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Abstract

Reducing transient emissions from internal combustion engines in mobile working machines presents
a significant challenge, especially in terms of complying with strict environmental regulations. A prom-
ising method for reducing these emissions is the phlegmatization, where the internal combustion en-
gine is delayed in adjusting to the new load level after a load step. This allows the air path more time,
resulting in lower NOy and PM emissions.

This paper presents the concept of a hybrid module used for phlegmatization and its approach for an
operating strategy. Additionally, the simulation model built to investigate the concept is introduced,
with a specific focus on parameterizing and verifying the engine models of two diesel engines. Further-
more, the map area with the highest savings potential for both engines is determined. Finally, the
approach for an operating strategy of the hybrid module is outlined.
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1 Transient Emissions in Mobile Working Machines

Climate change is driven, among other things, by emissions from internal combustion engines (ICE)
powered by fossil fuels. Diesel engines, as a form of an ICE, are the most widely used primary energy
converters in mobile working machines [1]. In the Following, diesel engines are referred to as ICE.
The most important greenhouse gas in the context of climate change and ICEs is CO, [2] [3]. In addition
to CO,, the harmful effects of nitrogen oxide (NOy) and particulate emissions (PM) from ICE on humans
and the environment have been known since the 1960s [4].

As [5] shows in several measurement results, approximately 40% of NO, and PM emissions are at-
tributable to transient operating conditions, characterized by rapid changes in engine operation. These
conditions are particularly common in mobile working machines due to their recurring cycles (e.g., Y-
cycle or 90° excavator cycle). Three types of operating conditions lead to transient events: load steps
(LS) at constant speed, speed steps at constant load, or cold starts. These conditions can also occur in
combination, amplifying their effects [6]. However, this paper only considers the first case.

During steady-state conditions, the air and fuel quantities are balanced to ensure both good power
output and low fuel consumption and emissions. In the event of a sudden LS, the desired amount of
diesel can be injected immediately, whereas the corresponding boost pressure, i.e., the air quantity, is
only available with a significant delay due to turbo lag. [5] [6]
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This leads to a reduction in the air-fuel ratio A, which is the critical factor for the formation of PM.
Consequently, many zones in the combustion chamber experience a significant lack of air, which is
locally increased by the short mixing time due to the prevalent direct injection in modern ICE. This
promotes PM formation. [5]

At the same time, poor mixing during turbo lag results in partially high A values, leading to locally high
gas temperatures and ultimately high NO, emissions. Additionally, the reduction in the exhaust gas
recirculation (EGR) rate to provide the required torque for the LS leads to more fresh air in the com-
bustion chamber, resulting in less PM. However, this fresh air again causes higher gas temperatures
and, within the context of the soot-NO, trade-off, increased NO, emissions. [5] [6]

In addition to internal engine solutions such as the EGR or adapted injection times, various exhaust gas
aftertreatment methods such as diesel particulate filters (DPF) against PM, diesel oxidation catalytic
converters (DOC) against unburnt hydrocarbons and systems for selective catalytic reduction (SCR)
against NOy are also used. All of these systems must be tuned to the EGR, if available [7].

Hybrid systems, on the other hand, have so far mainly been used to increase performance and save
fuel [8] [9] [10], but less for reducing (transient) emissions [11] [12]. This paper is therefore intended
to provide an outlook on the possibilities of a compact hybrid module for reducing primarily transient
NO, and PM emissions from mobile working machines.

2 Concept of a Hybrid Module for Reducing Transient Emissions

The hybrid module (HyM) operates on the same principle as described in [13]. Figure 2.1 illustrates the
basic idea using the example of a LS and following load drop (LD). The desired torque Mg is distrib-
uted between the internal combustion engine (M;cg) and the HyM (Myy). In the case of aLSin area 1,
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swashplate design (APPSP) is used as the energy converter, and a hydraulic bladder accumulator is
used as the power storage. The HyM is located between the ICE and the rest of the drivetrain, as close
to the ICE as possible, to better influence its operating points [16].

The APPSP is connected to the entire drivetrain via a spur gear and a clutch only during the transient
event. Without the clutch, the constant rotation of the APPSP, even in the neutral position, would
generate losses that cannot be neglected [17]. Additionally, the spur gear allows the speed or torque
range to which the APPSP is exposed to be modeled.

3 Simulation of the Hybrid Module

The suitability of the HyM for reducing transient emissions is investigated through simulation. For this
purpose, a simu-
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Figure 3.3: Overview of the basic structure of the model

considers all other components. In the orange area of MATLAB® Simulink®, the cycle is applied on the
far right, which provides My, to the drivetrain via a dynamometer and simultaneously forwards it to
the operating strategy (OS). Additionally, ng4es is passed to the ICE. The HyM is positioned between the
dynamometer and the ICE and receives the signal from the OS indicating the torque My m ges it needs
to generate. Simultaneously, the OS receives the current accumulator status of the HyM in the form
of the accumulator pressure p,¢ and the current ICE speed nicg ¢y to calculate Myym ges-

The ICE in Cruise™ M is a semi-physical model of the cylinder block and a physically implemented air
path using a OD simulation approach [18] [19] [20]. Here, a PID controller based on nges and nycg cyr
determines the load signal, which, together with nycg ¢y, is used to read all important parameters such
as injection quantity and timing, EGR rate, etc., from maps. This allows the engine model to simulate
the combustion and thus the emissions for the required torque M yes-

Based on map measurements, two engine models have  Table 3.1: Technical data of the two simulated ICE

been developed that have different performance ranges ICE1 ICE 2
and are used in both trucks and mobile working ma- | cylinders inline, 6 | inline, 6
chines. Their technical data can be found in Table 3.1. displacementin| | 12,8 7,7
MicE max iNNmM | 2600 1400
PicE max in KW 390 260
EGR yes yes
turbocharging VTG Bi-Turbo
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3.1 Parameterization of the Engine Models

The models are parameterized using map measurements according to the definition in [21]. For eval-
uation, both a graphical method and a feature-based method are used as in [22]. Both methods utilize
the 12 parameters shown in Figure 3.4 and Figure 3.5. The results of the measurements, represented
by the blue solid lines, are compared with the corresponding simulation results (green solid line).

Each modelis considered parameterized according to the graphical evaluation method when the meas-
urement and simulation of the individual parameters match as closely as possible. The calculation of
the deviation r, in the upper left corner of each parameter diagram and thus the evaluation according
to the feature-based method is carried out using the method from [23], which is further detailed in
[22]. The better the agreement between measurement and simulation, the smaller r, is [24]. Analo-
gous to [22], r, less than 10% is considered very good. If r, is less than 20%, the parameterization is
still considered good. r, up to a value of 25% is considered satisfactory.

The parameterization of ICE 1 in Figure 3.4 shows that simulation and measurement agree well both
qualitatively and quantitatively at most measurement points. Only for the exhaust manifold pressure
P31, the EGR mass flow MFgggr, and PM are there quantitative deviations, which slightly increase the
values of r,, but still remain in the good range with a maximum of 16.4%. The deviations of these three
variables are all due to p31, as MFggr and PM indirectly depend on p34. In the simulation p3 is always
about 0.5 bar below the measured values. This is due to the processes in the combustion simulation
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Figure 3.4: Result of parameterization of ICE 1
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Figure 3.5: Result of parameterization of ICE 2
within the engine block, as all simulation values before and after match the measurement data very
well. However, the engine block is a black box, so the influence on internal engine processes is very
limited. Parameters such as the pressure at the start of injection are adjusted as much as possible to
raise p3; while still ensuring a stable simulation process. MFggg flows along Ap from the exhaust man-
ifold to the intake manifold when the EGR valve is open. If p3is too low, this affects MFggg and thus
directly the PM.

As shown in Figure 3.5 measurement and simulation also agree well for ICE 2 for most parameters.
Only for MFggR, simulation and measurement differ by about a factor of 4. This is because the control
of MFggR in the simulation, according to the state of the art [6], aims to achieve both the performance
and emission values of the measurement simultaneously. However, the approach to control MFggg in
the measurement is unknown and can only be derived from assumptions. All other parameters agree
good to very good.

In summary, it can be noted that all parameters have deviations in the good to very good range. Thus,
the presented models of ICE 1 and ICE 2 are defined as successfully parameterized.

3.2 Verification of the Engine Models

A verification compares an analytical solution with a numerical one. If both solutions agree to a certain
extent, the numerical solution is considered verified [25]. For the validation of a simulation model,
measurement data must be used. Without this measurement data, validation is not possible [21]. But
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this validation measurement is not available for the considered ICE. Therefore, this paper omits vali-
dation and instead conducts a more extensive verification focusing solely on NOy and PM.

The literature does not present any clear trends regarding engine behavior, either stationary or tran-
sient. Based on this, a method is developed using LS as shown in Figure 2.1, which first compares the
stationary level after the LS in the simulation with measurements from the literature or map measure-
ments. If a comparison is possible, the stationary behavior is verified. Then, for NOy and PM, the re-
sulting peak and the level after the LS, and thus the transient behavior, are examined individually. The
literature indicates that, except for PM peaks, there are no trends for various ICE. But a peak was
always observed for PM after the LS.

The verification shows that the simulation data regarding the stationary level after the LS are compa-
rable to the results from the map measurements. Additionally, the

peak after the LS for PM can be demonstrated for all examined ?32(2

cases. An example of such a typical PM peak for LS from 1500to < |5

2250 Nm at 2200 rpm is shown in Figure 3.6. Since the ICE models -£ 121'8

do not need to exactly replicate their underlying originals but E 7-2

should primarily reflect real engine behavior, the verification is 2.5

successfully completed. Thus, the simulation results are usable 09 95 10 105 11
within the defined boundary conditions, i.e., within the measured time in s

maps during stationary and transient states. Figure 3.6: Typical PM peak after a LS

3.3 Potential Identification

Before developing operating strategies (OS) for phlegmatization, it is crucial to identify the areas in the
engine map where the OS can actually achieve a reduction in transient emissions. For this purpose, LS
similar to those in Figure 2.1 are used. At a constant speed, the engine map is traversed concerning
the starting torques and speeds to cover every possible speed-torque (s-t) combination. The transient
behavior with typ = 0 s is used as a reference. The phlegmatized steps are run with a torque gradient
of 100 Nm/s. The reduction can be calculated for NO, and PM using formula (3.1). For each examined
s-t combination, a field is created in the engine map, with its color reflecting the reduction in Figure
3.7 to Figure 3.10. In the fields colored white, the engine stalled due to excessive throttling.

LDEnd

LD
NO —J s End NO
LSstart x,trans fLSStart x,phleg

LD
End NO
fLSStart x,trans

reduction = (3.1)

ICE 1 shows a significant clustering of NO, reduction in the torque range of M < 250 Nm with a maxi-
mum reduction of 4.2 % in Figure 3.7. This potential for reducing NOy, is likely more usable than the
distributed potential for reducing PM in the engine map shown in Figure 3.8.

In contrast to ICE 1, ICE 2 shows a significant clustering of PM reduction in the lower speed range (1000
to 1100 rpm) in Figure 3.10. Only there is a reduction in PM with values of up to 29.3 % promising. A
reduction in NOy does not seem particularly worthwhile in any area of the engine map in Figure 3.9,
with a maximum reduction of 4.1 %. Based on these findings, the OS can subsequently be developed.
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4 Operating Strategies

The goal of each developed OS is to control the APPSP, considering the current accumulator level and
the current s-t combination, so that the ICE is only loaded to the extent that minimal transient NOy
and PM emissions are produced. Thus, the engine should operate in a phlegmatized manner during
transient operating conditions.

Chapter 2 already described the concept of the hybrid module with control via constant gradients. The
0OS must now determine the optimal gradient for each s-t combination. [26] and [27] show that simu-
lated stationary emissions in transient operating points can be converted into transient emissions by
multiplying with the coefficient “c-factor” for defined map areas.

The approach of the OS used here is roughly the inverse of this procedure. Although the coefficients
are also called c-factors, but here they are the gradients from Chapter 2 that need to be defined and
determined for each of the s-t combinations from Chapter 3.3. For this purpose, LS across the entire
engine map of both ICEs are simulated with varying c-factors, and then the optimal c-factors are de-
termined using a cost function. The goal is an optimum of low NO, and PM emissions and the shortest
possible tap.

To provide a reference for the cost function, a ramp-up time of t,p = 5 s is defined as optimal con-
cerning emissions [5] [13]. LS are simulated as in Chapter 3.3, resulting in emission maps similar to
those in Figure 3.7 to Figure 3.10. These emissions, optimally phlegmatized by definition, can be com-
pared with the emissions of the various OS developed in order to determine the best OS.
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The determination of the OS and the verification of their suitability for controlling the hybrid module
is the subject of current research.

5 Summary and Outlook

This paper presents a concept for a hybrid module designed to reduce transient emissions from mobile
working machines through phlegmatization. In addition to the basic principle, the simulation model of
the hybrid module is also presented. This includes a detailed engine model of two internal combustion
engines. Both engine models are parameterized and verified. The paper also identifies areas where
NOy and PM emissions can be reduced.

Finally, the planned approach for the operating strategies is presented. The result should be a map
with maximum gradients (c-factors) for each s-t combination, based on which the hybrid module phleg-
matizes the internal combustion engine.

The finalized operating strategies and the complete evaluation of the simulation results to determine
the best strategy and its emission reduction potential are planned to be published in a PhD work by
the end of 2025.

The completed hybrid module, with an OS tailored to the engine and the mobile working machine,
aims to provide another option for sustainably reducing transient raw emissions from mobile working
machines in the future. Especially in energy-intensive industrial sectors outside urban areas, where
internal combustion engines will remain the state of the art for the foreseeable future, this technology
can help counteract the ongoing air pollution.

It is conceivable to not only install the hybrid module in new machines but also retrofit older existing
machines with it. Due to its simple design and compact dimensions, it is often possible to find space
for installation despite the spatial constraints of mobile working machines.
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