KIT | KIT-Bibliothek | Impressum | Datenschutz

Multilevel stochastic gradient descent for optimal control under uncertainty

Baumgarten, Niklas; Schneiderhan, David 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

We present a multilevel stochastic gradient descent method for the optimal control of systems governed by partial differential equations under uncertain input data. The gradient descent method used to find the optimal control leverages a parallel multilevel Monte Carlo method as stochastic gradient estimator. As a result, we achieve precise control over the stochastic gradient’s bias, introduced by numerical approximation, and its sampling error, arising from the use of incomplete gradients, while optimally managing computational resources. We show that the method exhibits linear convergence in the number of optimization steps while avoiding the cost of computing the full gradient at the highest fidelity. Numerical experiments demonstrate that the method significantly outperforms the standard (mini-) batched stochastic gradient descent method in terms of convergence speed and accuracy. The method is particularly well-suited for high-dimensional control problems, taking advantage of parallel computing resources and a distributed multilevel data structure. Additionally, we evaluate and implement different step size strategies, optimizer schemes, and budgeting techniques. ... mehr


Volltext §
DOI: 10.5445/IR/1000182567
Veröffentlicht am 24.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 06.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000182567
Verlag KIT, Karlsruhe
Umfang 26 S.
Serie CRC 1173 Preprint ; 2025/28
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Forschungsdaten/Software
Schlagwörter optimal control, stochastic gradient descent, uncertainty quantification, high performance computing, multilevel Monte Carlo method
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page