning to this domain is the lack of sufficiently sized experimental datasets, which has constrained researchers to train primarily on simulated data. However, models trained on simulated pXRD patterns showed limited generalization to experimental patterns, particularly for low-quality experimental patterns with high noise levels and elevated backgrounds. With the Open Experimental Powder X-ray Diffraction Database (opXRD), we provide an openly available and easily accessible dataset of labeled and unlabeled experimental powder diffractograms. Labeled opXRD data can be used to evaluate the performance of models on experimental data and unlabeled opXRD data can help improve the performance of models on experimental data, for example, through transfer learning methods. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000182521
Veröffentlicht am 23.06.2025
Originalveröffentlichung
DOI: 10.1002/aidi.202500044
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Engler-Bunte-Institut (EBI)
Institut für Katalyseforschung und -technologie (IKFT)
Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2943-9981
KITopen-ID: 1000182521
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Advanced Intelligent Discovery
Seiten 202500044
Vorab online veröffentlicht am 20.06.2025
Nachgewiesen in OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page