KIT | KIT-Bibliothek | Impressum | Datenschutz

Spatio-temporal reconstruction of an adhering droplet interface for PIV distortion correction by means of deep learning and glare points

Dreisbach, Maximilian ORCID iD icon 1; Hinojos, Itzel; Kriegseis, Jochen ORCID iD icon 1; Stroh, Alexander ORCID iD icon 1; Burgmann, Sebastian
1 Institut für Strömungsmechanik (ISTM), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

In the present work a Deep Learning technique for the reconstruction of gas-liquid interfaces is introduced, with the scope of obtaining the instantaneous interface of adhering droplets in external shear flows. A purposefully developed optical measurement technique based on the shadowgraphy method is employed that encodes additional 3D-information of the interface in the images via glare points from lateral light sources. On the basis of the images recorded in the experiments the volumetric shape of the droplet is reconstructed by a neural network. The results for experiments with adhering droplets at different velocities of external flow demonstrate that the proposed method reconstructs the instantaneous three-dimensional interface of adhering droplets at both high resolution and spatial accuracy.


Zugehörige Institution(en) am KIT Institut für Strömungsmechanik (ISTM)
Publikationstyp Vortrag
Publikationsdatum 13.05.2025
Sprache Englisch
Identifikator KITopen-ID: 1000182572
Veranstaltung 12th International Conference on Multiphase Flow (ICMF 2025), Toulouse, Frankreich, 12.05.2025 – 16.05.2025
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page