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Kurzfassung

Der westafrikanische Monsun (WAM) ist ein bedeutendes meteorologisches System mit
weitreichenden Auswirkungen, dessen komplexe Wechselwirkungen Wetter- und Kli-
mamodelle vor grofSe Herausforderungen stellen. Unsicherheiten in Modellparametri-
sierungen, beispielsweise bei hochreichender Konvektion oder der Wolkenmikrophysik,
beeinflussen die Vorhersagegenauigkeit erheblich. Diese Arbeit stellt einen Ansatz
auf Basis von Ersatzmodellen vor, um diese Unsicherheiten zu quantifizieren und
Modellparameter gezielt zu verbessern. Dazu wird ein Verfahren entwickelt, das den
Parameterraum zunéchst in einen gleichverteilten Eingangsparameterraum {iberfiihrt,
in dem Stichprobenverfahren sowie Surrogatmethoden angewandt werden. Ergebnisse
aus Simulationen mit dem Icosahedral Non-Hydrostatic (ICON)-Modell des Deutschen
Wetterdienstes werden mithilfe der Gaufiprozess- und Hauptkomponentenregression
analysiert, um den Rechenaufwand zu reduzieren. Der Einfluss der Modellparameter
wird durch globale Sensitivitdtsanalysen und Parameterstudien untersucht, gefolgt von
Optimierungen unter Einbezug von meteorologischen Referenzdaten. Die Ergebnisse
zeigen, dass unter den untersuchten Parametern insbesondere die Entrainment-Rate,
die die Durchmischung zwischen aufsteigender Luft und Umgebungsluft beeinflusst,
die Endfallgeschwindigkeit von Eispartikeln und der verdunstungsaktive Bodenanteil,
der die Bodenfeuchte und damit die Verdunstung reguliert, den grofiten Einfluss
auf das WAM-System haben. Eine Verringerung der Entrainment-Rate fiihrt zu
einer Verbesserung der Simulation von Niederschlag, bodennaher Luftfeuchte und
Luftdruck. Allerdings sind Verbesserungen tiber alle Variablen hinweg begrenzt, was
auf eine bereits gut abgestimmte Standardkonfiguration des ICON-Modells hindeutet.
Die Ergebnisse verdeutlichen strukturelle Herausforderungen, etwa die begrenzte
Moglichkeit, die gewiinschten rdumlichen Muster durch Parameteranpassungen zu
erzielen, sowie Zielkonflikte zwischen verschiedenen meteorologischen Grofien. Dies
unterstreicht die Notwendigkeit, neben den Parameterwerten auch die Modellphysik
und die rdumliche Auflésung weiterzuentwickeln.
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Abstract

The West African monsoon (WAM) is a key climatic system with far-reaching impacts,
and its complex interactions pose a challenge for weather and climate models. Uncer-
tainties in model parameterizations, for example, in deep convection or cloud micro-
physics, significantly affect forecast accuracy. This dissertation presents a surrogate-
based approach to quantify these uncertainties and systematically improve model
parameters. To achieve this, a framework is developed that first transforms the
parameter space into a uniformly distributed input space, where sampling techniques
and surrogate methods are applied. Results from simulations with the Icosahedral
Non-Hydrostatic (ICON) model of the German Meteorological Service are analyzed
using Gaussian process regression and principal component regression to reduce
computational costs. The influence of model parameters is examined through global
sensitivity analyses and parameter studies, followed by optimizations incorporating
meteorological reference data. The results show that among the investigated param-
eters, the entrainment rate, which governs the mixing between rising air and the
surrounding atmosphere, the terminal fall velocity of ice particles and the evapo-
rative soil surface fraction, which controls soil moisture and evaporation, have the
greatest impact on the WAM system. Reducing the entrainment rate leads to a
more accurate simulation of precipitation, near-surface humidity and mean sea-level
pressure. However, improvements across all variables remain limited, suggesting that
the default configuration of the ICON model is already well-calibrated. The findings
highlight structural challenges, such as the limited ability to achieve desired spatial
pattern changes through parameter adjustments and the trade-offs between different
meteorological variables. This underscores the need to refine not only parameter values
but also model physics and spatial resolution.
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1 Introduction

According to Moore’s law [93], the number of transistors on an integrated circuit doubles
approximately every two years. Despite this rapid growth in hardware capabilities,
computational models across many scientific fields have not necessarily become faster;
instead, they have grown more complex. For instance, while meteorological simulations
in the 1990s used global grids with resolutions of hundreds of kilometers, today’s models
can achieve resolutions as fine as one kilometer [40].

The pursuit of greater accuracy in modeling complex systems requires not only
substantial computational resources but also a more detailed representation of the
underlying processes. Yet, certain processes — such as cloud formation — can never be
fully captured with complete accuracy through fundamental physical equations and
an atmospheric grid framework. As a result, these processes must be approximated
using parameterizations, a common practice in meteorology that involves structural
or empirical assumptions about unresolved phenomena. While aleatoric uncertainty
arises from the inherent variability associated with the chaotic nature of the atmosphere,
epistemic uncertainty is introduced through parameterizations, for example through the
choice and specification of parameter values, reflecting limitations in our understanding
of the underlying processes.

As models continue to grow in complexity, yet remain limited in their ability to
fully represent all physical processes, there has been increasing interest in developing
surrogate models. These simpler models can then be used to efficiently quantify
uncertainties in more complex models and support their improvement, ultimately
reducing those uncertainties. This work focuses on the West African monsoon
(WAM), a prominent meteorological system known for its substantial prediction
uncertainties [139]. The goal is to apply and advance state-of-the-art techniques, along
with developing custom extensions, to assess model uncertainties and explore ways to
enhance the accuracy of predictions for the system’s key characteristics.
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1.1 Motivation

The WAM is a major seasonal circulation system that brings extensive rainfall to West
Africa during the boreal summer, typically peaking in August [48]. This precipitation
is vital to the livelihoods of hundreds of millions of people, affecting agriculture,
energy production, water resources, and public health, making it a key socioeconomic
driver in the region [43, 107]. Despite its critical importance, simulations of the WAM
across timescales from weather forecasts to climate predictions suffer from substantial
uncertainties.

With respect to weather forecasts, ensemble rainfall predictions over tropical Africa
exhibit the lowest skill of all tropical regions — a metric quantifying the accuracy of
a forecast relative to a reference — and are often barely better than climatological
forecasts [140], even after the application of statistical post-processing to reduce
systematic errors. This poor performance can partly be attributed to uncertainties
in the initial conditions, compounded by the sparse operational network in the
region [23, 109]. Improving simulations over West Africa also requires enhancing
numerical models themselves. Janicot, Larorg, and THORNCROFT [54] argued that biases
and uncertainties could be significantly reduced through a better understanding and
more precise representation of processes occurring on weather timescales. Achieving
such improvements, however, often requires extensive experimentation with model
formulations and parameterizations, which can be computationally prohibitive.

To address this challenge, surrogate models have emerged over the past few decades as
a valuable tool for exploring dependencies and uncertainties in complex computational
systems. By providing a resource-efficient alternative to costly simulations, they
enable detailed statistical investigations into how uncertain model parameters affect
key system quantities [128]. These models are frequently used to optimize such model
parameters; however, defining appropriate objectives, particularly in meteorology,
remains a challenge due to the wide range of variables involved. As noted by ZANGL
[153], the process of tuning model parameters often involves subjective decisions, such
as prioritizing specific forecast variables or regions, with the assignment of weights
significantly influencing the resulting optimal parameters.

To date, no comprehensive study has explored uncertainty contributions from model
parameters or examined parameter calibration specifically for the WAM. Moreover,
previous meteorological research has not investigated how weight variation in multi-
objective optimization (MOQ) affects outcomes in this context. This work aims to
address these gaps in current research.
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1.2  State of Research

Accurate prediction of the WAM is vital due to its significant socioeconomic impacts,
yet uncertainties in meteorological modeling remain, driven by the complexity of
atmospheric processes. This section first introduces the meteorological system under
study, providing an overview of the state of research and highlighting the key findings
and challenges specific to this system. Building on this, the state of research in
the methodological aspects — uncertainty quantification (UQ), surrogate modeling and
parameter optimization —is presented, with a focus on their application to and relevance
for the meteorological context, thereby establishing the motivation for advancing
existing techniques.

The WAM, conceptually depicted in Fig. 1.1, constitutes a complex deep overturning
circulation, with its formation, maintenance and variability governed by various
regional and remote forcings [44]. One of its main initial drivers is the large temperature,
and thus pressure gradient between the hot, dry and often dusty Sahara manifested
in the Saharan heat low (SHL) and cooler, moister conditions over the tropical Gulf of
Guinea. The marked discontinuity between these fundamentally different air masses,
the Intertropical Discontinuity (ITD), which lies around 20°N during boreal summer,
is associated with shallow and dry overturning [100, 132]. Abundant deep convection
is rather observed in a band south of the ITD, often called monsoonal rain belt. There,
mainly between 8°N and 13°N, the bulk of summertime precipitation is produced by
frequently passing large convective systems with a high degree of organization [69, 70,
89].

The monsoonal rain belt is enclosed by two distinctive dynamical features, the African
Easterly Jet (AE]) to the north and the Tropical Easterly Jet (TE]) to the south. The AE],
a pronounced easterly jet at around 600-700 hPa maintained by the low-tropospheric
meridional temperature gradient, regularly features wave disturbances. These so-called
African Easterly Waves with wavelengths between 2000 km and 5000 km and periods
of 2-7 days [8, 61, 115] strongly modulate convection, mainly by enhancing vertical
wind shear to levels favorable for the generation of organized squall lines [22]. In the
upper troposphere, the WAM circulation is characterized by a jet-like intensification
of the tropical easterlies. This distinct easterly current observed between 5°N and
20°N, called TE], evolves over the South Asian monsoon system, where it is also
strongest, and extends westward to Africa under gradual weakening [27]. Previous
studies demonstrated that seasonal-mean WAM rainfall is strongly correlated with
the intensity of the TE]J over West Africa [42]. At least on shorter timescales, the TE]
is, however, mainly thought of as a passive feature, which can intensify after periods
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Figure 1.1: Schematic illustration of the WAM system in a height-latitude display (inspired by Fink et al.
[24]) including the TE], the AE], the SHL, the ITD, 2m temperature (T>,) and 2m dew point temperature
(T42m)- The main rainfall area is indicated by light blue shading. Circulation in the height-latitudinal plain
is depicted through streamlines. The approximate latitudinal position of the Guinea Coast is also given.

of increased convective activity through the enhanced divergent outflow at upper
levels [74].

Despite its outstanding importance for the region, simulations of the WAM spanning
timescales from weather to climate are fraught with substantial uncertainties. For
instance, the German Meteorological Service (DWD) currently uses a global grid with
a mesh size of 13km to achieve sufficiently accurate weather predictions. Even at
these high resolutions, many atmospheric processes occur on a sub-grid scale and still
need to be parameterized, since they cannot be explicitly resolved. Thus, such models
involve a substantial number of parameters that must be carefully tuned. While some
parameters represent quantities that are directly measurable or well-constrained by
observations (e. g. the fall speed of ice), others cannot be directly observed and must be
calibrated to ensure realistic model behavior at sub-grid scales (e. g. the soil moisture
evaporation fraction). Voger etal. [138, 139] showed that ensemble predictions of rainfall
over tropical Africa have the lowest skill throughout the tropics and are often barely
better than climatological forecasts [140], even after the removal of systematic errors
through statistical post-processing. This poor performance is partly related to errors
stemming from initial condition uncertainty in a region known for a sparse operational
network [23, 109]. Moreover, there appear to be issues with data assimilation, as the
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availability of additional observations during field campaigns shows relatively small
improvements [1, 75]. In weather forecasts, but also in mean-state focused simulations
(beyond the problem of initial state uncertainty), the representation of the WAM and
its features is affected by various model uncertainties. Shortcomings in adequately
simulating small-scale diabatic processes, such as deep moist convection, not only
directly affect rainfall prediction skill but also introduce errors in the overall WAM
circulation. Like many tropical large-scale flows, the WAM is strongly driven by
diabatic heating in the troposphere [83, 84]. Model-related uncertainties regarding
the representation of deep convection and other physical processes are also reflected
on climate timescales where many models struggle to realistically reproduce the
rainfall distribution over the WAM region and its seasonal evolution [12, 135, 151].
Considerable problems are also evident on paleoclimate timescales with many models
struggling to accurately describe the magnitude and time of precipitation changes of
the African humid period during the Holocene, which amongst other things led to a
Green Sahara [7, 11].

Reducing biases and uncertainties in model simulations over West Africa requires
a more precise representation of processes on weather timescales. Janicor, Larorg, and
TrorNCROFT [54] emphasized the need for detailed analyses at these shorter timescales
to improve both weather forecasts and climate predictions. As mentioned in the
paragraph above, especially the correct representation of diabatic processes, most of
them indeed acting on short time and rather small spatial scales, still constitutes a
major challenge. In this regard, a key problem are model uncertainties associated with
grid resolution and parameter choices in the representation of sub-grid scale processes.
For example, the explicit or parameterized representation of deep convection has a
large effect on the amount, spatial distribution and diurnal cycle of precipitation, with
substantial impacts on the large-scale dynamics and thermodynamics, even beyond the
African continent [59, 83, 108]. Matsui et al. [90] found that the treatment of radiation
in their model affects precipitation, low clouds and the entire WAM circulation, while
Tcrorcnou and Kamaa [131] highlighted the deficiencies of selected convection schemes
to simulate the monsoon rainfall accurately. FLaounas, BastiN, and Janicor [25], GBoDE
et al. [32], and KirEN et al. [62] considered microphysical, convective and boundary
layer processes and found that variations in process parameters significantly influence
the accuracy and spread of precipitation and other outputs. In other studies, effects
of different meteorological phenomena and boundary conditions on the WAM were
investigated. For instance, Knirrka, Kn1pPERTZ, and Fink [63] highlighted that variations
in low-level clouds can have a substantial impact on precipitation. ZuenG and Erranir
[155] and Horcrorr et al. [51] investigated the influence of vegetation. The former
examined variations in its meridional distribution on a weather timescale, while the
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latter identified a relationship between past vegetation coverage and mid-Holocene
climate. MEssaGER, GALLEE, and Brasseur [92] found that sea surface temperature (SST)
is a major driver of seasonal and interannual monsoon precipitation variability.

The aforementioned studies aimed to assess isolated relationships between specific
physical schemes or their associated model parameters and simulated WAM quantities.
A major limitation of this approach is the challenge of studying the combined effects of
multiple sources of uncertainty simultaneously. Non-linear interactions and buffering
effects will make it nearly impossible to deduce such effects from single-parameter
perturbation experiments. Ideally, experiments would be conducted across a wide
range of parameter combinations. However, this quickly becomes computationally
expensive, as a sufficiently long simulation period is required to distinguish systematic
differences from day-to-day weather variability.

To address these challenges, surrogate modeling techniques have gained increasing
popularity across numerous scientific fields — such as engineering, meteorology,
chemistry and economics — over the past decades. The terminology for surrogate models
varies; in meteorology, they are often referred to as meta-models or emulators [10, 71,
85]. The relationship between a system, its model and the surrogate model is illustrated
inFig. 1.2. A system refers to the real-world process or phenomenon under investigation,
governed by natural laws and mechanisms that are to be understood, simulated or
predicted. A model is a mathematical or computational representation of such a system,
incorporating the key variables, parameters and functional relationships believed to
drive its behavior. In the present study, the system of interest is the atmosphere
over West Africa, including the WAM, and the computational model employed is a
limited-area numerical weather prediction model. Model parameters — often derived
from observational data or heuristic assumptions — serve as inputs to the model and
are inherently subject to uncertainty. These parametric uncertainties are typically of an
epistemic nature, arising from incomplete knowledge of the system or model structure.
In contrast, aleatoric uncertainty refers to the intrinsic variability of the system itself.
Epistemic uncertainties are commonly represented by probability density functions
(PDFs), causing model outputs to depend on the specific realizations of the uncertain
input parameters. Since complex computational models are often too resource-intensive
to support tasks requiring numerous model evaluations, surrogate models offer a
practical alternative by providing efficient approximations of the original model.
These surrogates are trained on a relatively small set of simulations, referred to as the
experimental design [28, 122], and their associated outputs. Once constructed, surrogate
models enable a wide range of applications, including parameter optimization [29]
and UQ. Within this framework, UQ seeks to identify, characterize, and quantify
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Figure 1.2: Schematic illustration of the relationship between a system, its model and the surrogate model.

uncertainties in model inputs and to assess their influence on model responses [67].
This framework supports a broad range of applications, including structural reliability
analysis [73], global sensitivity analysis [120] and Bayesian methods for the calibration
and validation of computational models [14].

Early surrogate techniques, such as polynomial regression, provide a straightforward
approach to approximating system behavior. With the evolution of surrogate modeling,
more advanced methods emerged, including kriging, which was introduced by French
mathematician Georges Matheron in 1962 [86], building on earlier work by Danie
G. Krige. Initially applied to estimate gold distributions in South Africa’s Witwatersrand
reef complex, kriging became a powerful tool for both approximation and UQ for the
design and analysis of computer experiments [119]. This method, later known as
Gaussian process regression (GPR) [113], has evolved into one of the most prominent
approaches. Beyond approximating the output of a computational model, GPR also
provides local estimates of its accuracy, enabling methodical extensions, such as
in surrogate-based design optimization [96]. Other advanced techniques that have
further expanded the range of surrogate modeling approaches include support vector
regression [134], polynomial chaos expansions [148] and artificial neural networks [28].
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The estimation of hyperparameters is central to GPR methods and is typically performed
through likelihood maximization [113]. However, in high-dimensional input spaces
or with large training datasets, this process becomes computationally expensive.
To accelerate hyperparameter estimation, gradient-based methods are commonly
employed. In the case of ordinary kriging, efficient expressions for computing optimal
hyperparameters are well established and widely applied [113].

Other earlier methods, often not traditionally categorized as surrogate modeling
techniques, can still effectively describe the response variables of a system. Statistical
regression methods such as partial least squares regression [34] identify latent variables
that maximize the covariance between predictors and responses, thereby addressing
multicollinearity. Regularized regression techniques [156], including ridge regression,
lasso regression and elastic net regression, improve model stability and perform variable
selection. Dimensionality reduction methods, such as principal component analysis
(PCA) [57] and factor analysis [46], transform or model variables to capture the most
significant data structure. Principal component regression (PCR) [98] combines PCA
with regression, traditionally in a linear framework.

Although the exact relationship between input and output quantities is not known in
advance, it may be possible to assume certain underlying trends to improve prediction
accuracy. These trends can be incorporated as basis functions by various surrogate
modeling techniques, such as universal kriging [87]. Usually, simple basis functions
(often low-order polynomials) are used to reduce complexity and avoid overfitting.
However, in high-dimensional input spaces, higher-order multivariate polynomials
can lead to a rapid increase in the number of terms, a challenge known as the curse
of dimensionality. To address this, methods for polynomial basis selection, such as
least-angle regression [19], can be applied. For example, Kersaupy et al. [60] proposed
the LARS-Kriging-PC modeling method, where explicit multivariate basis functions
for universal kriging are selected using least-angle regression based on polynomial
chaos expansions. This method is designed to select the polynomials that contribute
the most relevant information to the kriging model, effectively combining the strengths
of GPR and polynomial chaos expansion. Similarly, blind kriging [58] identifies the
underlying trend from data using Bayesian variable selection. Both methods require
a predefined set of candidate basis functions, and the polynomials are chosen based
on the regression technique rather than prior knowledge of the problem. However,
as noted by Oakcey [102], the choice of basis functions should, wherever possible,
incorporate any prior beliefs or knowledge about the problem, such as the physical
evolution of the output variable with respect to the input parameters.



1.2 State of Research

In meteorological literature, GPR is the most widely used technique and has, for
instance, been applied by FLETcHER, KrAVITZ, and Bapawy [26] to investigate the impact
of aerosol forcing and atmospheric parameters on climate sensitivity, where two cloud-
and convection-related parameters had the strongest influence. Similarly, Lek et al. [71]
used GPR to study the cloud condensation nuclei (CCN) sensitivity to eight emission
and microphysical process parameters and found that uncertainty in the sulphur
emissions explains 80 % of the output variance. Radial basis functions were used by
MULLER et al. [97] to calibrate a model for methane emission-related parameters. Lu
et al. [78] used advanced sparse grid interpolation as a surrogate model for the E35M
Land Model and employed quantum-behaved particle swarm optimization to identify
optimal parameters. Alternative approaches include polynomial regression [3, 50, 99],
polynomial chaos expansion [85] and neural networks [79]. Combinations of these
methods have also been used. For instance, Ray et al. [114] applied Gaussian processes
and polynomial regression for Bayesian calibration of hydrological parameters in the
Community Land Model, while Cranc et al. [9] combined PCA with GPR to develop
surrogate models for calibrating the Greenland Ice Sheet model. Universal kriging has
also been applied in several studies [17, 39, 144], using either linear or quadratic basis
functions as trend functions.

When describing more than one output variable, multi-output modeling approaches
have evolved to approximate all outputs with a single surrogate model, leveraging
inter-output correlations to improve accuracy or sometimes reduce computational cost.
For instance, BorcHaNI et al. [5] summarized approaches such as multi-target regressor
stacking, regressor chains and multi-output support vector regression. Co-kriging [88],
an extension of GPR for multiple outputs, encompasses various methods for modeling
inter-output dependencies, with the linear model of coregionalization being one
prominent approach. Additionally, PCA [35] and PCR [36] have been adapted for spatial
data, gaining popularity in image processing applications where principal components
are employed in multivariate regression. With advancements in computational power
and data availability, neural network-based approaches have become more prominent
for modeling relationships between multiple inputs and outputs [149].

Additionally, parameter optimization studies have been extended to multiple outputs
leading to MOO problems [29]. Particularly in meteorology, defining suitable objectives
remains challenging due to the diverse range of variables involved. When optimizing for
multiple objectives simultaneously, compromises can be identified via Pareto fronts. On
such Pareto fronts, an improvement in one objective necessitates the deterioration of at
least one other objective. Surrogate-based optimization has proven particularly effective
for these complex MOO problems, which often require high computational effort.
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Several studies have focused on identifying Pareto fronts using surrogate models [41,
124]. Other studies have simplified the analysis by predefining the weighting of
objectives, thereby reducing the problem to a single-objective optimization problem.
For example, CINQUEGRANA et al. [10] assigned equal weights to all objectives, although
the weights may have a substantial impact on the optimization results.

Highlighting the complexity of improving the Icosahedral Non-Hydrostatic (ICON)
model - the operational forecast system of the DWD — by tuning its parameters, ZANGL
[153] noted that many parameters have a range of values with no clear optimum.
Modifying a parameter may improve model performance in some regions or seasons
while degrading it in others, or may enhance certain forecast variables at the expense
of others. Traditionally, parameter tuning has been conducted by experts without a
unified framework. History matching [145] has emerged as a prominent technique for
quantifying parameter uncertainties by systematically exploring a range of plausible
model configurations and eliminating parameter sets that fail to reproduce observations
within acceptable tolerances. This approach is particularly useful in the tuning of climate
model parameters, such as those governing aerosol-cloud interactions, where direct
measurements are often challenging to obtain [72]. Over the past decades, automatic
calibration techniques have emerged, incorporating data assimilation methods into
operational weather forecasts. A comprehensive review by Ruiz, PuLipo, and MryosH1
[118] focused on these techniques and ZANGL [153] described the current implementation
in the ICON model. Ruiz, PuLibo, and MivosHr [118] emphasized that objective
optimization often becomes infeasible when complex numerical models and a large
number of parameters are involved. Nevertheless, when multiple forecast variables
are available, the selection of objectives for optimization studies remains a critical task.
Instead of combining meteorological variables independently in the MOO process,
different criteria might be employed, such as the energy norm used by OLLinaHO et al.
[104]. However, depending on the amount and type of available data, such sophisticated
criteria are rarely possible in meteorological surrogate-based optimization studies. As
ZANGL [153] argued, trying to select optimal parameters inherently involves subjective
decisions, e. g. prioritizing certain forecast variables or regions. Furthermore, there is
a risk that calibrated model processes might compensate for model errors originating
from different parameterizations. Therefore, the investigation of the impact of such
decisions, such as different objective weights, remains a crucial task and an open topic
of research.

Surrogate model construction relies on appropriate sampling strategies to define

training points, i. e. model parameter combinations. Classical sampling techniques, such
as Monte Carlo (MC) simulation and full factorial sampling, are often impractical due to
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the curse of dimensionality, high computational cost, clustering and uneven coverage.
Various alternative approaches have been developed to enhance specific criteria for
training points, particularly space-filling designs, which aim to optimally cover the
input space [110]. Later advancements also considered improvements related to model
evaluations. In meteorological literature, Latin hypercube sampling (LHS) [95] has been
frequently used [71, 79], including extensions such as maximin- or minimax-distance
criteria and hierarchical sample refinements. In addition, WirLiamson [146] applied
k-extended Latin hypercubes for GPR. Some studies applied alternative methods,
such as Quasi-MC sampling [114] and polynomial chaos-based approaches [85].
Furthermore, sequential algorithms can supplement the base design by adding training
points in regions where higher model accuracy is needed. When applying space-filling
designs, training points in the input space are typically generated within predefined
bounds. However, defining these bounds can be challenging. If they are too wide,
fewer training points are placed in high-probability regions, an issue that becomes
particularly severe in high-dimensional input spaces. Conversely, if the bounds are too
narrow, the training points fail to cover the tails of the input distributions, which may
still be of interest.

Consequently, a uniform distribution of training points in the input space is not
always desirable [80]. For example, in reliability engineering, specific input domains
such as the failure region are of primary interest [73], often requiring techniques like
importance sampling [82]. Similarly, when models struggle to accurately capture
the response surface in certain regions, additional training points may need to be
added sequentially [110]. Another method to sample from a desired probability
distribution is inverse transform sampling [16]. The idea of generating more samples
in regions associated with higher probabilities using inverse transform sampling has
often been used in the context of UQ and surrogate modelling to make models in such
regions more accurate [2, 154]. For GPR, V. RosHaN JosepH and MyErs [133] introduced
enhanced designs that, in addition to generating samples based on the PDFs of uncertain
parameters — referred to as noise factors — also incorporate the surrogate prediction
variance for training point selection. Thus, using a hybrid design, a compromise is
found between a high training point density in regions with higher probabilities and
the avoidance of high prediction variances in regions with lower training point density.
More recently, QuiNLAN, Movva, and Pereect [111] proposed an active learning setup
for GPR considering surrogate prediction variance combined with a weight function.
In the latter two works, a stationary kernel function was assumed in the whole input
space. However, Gaussian processes with stationary kernel functions may struggle
to accurately capture the model behaviour, particularly if there are very few training
points in the distribution tails [133]. It thus remains an open research question on how
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non-stationary kernel functions could handle this issue.

To facilitate surrogate modeling, it is well established to normalize or standardize
data [55]. This improves numerical stability and ensures well-posedness when applying
surrogate models. For this purpose, it is appropriate to both scale inputs and outputs
of a model, particularly if values vary significantly in magnitude. Surrogate models,
such as GPR with isotropic kernel functions, may otherwise struggle to account for
such disparities, which can negatively affect their performance. Appropriate scaling
can also accelerate model training, such as hyperparameter optimization for GPR. Box
and TioweLL [6] and Viana, Gogu, and GokL [136] suggested to also use transformations
based on simple mathematical relationships in the inputs such as low order polynomials
to improve model performance. The idea of using such transformations is related to the
motivation of using a feature space for GPR. Here, the inputs are projected into a high
dimensional space using a set of basis functions and then apply the linear model in
this space instead of directly on the inputs themselves. Using the kernel trick, products
between functions in the feature space can then be replaced by a function which only
depends on a distance measure between two input points [113].

In GPR, stationarity is commonly assumed, often as a reasonable initial approach when
little is known about the underlying physical problem. However, if this assumption
does not hold, an input space transformation may exist that maps the problem to a new
space where stationarity can be assumed. The concept of transforming input spaces
to achieve stationarity and isotropy in a new domain was introduced by Sampson and
Gurrorp [121], who applied thin-plate splines to realize such a mapping. ScHMIDT
and O'Hacan [123] extended this method by employing a Bayesian approach, where
the mapping is described by a function with a Gaussian process prior. Both methods
were developed for two-dimensional input spaces within the context of geostatistics.
Generally, such transformations can negatively affect prediction accuracy of surrogate
models which is rarely investigated in detail. Similarly to transforming the input space
to a new space where stationarity is assumed to hold, one could consider transforming
it to ensure the suitability of a desirable space-filling design, such as a uniform density
of training points.

For GPR, an alternative to transforming the input space to assume stationarity is
to use non-stationary kernel functions in the original input space. Gisss [37] proposed
an approach for incorporating non-stationary kernels, with a simplified version
demonstrated by Xiong et al. [147]. Their method constructs a density function to
describe variations in smoothness with respect to input parameters. This density
function is then used to define a nonlinear mapping to an input space where uniform
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smoothness — and thus a stationary kernel — can be assumed. Paciorex and ScHERvVISH
[106] proposed explicitly modeling input-dependent smoothness using an additional
GPR model.

Various software packages have also been developed to facilitate specific surrogate-
based optimization procedures, such as the toolkit by Warson-Parnis et al. [142], which
supports model calibration using a range of surrogate models (e.g. GPR), and the
parameterization improvement tool by Couvreux et al. [13], which incorporates GPR,
history matching and other techniques. However, such software packages are usually
rather limited in their flexibility and are not able to adress the methodical advancements
proposed in this work, e. g. the possibility of defining ansatz functions for universal
kriging, variations in objective weights in MOO etc.

No previous studies have comprehensively investigated uncertainty contributions
and parameter optimization for the WAM system. Methodologically, past research
had to balance generating samples according to parameter PDFs with the challenges
surrogate models face in accurately capturing regions with low training point coverage
or when using transformed parameter spaces. Furthermore, no studies have examined
variations in objective weights in MOO in such detail.

1.3  Objectives and Structure

Following the motivation and summary of the current state of research, this section
outlines the structure and objectives of the work. The objectives are defined based on
the following open research needs:

¢ Development of surrogate models as cost-effective alternatives for representing
characteristics of the WAM system, utilizing the ICON model.

¢ Consideration of both reduced scalar quantities of interest (Qols) and meteoro-
logical fields as target outputs for the surrogate models.

¢ Advancement of the surrogate modeling process by establishing a comprehensive
framework for the considered meteorological model that leverages the benefits of
traditional experimental designs while ensuring a high predictive accuracy.

* Extension of the equations for gradient-based hyperparameter estimation from
ordinary kriging to universal kriging.

¢ Execution of MOO in meteorological studies, including variations in the weights
assigned to the individual objectives.
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In this work, the foundational methods are first introduced and subsequently applied
to the meteorological system. The results are then thoroughly interpreted and analyzed
within the context of meteorological science.

The structure of this work is as follows. Chapter 2 establishes the foundations for
the study, covering fundamental topics in probability theory, GPR, PCR, validation
methods for surrogate models and global sensitivity analysis (GSA). Chapter 3 discusses
advanced concepts in surrogate modeling and optimization. In Section 3.1, the
transformation of the input parameter space, conducted with respect to probability
density functions, is presented along with its implications for surrogate models, where
for universal kriging, the equations for gradient-based hyperparameter estimation are
derived. In Section 3.2, MOO concepts with varying objective weights are proposed.

The methods presented are applied to simulations of the WAM in Chapter 4. Section 4.1
describes the ICON model, while Section 4.2 introduces the meteorological data under
consideration. In Section 4.3, surrogate models for the system are developed, utilizing
GPR for scalar Qols and PCR for meteorological fields. In Section 4.4, the surrogate
models are used to examine the influence of model parameters, through both GSA
and parameter studies, where individual parameters are varied separately to observe
their effects on Qols and meteorological fields. Section 4.5 uses the surrogate models
to conduct optimization studies, with the results analyzed and discussed. Chapter 5
provides the conclusion of this work, including a summary and further perspectives.
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This chapter presents the mathematical foundations underlying the meteorological
analysis conducted in this work. First, the relevant fundamentals of probability theory
are introduced. Next, GPR and PCR are presented as surrogate modeling approaches
for scalar Qols and field data, respectively. The following section details the validation
techniques employed to assess the performance and reliability of these surrogate
modeling methods. Furthermore, the fundamentals of GSA are outlined, enabling the
quantification of parameter influence on scalar outputs.

2.1 Fundamental concepts of probability theory

The uncertainty measures considered in this study originate from various sources. To
provide a structured framework, these sources are first classified following common
approaches in the literature. Subsequently, probability distributions and the probability
integral transformation (PIT) are introduced as fundamental concepts. Finally, different
sampling techniques are presented to illustrate their role in surrogate modeling and

uQ.

2.1.1 Sources of uncertainty

Uncertainty is an inherent aspect of many real-world phenomena and engineering
systems. Understanding and quantifying uncertainty is crucial for making reliable
predictions, informed decisions, and developing robust models. Uncertainties can be
broadly categorized into two types: epistemic and aleatoric [129].

Epistemic uncertainty — from the Greek emotiun, meaning knowledge — arises from
a lack of knowledge or information about the system or process under study. It is
often referred to as reducible uncertainty because it can be decreased with additional
data, improved models, or more accurate measurements. Epistemic uncertainty is
typically associated with factors such as incomplete understanding of underlying
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mechanisms, insufficient data, or simplifications made in modeling complex systems.
It is often subdivided into model form and parametric uncertainty, where the model form
uncertainty relates to structurally imprecise models and parametric uncertainty assumes
a correct model form but imprecise parameter values in the model. In meteorological
models, parametric uncertainties can be attributed to model parameters that affect
physical processes, such as the terminal fall velocity of ice crystals. This quantity
cannot be represented by the fundamental physical model equations on the discrete
model grid with its limited resolution and is therefore defined in physical schemes. It
depends on various factors, such as the particle size and shape, or the constitution and
behavior of the air. The more precisely these circumstances can be estimated or the better
the fall velocity can be measured, the more these epistemic uncertainties can be reduced.

Aleatoric uncertainty — from the Latin alea, meaning a die —, on the other hand,
stems from inherent variability or randomness in the system or process. This type of
uncertainty is also known as irreducible uncertainty because it cannot be eliminated,
even with perfect information. Aleatoric uncertainty is often encountered in natural
phenomena and processes where stochasticity plays a significant role, such as the rolling
of dice, weather patterns, or the inherent variability in material properties. In weather
systems, this type of uncertainty can be attributed to the chaotic nature of the system.
Even if parameters associated with epistemic uncertainties were precisely known,
aleatoric uncertainties in measured variables such as temperature or precipitation
would still be present, typically increasing with time from an initial state of the system.

2.1.2 Probability distributions

Probability distributions are mathematical functions that describe the likelihood of
occurrence of different values or outcomes, whether these arise from random variables,
simulations, or real-world processes. Formally, let (Q, 7, P) be a probability space,
where () represents the sample space (the set of all possible outcomes), # denotes
a o-algebra of events (subsets of Q), and P : # — [0, 1] is the probability measure
assigning probabilities to events. A random variable X is defined as a measurable
function X : O — R. Random variables can be classified as discrete, with a countable set
of possible outcomes, or continuous, with an uncountable set of possible outcomes. The
support of X, denoted Dy, is the smallest closed subset of R such that P(X € Dx) = 1.
In practice, for discrete random variables, the support is often taken as the set of values
with positive probability, i.e. Dx = {x e R: P(X = x) > 0}.
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For continuous random variables, the probability of X assuming a specific value is zero.
Instead, its behavior is described by the PDEF, fx(x), which satisfies the properties

fx(x)20 forallxeR and [ fx(x)dx=1.

The cumulative distribution function (CDF), Fx(x), gives the probability that X takes a
value less than or equal to x. For continuous random variables, it is defined as

Fx(x)=P(X <x) = /X fx(t)dt,

and satisfies the properties Fx(—c0) = 0, Fx(o0) = 1, and it is a non-decreasing
function. The support of a continuous random variable is commonly defined as
Dx ={x e R: fx(x) > 0}, identifying the region where the density function is strictly
positive. The inverse of the CDF, known as the quantile function or percent-point
function (PPF), provides the value x corresponding to a given probability level 1. That
is, given u = Fx(x), the inverse relationship is expressed as x = F)‘(l(u) = Q(u).

In multivariate cases, the joint distribution of two or more random variables describes
their combined behavior. For two random variables X and Y, the joint PDF fx y(x, y)
satisfies fx,y(x,y) > 0 forall (x,y) € R? and /_o:o /_0; fxy(x,y)dxdy = 1. The joint
CDF Fx,y(x, y) provides the probability that X < x and Y < y:

X Y
Fxy(x,y)=P(X<x,Y<y)= / / fxy(t,u)dtdu .

The marginal distributions of X and Y are obtained by integrating out the other variable:

fx(x) = / Fer(y)dy, fly) = / Fev(x,y)de.

Conditional probability is the probability of an event occurring given that another
event has already occurred. For random variables X and Y, the conditional probability
distribution of X given Y = y is denoted by fx|y(x|y) and is defined as

fartoly) = PLED for ) > 0,
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Statistical measures such as expectation and variance provide insights into the dis-
tribution’s central tendency and spread. For a continuous random variable X, the
expectation or mean is

Bxl= [ xfwdx,
while the variance is
Var(X) = E[(X - E[X])*] = E[X?] - (B[X])* .

The standard deviation, ox = +/Var(X), quantifies the average deviation of X from its
mean.
The covariance between two random variables X and Y, defined as

Cov(X,Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y],

measures their linear dependency. A positive covariance indicates that the variables
tend to increase together, while a negative covariance implies an inverse relationship.

2.1.3 Probability integral transformation

The PIT enables the mapping of random variables to a uniform distribution. If X is a
random variable with a continuous CDF Fx(x), then the transformed random variable
U = Fx(X) follows a uniform distribution on the interval [0, 1], i.e. U ~ Uniform(0, 1).
The isoprobabilistic transformation generalizes this concept, enabling the mapping of
random variables from one probability distribution to another. In the univariate case,
this transformation involves applying the CDF of the original variable followed by the
PPF of the target distribution: Y = F;l(F x(X)), where Fx is the CDF of the original
random variable X, and F;l is the PPF of the target random variable Y.

In the multivariate case with dependent variables, the Rosenblatt transformation [117]
provides a method for transforming the physical input vector x = (x1,x2,...,x,)"
into an independent and identically distributed (i.i.d.) uniform input vector u =
(uq,uz, ..., up)T, where the input space dimension is p. Let X = (X1, Xy, .. ., Xp)T be a
random vector in the physical input space with joint CDF Fx(x).
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The Rosenblatt transformation u = 7;o5(x) is defined as:

up = P(X1 < x1) = Fx,(x1),

up = P(Xp < x2 | X1 = x1) = Fxypx, (%2 | x1),

Mp = P(Xp < x}? | Xp—l = x}fl—lr . '/Xl = xl) = FXpIXp—lr---/Xl(xp | xp_], .. '/xl) 7

where F denotes the respective (conditional) CDF. It can be shown that the transformed
random vector U = (Uy, Uy, .. ., l,l,,,)T = Tros(X) isi.i. d. and uniformly distributed over
the p-dimensional unit hypercube. The CDF functions F can be derived from the joint
PDF fx(x) [91]. It should be noted that the Rosenblatt transformation is not unique,
as it depends on the ordering of the input variables X;. This ordering determines the
sequence of conditional distributions and thus influences the resulting transformation.

2.1.4 Sampling techniques

Sampling techniques are methods designed to select a representative subset of the
input space for analysis, aiming to capture the system’s essential characteristics while
minimizing computational or experimental costs. In this work, these techniques are
employed to generate a set of training points — referred to as an experimental design
or design of experiments — for simulations of a computational model. The simulation
results, paired with their corresponding training points, serve as the foundation for
constructing surrogate models.

Let u; = {u;;, j = 1,...,p} € R? denote a training point, i.e. a vector of one input
parameter configuration (see Fig. 1.2), in the p-dimensional . i. d. uniform input space of
the domain D = [0, 1]7. The collection of sampling points determined by the sampling
technique is denoted by U = {u;, i = 1,...,n}.

Sampling techniques are often designed to achieve desirable properties such as good
coverage or randomness. When the system is treated as a black box, sampling methods
that focus on generating space-filling designs are particularly relevant. The quality of
space-filling designs can be evaluated using different approaches, broadly categorized
into uniformity-based and distance-based criteria [31]. Uniformity-based criteria assess
the discrepancy, which measures how far a given design deviates from an ideal uniform
design. In a uniform design, the number of sample points within a subspace AD
of a domain D is proportional to the hyper-volume V(AD). Notable examples for
such measures include the star discrepancy and the L-discrepancy. On the other
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hand, distance-based criteria evaluate space-filling designs by analyzing the distances
between pairs of sample points. For instance, the potential energy (PE) criterion

n

§ 1
PE(U) = > T

i=1 j=i+1

uses the Euclidean distance d( ., .) between pairs of points to evaluate the design. By
minimizing the PE, an evenly distributed design is achieved, as the criterion discourages
clustering of points. Other notable distance-based criteria include the maximin and
minimax criteria [56], defined as follows:

maximin(U) = max (min d(u;, uj)) ,
U \ iz

minimax(U) = min (max d(u, U)) .
U uedD

The maximin criterion aims to maximize the minimum Euclidean distance between any
two sample points, ensuring a well-spread design and avoiding clustering. In contrast,
the minimax criterion seeks to minimize the maximum distance from any point in
the input space to its nearest sample d(u, U), thereby reducing sparse regions in the
design. Other distance-based criteria include the minimum spanning tree criterion,
the point-to-point distance criterion, and others, each offering different perspectives on
assessing the quality of space-filling designs.

A selection of prominent sampling methods is illustrated in Fig. 2.1. A classical example
of a space-filling criterion-based sampling method is grid sampling, where the domain
is discretized into a grid, and points are sampled at grid intersections (Fig. 2.1a). This
approach becomes computationally expensive in high dimensions due to the curse
of dimensionality. Additionally, projecting such training designs along individual
parameters collapses all training points along that dimension into single points. This
can significantly reduce the information content if a parameter has only a marginal
effect on the system’s behavior.

Monte Carlo (MC) methods (Fig. 2.1b) generate sample points using pseudo-random
number generators. The randomness aims to approximate a uniform distribution across
the domain, but issues such as clustering or underrepresentation can arise. Stratified
MC sampling (Fig. 2.1c) addresses these issues by dividing the domain D into multiple
strata and applying MC sampling within each stratum, effectively reducing variance
and improving uniformity.
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Figure 2.1: Realizations of different sampling techniques in a 2-dimensional [0, 1]? space.

As one prominent and widely used special case of stratified MC sampling, Latin
hypercube sampling (LHS), introduced by [81], effectively addresses the limitations of
the aforementioned methods. In a p-dimensional design space D7, each dimension is
divided into n equal bins of edge length 1, creating n? hypercubes. Subsequently, n
sample points are arranged as an # X p matrix L = [u, up, ..., u,]", where each column
represents an input dimension and each row a sample point. Then, L is a p-dimensional
Latin hypercube design (LHD) of size n if no two elements in any column fall into
the same bin. For example, in a two-dimensional design space (p = 2), the space can
be visualized as a chessboard with n X n fields, where samples are placed such that
each row and column of the board contains exactly one sample point (Fig. 2.1d). Since
the configuration and sample placement within bins remain random, LHS inherently
combines both random and space-filling properties. Extensions such as minimax LHS
or maximin LHS improve space-filling properties by selecting the design that optimizes
the respective criterion from a set of candidate LHDs.
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Other space-filling methods include quasi-MC sampling, which employs deterministic,
low-discrepancy sequences such as Halton, Hammersley and Sobol sequences. These
sequences inherently aim for space-filling properties but do not formally quantify
them during the sampling process. Consequently, their effectiveness depends on the
problem’s dimensionality, the number of samples, and their sensitivity to aliasing,
which can introduce computational inaccuracies when constructing surrogate models.

More advanced methods incorporate system information to improve specific criteria.
Adaptive sampling methods iteratively refine the sample set based on insights gained
from previous samples, making them particularly valuable for surrogate modeling
and optimization, where initial sample size estimation is challenging, and simulation
outcomes can guide the process [157].

2.2 Gaussian process regression

Originating from geostatistics, GPR has proven to be a flexible, powerful, and
accurate technique that is widely applied across various scientific disciplines, including
meteorology. The formulation of GPR can be approached from two distinct perspectives:
the weight-space view and the function-space view, both of which lead to the same
regression equations [113]. In the weight-space view, GPR is derived from a linear
regression model with a Bayesian treatment of the weights, where the uncertainty over
weights is explicitly incorporated by averaging over all possible weight configurations.
In contrast, the function-space view directly models functions as Gaussian processes,
providing not only the predictive mean but also the predictive variance. This variance
quantifies the uncertainty associated with predictions, which is a key advantage of
Gaussian processes in regression tasks. Given the advantages of the function-space
formulation, the equations presented in the following sections are derived from this
perspective.

The aim of GPR is to build a surrogate model § for a scalar model output, i.e. a
scalar Qol, based on the training data {U, y}. For numerical stability, the data y is
assumed to be standardized or normalized, which must be ensured beforehand [55].
The objective is to determine the predictive mean and predictive variance at a set of
input points, referred to as prediction points Uy = {uy;, i =1...1}.
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2.2 Gaussian process regression

2.21 Simple kriging

The prior for the spatial process is a zero mean Gaussian process
9(11) ~ QP(O/ k(u/ ul)) .

with covariance function k(u, u’), also known as kernel function. The kernel function
describes the dependence structure between values of the stochastic process at different
points, usually depending on their distance.

Here, the anisotropic form of the radial-basis function

P |u1- - u(| 2
k(u,u’) =01 exp |- Z (—') +056(u—u) (2.1)

g.
i=1 !

with respect to hyperparameters ! 6 = {¢;,i = 1...p; gj,j = 1,2} is used. The
Kronecker delta function 6(u —u’) becomes 1 if u = u’ and 0 otherwise. The parameters
{; can be interpreted as length scale parameters to allow for different smoothness
between input dimensions. The parameter o1 represents the signal variance, which
scales the output of the kernel function and controls the amplitude of the function
variations and o, represents the noise variance in the observations where the noise is
assumed to be . i. d. with a normal distribution and thus being refered to as white noise.
This noise parameter can account for measurement errors or for aleatoric uncertainties
in the simulations of a computational model.

The covariance matrices, defined by kernel function evaluations at the training points
U and prediction points Uy, are given by

K ={Kij = k(uj,u), i=1...n, j=1...n},
K* ={K*,1‘j =k(u,~,u*j), i=1...n, j:1...l},
K**:{K**,ij: k(u*i,u*]‘), lzll, ]:11}

The joint distribution of training data y and prediction data y, is then given by

) =) ) e

1 The denotation hyperparameters is used in this context for variables that describe higher-level settings that

govern the behavior and performance of the model, whereas parameters typically refer to the coefficients
within the model, such as weights in a neural network or coefficients in a linear model.
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Note, that the covariance matrix of training points K is sometimes replaced by K + a1 to
ensure positive definiteness, allowing for a numerically stable inversion. In this work,
the error term is instead incorporated as white noise in the kernel function using o,
(Eq. 2.1). This approach provides greater flexibility and a clearer separation between
signal and noise while explicitly accounting for observational noise or, in computational
models, aleatoric uncertainties.

The posterior distribution is obtained by conditioning the joint Gaussian prior distri-
bution on the observations as

v. | Us, U,y ~ N(K] Ky, Kuw — K] K'K,) .

From this, the predictive mean (regression model) and predictive covariance matrix for
the prediction points U, are given by

Ely.] =K{Ky,
Cov [y.] = Kex - KK 'K, .

The hyperparameters 0 are determined by maximum likelihood estimation. From
Eq. 2.2 the prior of training outputs is y ~ N(0, K). The likelihood function represents
the probability of the observed data y for a particular model with given parameters. For
a single observation y, the likelihood function for the multivariate normal distribution
is the same as the PDF evaluated at y:

1 1
K)=——————exp|-5y'Ky| .
L(ylK) )2 det(K)l/zeXp( 7Y Y)

The natural logarithm of the likelihood is
1 +. 4 1 n
In L(y|K) = -5y K'y- Eln(det(K)) - Eln(ZT[) .

The reason to use the log likelihood rather than the likelihood itself is because the log
function transforms the product of probabilities into a sum, which is mathematically
more convenient and numerically more stable. The natural log likelihood is maximized
with respect to the hyperparameters 0. For this purpose, gradient-based optimization
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2.2 Gaussian process regression

has proven to be efficient. Since only K depends on 0, the gradient of the log marginal
likelihood by the use of matrix identities in Appendix A becomes

in £(310) = 1y K Sy - L (Kla—K)

0, 20, 2 20,
_1 T -1y 9K
=5t (e¢a™ -K™) 891) (2.3)

with a = K™y = L%T(lely) where Lx = cholesky(K) denotes the Cholesky decompo-
sition, which factorizes the positive definite matrix K into a lower triangular matrix Lx
such that K = LxLg".

Using the Einstein summation convention, the derivative of the log marginal likelihood
can be expressed as

8K]-i)

p) 1
2 in Liyl0) = 5 ((m aj=om[K],,) 55

26,

with Kronecker delta 6;,,.

2.2.2 Universal kriging

The theory of universal kriging was introduced by MaraeroN [87] in the field of
geostatistics. Here, the prior is assumed to follow a mean function m(u)

j(u) ~ GP(m(u), k(u,u’)). (2.4)

For this purpose, a set of fixed basis functions h(u) = (#;(u),i = 1... q) is defined where
the corresponding coefficients § = (B;,i = 1...q) are to be determined. If the prior of
the coefficients is assumed to be Gaussian § ~ N'(b, Lg), the prior becomes

§(u) ~GP(h(u) b, k(u,u’) + h(u) Egh(u’)) .

The matrices of basis function evaluations at training points U and prediction points
U, are defined as

H= {H; =hi(v;), i=1...q, j=1...n}, (2.5)
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The joint distribution of training data y and prediction data y, is then given by

Y\ o ((HP) (K+HIH Ko+ H'EH | 27
Vu HIb) \K] + HIZgH Ky + H]ZgH,

By conditioning the prior on the observations, the predictive distribution can be
determined as

Ely+] = H{b + (K] + H]ZsH) (K+ H'EH) ' (y-H'b),
Cov [y+] = Kux + H] EgH, — (K] + H]E4H) (K + HTZgH) ™ (K, + HTEgH,)

Using the Woodbury identity
T -1 -1 “1g7T [y-1 g\ -1
(K+H'EH) ' =K -K'HT (5! + HK'HT) HK
the expressions become

Ely.] =K;K'y+R'B, (2.8)
Cov [yx] = Ky - KJK'K, + RT(HK'HT) 'R (2.9)

with R = H, - HK'K, and g = (HK'H™ + Z5 ™)' (HK 'y + Z57'b).
Assuming a non-informative prior on the coefficients (55" — 0), the vector B becomes

B =HK'H")'HK 'y

and the expressions are independent of the coefficient vector § and its prior. Compared
to the simple kriging equations, only the basis functions h(u) have to be specified to
apply the universal kriging equations. In the case of a constant scalar basis function
h(u) = 1, the equations become

Elys] = u1+ KK (y - uD),
Cov [ys] = Ky —- K] K 'K, + RT(HK'HT) 'R

I'Kly . . . .. . .. .
where 1 = 7. This case is known as ordinary kriging, i. e. kriging with unknown
constant mean.

Analogously to simple kriging, the marginal likelihood is used to estimate the
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2.3 Principal component regression

hyperparameters. From Eq. 2.7 the prior of training outputsisy ~ N(H"b, K+ H" EgH).
The likelihood function is then

1
(2r) det(K + HTZgH)?

L(y|K) = exp —% (Hb-y) (K+H'EZH)™ (H'b-y)| .

The natural logarithm of the likelihood is

In L(y|K) = —% (H'b-y)" (K+H'EZgH)™ (H'b-y)
1 . n
- Eln (det(K + H'ZgH)) — Eln(Zn) .

Assuming again a non-informative prior on the coefficients (Z‘.[;1 — 0) and assuming
b = 0 without loss of generality, the log marginal likelihood can be simplified [113] and
becomes

In L(y|K) = —%yTK_ly - %ln(det(K)) - %ln(det(A))

n—

> m In(27)

+ %yT (K'H'A'HK )y -

with A = HK'HT.

2.3  Principal component regression

As a fundamental method, PCA is widely used for dimensionality reduction and feature
extraction. While the previous section (Section 2.2) focused on scalar data, PCA can
also be applied to 2D field data M = {M;,i = 1...n}, where each sample M; € RX*t
represents a structured grid, such as meteorological data with K latitudinal and L
longitudinal points. PCA identifies dominant patterns by transforming standardized
data into orthogonal principal components, ranked by the variance they capture. This
chapter first outlines the fundamentals of PCA and its application to standardized field
data. Based on PCA results, PCR is then introduced as a surrogate modeling approach
to approximate the training data {U, M}.

2.3.1 Principal component analysis
The training data M = {M;,i = 1...n} are standardized using the mean
1 n
= =3 MY (2.10)

n <
i=1
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and the standard deviation

okl = J % Z (MM - k)2 (2.11)

i=1

over all n training points at each grid point (k, I), respectively. The standardized fields
M; of all i = 1...n training points can then be expressed as

~ 1
kl ki ki
Mi = (Ml U )

with zero mean and unit standard deviation at each grid point (k, I).

The matrix components of M; are reshaped into vectors ; where th; € RKL. The
covariance matrix

=

is then computed using all n training points. The eigenvalues and eigenvectors of
covariance matrix C are computed using eigenvalue decomposition for the eigenvalue
equation

Cpm =Aun Pm

where A,, is an eigenvalue and p,, the corresponding eigenvector. The eigenvectors are
sorted in descending order of their corresponding eigenvalues. The top P eigenvectors
form the basis of the principal components. These vectors are transformed back into
matrix form, resulting in the principal fields P, (m = 1...P), with P principal fields.
The fields represent the major variations within the field data.

2.3.2 Regression model

The fields M can now be approximated as a linear combination of the principal fields
w.r. t. input parameter vector u

MM (u) = ykl + oMM () (2.12)
P
with M (u) = Z Cm(u)Pf!,

m=1
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2.4 Model Validation

where the coefficients C,,(u) are assumed to be functions w.r. t. the input parameters
u and containing unknown parameters. These parameters can be determined by
minimizing the mean square error (MSE) between the surrogate model M*(u) and the
training data M fl

MSE = (Z i i (Mk’ (u;) — MK )2) . 2.13)

In the case of a linear model for the coefficients C,,(u) w.r. t. the input parameters u
P
Culw) = C), + > Chuy, (2.14)
j=1

the coefficients C,, = (CY, ..., Cli)T can be determined analytically using the least
squares solution as

C.=(UTU)"'UTS,, (2.15)

where S,; = (S1, ..., Smn) " denotes the vector of principal component scores for each
principal component 1,

Swi= Y NIFPH.
k1

Other models for the coefficients C,,(u) beyond the traditional linear model (Eq. 2.14)
are possible; however, in such cases, the analytical solution (Eq. 2.15) would no longer
be applicable.

24 Model Validation

When constructing surrogate models, it is essential to assess their quality using model
validation measures. Model accuracy depends on various factors, e. g. the number of
training points, the choice of basis functions and nonlinearities in the physical model.
Loeppky, Sacks, and WELcH [76] recommended to use n = 10p training points for a
p-dimensional problem in an initial step. Sequential algorithms can then supplement
the base design by adding training points in regions where higher model accuracy is
required. However, validating the surrogate model remains essential. For this purpose,
the generalization error serves as a measure of how accurately the model predicts
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outcome values for previously unseen data. To quantify the generalization error, the
squared error (SE), also known as the L2-error,

SE = E [(y(X) - 9(X))?]

is used. This metric represents the expected squared difference between the original
physical model y and the surrogate model prediction §j. When using input parameters
following a multivariate PDF, the L?-error can be expressed as

SF = /@ (¥(x) - §(x))? PDEx(x)dx .

For i.i. d. uniform inputs with PDFq/(u) = 1 and the support Dq; = [0, 1]7, the L?-error
is

SE = /@ (y(w) — §w) du.

The SE value is generally not known analytically, since y is only known for a finite set
of evaluations, particularly in the case of complex computer models. Therefore, the
generalization error can be estimated with a validation data set with n,, validation
points {(uyal i, Yvali), i =1...nya} obtained from evaluations of the computer model.
The validation points are obtained by MC sampling with respect to the parameter PDFs.
The root mean square error (RMSE) and the normalized mean square error (NMSE)
become

1 Nyal R
RMSE = J Z(yval,i - y(uval,i))z ’
i=1

Nyal P

yal

1 ~ 2
NMSE = —— Z(]/val,i = J(uyal,i)” -
Oy Nyal 4=
val i=1
Here,
Nval
1 va. 2
2 _ LT
vaal = _Tl Z (yval,z y) ’
val =1
_ 1 Nval y
y= val,i
Nyal =

are the variance and the mean of yy.j, respectively. Conversely, goodness-of-fit measures
like the coefficient of determination R?, where the same points are used for training
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and validation, do not account for overfitting and should therefore be avoided.

While RMSE provides insights into absolute error values, NMSE offers a dimensionless
measure facilitating better comparison between different output variables. Model
accuracy is deemed high if NMSE values approach zero and low if they approach one.
Values are inherently non-negative and should not exceed one, as this would indicate
that the covariance between the surrogate model and the data surpasses the data’s
variance. The NMSE error is used since normalization allows comparison between
different physical quantities, i. e. different scales. The interpretation of the NMSE can
become problematic when the Qol values exhibit little variation, resulting in a very
small variance aﬁva]. In such cases, the RMSE should be considered.

Because of high computation cost, using a separate validation set that is not used
for model training is not effective. Therefore, cross-validation techniques, such as
leave-one-out validation or leave-k-out validation, can be applied, where seperate
surrogate models are computed using subsets of the training data and validated with
data which was not used for training. The validation errors for leave-k-out-validation
can be formulated as

1w .
RMSE = J - Zl:(yz’ - ki) (ui))?, (2.16)
11w
— ) B ))2
NMSE = 5 ;@z = ik (@), (2.17)

where 7\ x(;) denotes the surrogate model trained on all # training points except those in
the subset K(i), which contains the i-th point. When using k points per subset, the data
is partitioned into disjoint subsets K = ((1, ..., k), (k+1,...,2k),...,(n—k+1,...,n)),
with each point assigned to a subset accordingly: for example, K(1) = ... = K(k) =
1,...,k),K(k+1)=...=K(2k)=(k+1,...,2k), and so on. In the case of leave-2-out
cross-validation, the subsets take the form K = ((1,2),(3,4)...(n — 1,n)). The variance
of evaluations y; is denoted by oﬁ. Since, in principle, a separate surrogate model must
be constructed for each subset of training points in cross-validation, certain surrogate
modeling techniques provide analytical expressions that enable computationally
efficient cross-validation without the need to recompute the entire surrogate model for
every subset (see e. g. DusruLk [18] for GPR).

For field data, the validation measures are adapted accordingly. The accuracy of
surrogate models depends on the underlying PCR analysis, including factors such as
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the number of principal fields and the choice of the coefficient ansatz function. The
corresponding error measures are defined as

1 Shuhy kl ki
- - _ )2
RMSE = [ 2= ZZ(MZ. M @), (2.18)
i=1 k=1 I=1
1 1 n K L
- kl _ aoyrkl )2
NMSE = -2 Kin - 1;;(1\@ M (a0)?. (2.19)
i= = =

Here, 012\4 denotes the variance of the field data p*' across all grid points (k,[) and
M, k(;)(u) represents the surrogate model derived from all # training points except those
within set K(7) containing the i-th point.

2.5 Global sensitivity analysis

To quantify the relative influence of uncertain model parameters on Qols, GSA can be
employed. In this work, variance-based sensitivity analysis [120], often referred to as
the Sobol’ method [125], is used as a form of GSA to decompose the variance of a scalar
model output into fractions attributable to individual inputs or sets of inputs. From
the PIT (Section 2.1.3), the input space can be described by the input random variables
(U, Uy ... Uy), which are i.i. d. and uniformly distributed.

Variance-based sensitivity analysis focuses on decomposing the variance of the output
random variable Y = y(Uy, Uy, ..., U,)

V = Var[Y]

into contributions from each input variable or combinations of variables. To define
the sensitivity indices, the unique functional ANOVA decomposition of any integrable
function on [0, 1]7 into a sum of elementary functions is used [125]

p p
Y =yo+ Z vi(U;) + Z vij(Ui, Uj) + -+ + y12. p(Uy, Uz, ..., Up),

i=1 i<j

where yp is a constant and y;, y;; etc. are functions of the decomposition w.r.t. the
random inputs, respecting the orthogonality condition

Ely;(Up]=0
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2.5 Global sensitivity analysis

for all subsets | of input parameters (e. g. for | = {1,2} : y; 2 Ji2, Uy 2 (U, Uy)).

This leads to definitions of the terms of the functional decomposition in terms of
conditional expected values,

yo = E[Y],
villy) =E[Y | Uil = yo,
yij(lli, U]') =E[Y | U;, Uj] —Yo—-yi—y; etc

Here, it becomes evident that y; is the effect of varying U; alone (main effect), and y;;
in addition includes the effect of varying U; and U; simultaneously. This is known as
a second-order interaction. Higher-order terms have analogous definitions. Further
assuming that y(Uy, Uy . .. Up) is square-integrable, the functional decomposition may
be squared and integrated

P
/ y2duy---dUp =g + Z Z / Yii..i, AU, -+ dU,
s=1 1<ii<ip<-<ig<p
and can be expressed as
p d
Var[Y] = )" Vit > Vij+-+ Via
i=1 i<j
where
Vi = Vary, [Ey, [Y | Ui]] ,
Vij = Vary, [Bu, [Y | U, U] | = ViV ete.
The notation Uy indicates the set of all variables except U;, whereas U,; i indicates the
set of all variables except U; and U; etc. The above variance decomposition shows how
the variance of the model output can be decomposed into terms attributable to each

input, as well as the interaction effects between them. Together, all terms sum to the
total variance of the model output.

The main effect index (first-order sensitivity index) S; measures the direct contribution
of input U; and is defined as
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where V; represents the contribution to the output variance due to U; alone. The total
effect index St; measures the total contribution of input U;, including both its direct
effect and all interaction effects with other inputs, and is defined as

where V\; = Vary,, [Eu,. [Y] LI\,']] is the variance of the output Y excluding the effect of U;.

Estimation of the sensitivity indices can be done using MC simulations (Section 2.1.4) or
alternative methods. One prominent approach is the Fourier Amplitude Sensitivity Test
(FAST) [120]. This approach estimates the variance-based Sobol indices by transforming
the multidimensional input space into a single-dimensional space using a sinusoidal
trajectory. This transformation allows for efficient exploration of the input space and
reduces the computational cost. For this purpose, each input variable U; is assigned
a unique frequency w;, and the model output Y is evaluated along a curve defined by
these frequencies. The relationship between the input variables and the model output
can then be analyzed using Fourier decomposition. The first-order Sobol index S; is
computed as

A%,
S i= 71 ’
where A, is the amplitude of the Fourier component corresponding to the frequency
w;. FAST can also be used and modified to compute higher-order Sobol indices and
total Sobol indices St;. The accuracy of computed indices depends on appropriately

selecting the frequencies w; to avoid aliasing and ensure sufficient spectral resolution.
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modeling and optimization

This section presents a framework to advance fundamental methodologies, supporting
the primary objective of quantifying uncertainties and optimizing model parameters in
simulations of the WAM. The framework integrates non-uniform input parameter
distributions and adapts sampling methods based on the underlying PDFs. For
universal kriging, the gradient of the log marginal likelihood is computed and utilized.
Additionally, two multi-objective optimization concepts are introduced as a systematic
framework.

3.1 Surrogate models for transformed input
parameter spaces

Surrogate modeling techniques in UQ often rely on predefined parameter bounds,
where sampling methods (Section 2.1.4), particularly space-filling designs, are applied
within the original parameter space, ignoring the probability distributions which these
parameters are assumed to follow, and overlooking the need for denser sampling in
certain regions of interest. To address this, this section introduces a sophisticated frame-
work for adapting surrogate modeling methods to scenarios where input parameters
follow non-uniform distributions [158].

3.1.1 Input space transformation

The objective of this work is to construct a surrogate model over the input space
with sufficient accuracy, placing particular emphasis on achieving higher precision
in critical regions. For instance, in reliability engineering, enhanced accuracy is
often crucial in areas near the failure domain [73]. In this study, the focus is on
model parameters described by PDFs, which define regions of the parameter space
with varying probabilities. The model validation strategy involves sampling validation
points according to the joint PDF of these parameters, ensuring that the surrogate model
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attains the highest accuracy in high-probability regions. This approach, emphasized in
the literature [2, 133, 154], is particularly beneficial for analyses such as GSA or other
applications that rely on sampling based on input distributions.

However, concentrating training points in regions of higher probability density results
in an experimental design with non-uniform space-filling properties, which can present
challenges for certain surrogate modeling methods. To address this, it is beneficial
to consider an i.i. d. uniform input space. A system with p input parameters and an
associated joint PDF is considered. By applying PIT (Section 2.1.3), specifically the
Rosenblatt transformation, the physical input space — with its dependence structure
captured by a joint PDF - is mapped to an i.i. d. uniform input space. If the inputs
are independent, the joint PDF can be factorized into p individual PDFs, allowing the
Rosenblatt transformation to be replaced by independent, parameter-wise transforma-
tions using the respective PPFs. In this resulting p-dimensional unit hypercube, all
regions have equal probability, enabling space-filling sampling techniques such as LHS
to effectively align the distribution of training points with the probability distribution
of the input space.

This uniform input space offers additional advantages, as validation techniques can be
directly applied using MC sampling within these uniform boundaries, and variance-
based sensitivity analysis can be conducted without requiring further transformations or
adjustments to account for non-uniform probability distributions. Once training points
are generated in the uniform input space, they are mapped back to the physical input
space to obtain the physical parameters used in the computational model simulations.

Various surrogate modeling methods allow for the specification of trend functions
as basis functions, ranging from multivariate linear trends to higher-order polynomials,
depending on the problem’s dimensionality and the number of available training points.
The complexity of these trend functions must strike a balance between flexibility and the
risk of overfitting. However, when the experimental design is established in the uniform
input space, where the surrogate models are constructed, defining trend functions with
respect to these uniform parameters is not optimal. This is because the physical
relationships that trend functions aim to capture are generally more directly associated
with the physical input parameters. Therefore, the input space transformation should
be accounted for when defining trend functions, as will be demonstrated for GPR and
PCR.
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3.1.2 Implications for Gaussian process regression

Universal kriging provides a flexible and powerful approach for incorporating explicit
basis functions with respect to the input parameters as underlying trends of the system.
In conventional studies, the kriging equations (Eq. 2.8, Eq. 2.9) are typically expressed
directly in terms of the physical input parameters. However, in this study, the surrogate
modeling procedure is conducted in the i.i. d. uniform input space (see Section 3.1.1).

Since the trend functions f(x) are initially defined with respect to the physical input
parameters x, they must be transformed into the i.i. d. uniform input space using the
inverse Rosenblatt transformation 7,5.. The transformed basis functions are given by

h(w) = f(Tr0d (w) (3.1)

with respect to the uniform parameters u. These basis functions h(u) can then be used
in the universal kriging equations (Eq. 2.4), specifically for computing H and H, (Eq. 2.5
and Eq. 2.6).

In the one-dimensional case, the transformation simplifies to the PPF, such that
x = PPF(u) for the given input parameter. Consequently, the transformed basis
function becomes h(u) = f(PPF(u)). For the specific case of the linear basis function
f(x) = x, this transformation results in k(1) = PPF(u). If the input parameters are
uncorrelated, i. e. {pXi/Xj =0 Vi, je{l,...,p}, i # j}, the transformation reduces to
independent functions {h(u;) = f(PPF(u;)), i = 1...p} for all input parameters.

All equations can also be formulated with respect to the physical parameters x instead
of the uniform parameters u. In this case, the original, non-transformed definition of
trend functions is retained. However, this results in a non-stationary kernel function,
as the kernel functions are assumed to be stationary with respect to the i.1i. d. uniform
variables. Consequently, the formulation of the kernel (Eq. 2.1) takes the form

: (|7;os(x)j_7;os(x/)j| 2

k(x,x") = 6y exp| - Z )
j=1 /

It is important to emphasize that defining stationary kernel functions in the i.i. d. uni-
form parameter space is preferable to assuming stationarity in the physical parameter
space. In the physical parameter space, the density of training points corresponds to the
joint PDF of the input parameters. Consequently, training points are sparse in the tails
of the PDF, where a larger kernel length scale is desirable, while in high-density regions
(i.e. closer to the mean), a smaller length scale is more appropriate. This adaptation
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physical input space i.i.d. uniform input space

1D linear trend

general 1D
quadratic trend

general
multivariate
trend

Figure 3.1: Visualization of model functions (top) and selected trend functions (three rows below) in the
physical (left) and i. i. d. uniform (right) parameter space. The Rosenblatt transformation 7ros (PPF in the case
of independent variables) defines the relationship between both parameter spaces.
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is naturally achieved by defining a stationary kernel function in the i.i.d. uniform
input space, where the density of training points is uniform. Figure 3.1 illustrates the
transformation of basis functions. Related ideas involving transformations to ensure
stationarity in the transformed input space have been explored in previous studies [121,
123]. Similarly, other studies have investigated the use of non-stationary kernel
functions [37, 147], typically based on variations in function smoothness. However,
these methods did not account for the joint PDFs of the input parameters and the
corresponding density of training points in the experimental design, as considered in
this work.

Hyperparameter optimization can be computationally demanding for high-dimensional
problems with a large number of training points. For simple kriging, the gradient
of the log marginal likelihood has been previously shown in Eq. 2.3. For universal
kriging [113], the log marginal likelihood is given by

n_
2

1 _ 1 1 1 m
logp(ylU, 0) = —EyTK ly + EyTCy -3 log |K| — 5 log|A| - log2m,

where A = HK"'HT, C = K"'THTA"'HK™! and m = rank(HT) (see Section 2.2 for other
quantities). The derivation of its gradient, as presented in Appendix B, yields

9 O R TS N7 S
agllogp(le,G)—ztr (p-&-&T+&  +(e- 1K )(961 , (3.2)

where

p=aa’, a=K'ly=L (Ly),
e=yn, y=K'H" =L (L{'H"),
E=¢p, n=MHK'H)'H=L,"(L,'H),

with Lk = cholesky(K) and L, = cholesky(HK™'HT). The Cholesky decomposition is
applied to efficiently compute the inverse. The derivative in Eq. 3.2, along with the
given quantities, is utilized when the proposed transformed trend functions (Eq. 3.1)
are incorporated into universal kriging, and gradient-based hyperparameter estimation
is performed.

3.1.3 Implications for principal component regression

Traditionally, the PCR model is linear in terms of the coefficients of the principal
components. Asaresult, itbenefits from well-established properties of linear regression,
including an analytic solution for the coefficients (see Eq. 2.15). However, in this study,
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a transformed input parameter space is considered, where both sampling and surrogate
modeling methods are applied. To improve accuracy, the input space transformation
is incorporated into the PCR model, albeit at the cost of losing these advantageous
properties.

The coefficients of the principal fields are generally expressed as functions of the
physical model parameters. To account for the input space transformation, the ansatz
for the coefficients C,,(u) (Eq. 2.14) is adapted accordingly. Specifically, assuming a
linear ansatz in the physical parameters x, the coefficient equations take the form

p .
Cn(w) = €3, + > ChiTrad (w); (3.3)
j=1

For independent input parameters x; (j = 1... p), this expression simplifies to

p .
Cu(u) = CY, + > C, CDF (),
=1

where the coefficients are expressed with respect to the i.i. d. uniform input parameters
u = (uy,...,up)". The optimal parameters C}, are determined by minimizing the MSE
(Eq. 2.13).

3.1.4 Test cases

The proposed method of constructing surrogate models for transformed input para-
meter spaces in Section 3.1 is validated with several benchmark problems. For this
purpose, GPR (Section 3.1.2) is considered, where the derived equations are employed
for hyperparameter estimation. It should be noted that a separate validation for PCR
would be sensible, however, for GPR, the validation offers numerous advantages, such
as available established benchmark problems for scalar-valued problems in UQ, the
lower computation time and easier interpretability. Furthermore, the derived equations
for the gradient of the log marginal likelihood (Appendix B) can be directly employed
and investigated as well.

Benchmark problems

The benchmark problems considered in this study, which are widely used in UQ,
are listed in Table 3.1. PDFs are assigned to the input parameters. Each investigated
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3.1 Surrogate models for transformed input parameter spaces

Table 3.1: Benchmark functions with their mathematical expressions, number of input dimensions, PDFs
and parameter correlations.

# equation dim. input parameter PDFs! fx,
1 Oakley & O'Hagan [101] 1 X~ N(,4)
f(x) =54 x +cos(x)
2 Lognormal Ratio [20] 2 Xi0~LN(1,0.5)
f(X) = % Px;,x, = 0.3
3  Webster et al. [143] 2 Xi~U(1,10)
f0)=x2+x3 X, ~ N(2,1)
4 Short Column [20] 3 X3 ~LN(G,05)
2
Foo=1-42 - L (; X ~ N(2000, 400)
Ti%5x; 5625 1) X5 ~ N(500, 100)
PX,,X3 = 0.5
5 Cantilever Beam [20] 3 X;~N(29e7,1.45e6)
_ 510 [(2)2, (1)2 X, ~ N(1000, 100)
FO)=5E(3)" + (%) : ’
aoNHen e X3 ~ N(500,100)
6 Borehole [47, 94] 8 X; ~N(0.1,0.0162)
flx) = —— b X, ~ LN(3700,4890)
1“(%)(1+7m(xz/flfxgxs %) X3 ~ U (63070, 115 600)
X4 ~ U(990,1110)
X5 ~ U(63.1,116)
Xg ~ U(700, 820)
X7 ~ U(1120,1680)
Xg ~ U(9855,12045)
7  Steel Column [21] 9 X;~ £LN(400,35)
PE
fO) =31~ 5 — = By X, ~ N(5€5, 5ed)

P =xy + x3+ x4,

_ 8n? 2
Eb - 9,108 x5x6x7x9

X3/4 ~ 6(665, 984)
X5 ~ LN(300,3),

Xo ~ LN(20,2)

X7 ~ LN(300,5)

Xg ~ N(30, 10)

X9 ~ W(2.1e5,4200)
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3 Extended concepts in surrogate modeling and optimization

8  Sulfur Model [130] 9 X3 ~LN(0.76,0.152)
f(x) = —5.488-107° X, ~ £N(0.39,0.039)
- X2 X X3 X4 X5X6X7X8X9 X3 ~ LN(0.85,0.085)

X4 ~ £N(0.3,0.09)
X5 ~ LN(5.0,2.0),
Xo ~ LN(1.7,0.34)
X7 ~ LN(71.0,10.65)
Xs ~ LN(0.5,0.25)
Xo ~ LN(5.5,2.75)

9 Oakley & O’Hagan [103] 15 X;~N(@©,1), i=1...15
flx) = a{x + ag sin(x) + ag cos(x)
+x'Mx (a;, M [103])

PDF parameters correspond to mean p and standard deviation ¢ for normal N,
log-normal LN, Weibull ‘W and Gumbel G distributions and to lower and upper limit for uniform ¢/
distributions. px;, X; indicates pairwise Pearson correlation coefficient (0 if not stated).

function includes a non-uniform distribution for at least one input dimension, as the
PIT would otherwise have no effect on the trend function, and the proposed method
would be indistinguishable from conventional approaches.

For each benchmark problem with p input dimensions, a training set of n = 10p
points u; is generated using maximin LHS (Section 2.1.4). Model function evaluations
vi = f(x;) are performed, where the physical input parameters are obtained via the
inverse Rosenblatt transformation, x; = 7,5/ (u;). Surrogate models are constructed
based on the methods described in Section 3.1.2.

The following GPR methods are compared: simple kriging, ordinary kriging, universal
kriging with a linear trend, universal kriging with a quadratic trend, universal kriging
with a transformed linear trend, and universal kriging with a transformed quadratic
trend. A linear trend includes linear terms with respect to all input parameters, while a
quadratic trend includes polynomial terms up to the second order. A transformed trend
applies the inverse Rosenblatt transformation to the corresponding trend function, as
detailed in Section 3.1.1. Transformations are only applied to linear and quadratic
trends, as transforming a zero-order trend (simple kriging) or a constant trend (ordinary
kriging) would not produce any change. To ensure statistical validity, each surrogate
modeling method is applied 10 times for every combination of a surrogate method and
abenchmark problem. Additionally, for each experiment, hyperparameter optimization
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3.1 Surrogate models for transformed input parameter spaces

is repeated 20 times with randomized initial hyperparameters, as multiple local optima
may exist and hyperparameter optimization is often sensitive to initial values. The
total computation time for one experiment includes all 20 hyperparameter optimization
runs. Surrogate models are evaluated based on the validation measures described in
Section 2.4, using 1y, = 1000 validation points. For all cases, the mean and standard
deviation of the validation errors are computed.

Furthermore, all experiments are conducted both with and without the gradient
of the log marginal likelihood, following Eq. 2.3 and Eq. 3.2, to compare computation
times. The L-BFGS-B method is used for optimization because it can directly utilize
gradient information, the marginal likelihood of a GPR model is typically smooth and
differentiable, and bounded constraints are imposed on the hyperparameters, making
this method well-suited. When gradient information is not included, it is estimated
using a two-point finite difference approximation.

Results

Figure 3.2 illustrates the validation errors for all combinations of benchmark functions
and surrogate methods, based on 10 experiments, including their mean values and
standard deviations. On average, prediction accuracy improves from simple kriging
to ordinary kriging to universal kriging, as increased model flexibility allows better
adaptation to the underlying function. In universal kriging, the use of linear or quadratic
basis functions, or both, enhances prediction accuracy, with quadratic trends generally
yielding lower errors. Quadratic basis functions offer greater flexibility, enabling the
surrogate model to better capture the structure of the data. However, polynomials of
higher degree, particularly in high-dimensional input spaces, result in an exponentially
increasing number of basis functions (curse of dimensionality), which can result in
overfitting and high generalization errors. The high validation errors observed for
benchmark problem #9 in universal kriging with a quadratic trend indicate the effects
of overfitting. In a general case, employing quadratic multivariate basis functions for a
p-dimensional problem results in p(p + 1)/2 quadratic, p linear, and one constant basis
function. For p = 15 with n = 10p, this corresponds to 136 basis functions for a problem
with only 150 training points. In the context of polynomial chaos expansion, SUDRET
[127] argued that for polynomial fitting the number of training points should be at least
2-3 times as high as the number of basis functions in order to avoid overfitting. If this
is not the case, a sparse set of basis functions could be determined, e. g. by means of
least-angle regression [60].

The incorporation of transformed basis functions further reduces validation errors
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compared to the non-transformed case for both linear and quadratic trends in most
cases, underscoring the importance of defining trend functions in the physical parameter
space rather than in the uniform space. While the transformation significantly improves
accuracy compared to the corresponding non-transformed trend, the choice between
a transformed linear or transformed quadratic trend remains highly problem-specific,
similar to the selection between linear and quadratic trends without transformation.

The magnitude of validation errors varies significantly across the considered benchmark
functions due to differences in mathematical formulations, degrees of nonlinearity,
dimensionality, and the number of training points. However, these differences are not
the focus of this study.

Figure 3.3 illustrates the impact of incorporating transformed basis functions on
the surrogate model for the short column function (benchmark problem #4). For
visualization, only cross-sections of the hypersurface are shown, where a single input
parameter is varied at a time, and the corresponding output is displayed. The function
values to be predicted, along with the surrogate model outputs, are presented in both
the physical input space and the i. i. d. uniform input space. Since the surrogate models
are constructed in the uniform input space, selecting linear or quadratic trend functions
without transformation forces the regression model to conform to such a trend in the
uniform space space (Fig. 3.3, third and fourth row). This leads to an artifact where, in
the physical input space, the surrogate model tends to flatten in the distribution tails
and steepen between. This effect does not occur when transformed basis functions are
used, as they correctly account for the input space transformation (Fig. 3.3, fifth and
sixth row). This example highlights that simple trends are typically more naturally
represented in the physical input space.

Figure 3.4 presents the computation times for all benchmark function and surrogate
method combinations, including all 10 experiments, with mean values and standard
deviations. Computation times are compared with and without the incorporation of
the gradient of the log marginal likelihood in hyperparameter estimation. In all cases,
incorporating gradient information leads to a significant reduction in computation
time, demonstrating its effectiveness in accelerating optimization. The equations in
Section 3.1.2 have thus been validated and shown to be applicable across all cases. Since
incorporating gradient information only affects the time required to reach a specified
optimality criterion at which the optimization is terminated, but does not alter the final
optimization results, the NMSE errors (Fig. 3.2) remain identical between the cases
with and without gradient information.
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Figure 3.2: NMSE for all benchmark problems and investigated GPR methods, including mean values and
standard deviations across 10 experiments for each case.
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Figure 3.3: Visualization of benchmark problem #4 (short column function): True function (dashed line)
and GPR mean (solid line) with variance (grey shaded area) for the investigated GPR methods (rows) and
input parameters (columns), shown in the physical (left) and i. i. d. uniform (right) input spaces. The plots
represent cuts through the hypersurface where one input parameter varies while all others remain fixed at
their mean values (shown in PDF on the bottom).
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Figure 3.4: Computation times for constructing surrogate models across all benchmark problems and
investigated GPR methods. Results are shown for cases with (empty markers) and without (filled markers)
the incorporation of the gradient of the log marginal likelihood in hyperparameter optimization. Mean
values and standard deviations across 10 experiments are presented for each case.
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3.2 Expert-informed multi-objective optimization
concepts

In many studies, parameter optimization involves multiple objective functions. While
optimizing a scalar-valued single-objective function

Ugpt = argmin{ f(u)}
uesS
can often be achieved efficiently using various local or global optimization methods,
the task becomes more complex and less straightforward when optimizing multiple
objective functions

Ugpt = argmin{f;(u),j =1...J}.
uesS
To address this challenge, multi-objective optimization methods have been developed,
typically aiming to identify Pareto-optimal fronts — sets of non-dominated solutions
where an improvement in one objective can only be achieved at the expense of at least
one other objective [29].

Due to the high dimensionality of many practical problems, it is often beneficial
to assign weights to individual objectives and combine them into a single objective
function using p-norm scalarization

1/p

J
fay =Y wilfi@r|
j=1

where p =1 corresponds to a weighted sum, p = 2 to a squared sum, and p = o to the
Tchebycheff norm. However, a fixed set of weights does not provide a comprehensive
understanding of the optimal parameters, as these may be highly sensitive to the choice
of weights. Therefore, it is essential to explore variations in the weight selection. To
address this, two approaches are proposed: (a) introducing uncertainty in the weights
to analyze the sensitivity (spread) in the optimal parameters, and (2) independently
varying individual weights to assess the isolated influence of each objective. Both
methods rely on a default weight combination wo = (wy,j,j = 1...]), determined based
on expert judgment. Without loss of generality, the weights wy are scaled such that their
sum satisfies Z§:1 wo,; = 1, allowing them to be interpreted as the relative importance
of the objectives in determining the optimal parameters.
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Figure 3.5: Visualization of multi-objective optimization strategies. Solid point wy corresponds to the default
weight combination, crosses correspond to samples for weight combinations used for separate optimizations.

(a)

(b)

Weight uncertainty

To assess the sensitivity of optimal parameters to variations in objective weights,
uncertainty is introduced into the weights. Each weight is sampled from a uniform
interval, as illustrated for a three-dimensional case in Fig. 3.5a. Within this hyper-
rectangle, a MC simulation is conducted, where each sample represents a distinct
single-objective optimization problem with a specific weight combination. The
resulting distributions of optimal parameters and their corresponding objective
values can then be visualized using histograms.

Weight variation

To assess the dependence of optimal parameters on individual objective weights,
the weight of one objective is systematically varied step-wise between 0 and 1,
while all other weights are linearly scaled to ensure that ZLl w; = 1 remains
valid. This approach preserves the relative proportions among the remaining
weights, isolating the effect of varying a single weight. The process is repeated for
all weights, resulting in distinct lines of points in the weight space, as illustrated
in Fig. 3.5b.

These two methods offer complementary approaches to analyzing how objective weights

influence optimal model parameters. By assessing the sensitivity of these parameters

to variations in the weights, the results can reveal whether the parameters are robust

to such changes and quantify their values. Traditional validation is not applicable in

this context, as the methods do not produce objectively verifiable results but instead

provide a structured framework for exploring the problem.
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4  Uncertainty quantification and
parameter optimization in
simulations of the West African
monsoon

Simulating the meteorological system of the WAM is associated with substantial
uncertainties. This section introduces the meteorological model used in this study,
specifically the ICON model developed by the DWD, along with the selected model
parameters. The applied meteorological data are then described in detail. Building
on the previous chapter, surrogate modeling [160] and optimization [161] techniques
are employed to assess the uncertainty contributions of meteorological parameters and
identify opportunities for model improvement.

4.1 Meteorological model

The ICON model is a global numerical weather prediction model developed by the
DWD in collaboration with the Max Planck Institute for Meteorology [152]. It employs a
non-hydrostatic formulation on an icosahedral grid to simulate atmospheric processes
across multiple scales. This section introduces the specific ICON model configuration
used in this study. Additionally, the ICON model parameters considered for surrogate
modeling and optimization are described, along with the assigned PDFs that represent
their epistemic uncertainties.

4.1.1 ICON model configuration

The ICON model, the operational forecast system of the DWD, is used as the full-physics
numerical model to simulate the WAM. For this purpose, version 2.5.0 is employed in a
limited-area nested configuration, with a 26 km grid spacing for the outer region and a
13 km grid spacing for the inner region. The outer domain extends from 28°W to 34°E
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Figure 4.1: ICON model configuration, outer domain with 26km grid spacing (green), inner domain with
13km grid spacing (brown) and domain for which simulation output data are stored (blue).

and 10°S to 34°N, while the nested domain is 2° (~ 220 km) smaller in each direction
(Fig. 4.1). At the outer boundary, ERA5 reanalysis data [49], provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF), are used. Although ERAS data
are available hourly, updates in the simulations are applied every six hours to limit data
volume and computational cost. Apart from this, the model setup, including all namelist
parameters, follows the DWD'’s operational global configuration. Previous studies, such
as Pante and Knippertz [108], demonstrated reasonable simulation results for the West
African region using a similar model setup, though convection parameterization posed
challenges for precipitation forecasting. To isolate model parameter sensitivities from
those induced by weather noise and to minimize the influence of initial conditions, a
sufficiently long simulation period is required. At the same time, the focus remains on
capturing the peak of the WAM during boreal summer. To balance these aspects, August
data from 2016 to 2019 are considered. Each simulation starts on July 21st, runs for 41
days, and only data from August 1st to August 31st are analyzed to reduce the impact of
initial conditions. Preliminary tests using simulations from a single year showed high
fluctuations in the considered Qols and low surrogate model accuracy, primarily due
to aleatoric uncertainties arising from the atmosphere’s small-scale chaotic behavior.
To obtain a more robust estimate while maintaining manageable computational cost,
analyzing the rainy season across four years provided a reasonable compromise. The
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4.1 Meteorological model

meteorological variables from the model output are therefore averaged over these four
August periods to represent a multi-year mean state and serve as training points for
the surrogate models. Using data from four different years also captures variations in
SSTs, which are prescribed as boundary conditions based on SST analyses at model
initialization. During the simulation, SSTs are incrementally updated according to their
annual climatological cycle [116].

4.1.2 Model parameter selection

Within the ICON ensemble prediction system, forecast uncertainties are assessed by
perturbing both initial conditions and physical model parameters. The ensemble uses
a local ensemble transform Kalman filter [53] for initial condition perturbations and
applies randomized variations to predefined physical tuning parameters to account for
model uncertainties. Since these physical parameters already provide an established
basis for parametric uncertainty sources, this study focuses on six parameters that span
a broad range of the model’s physics and are expected to have a significant impact on
the WAM region. Their selection was guided by expert judgment from the Institute of
Meteorology and Climate Research — Troposphere Research at the Karlsruhe Institute of
Technology. These parameters include the grid-scale microphysics (zvz0i), turbulence
(tkhmin), land-surface interaction (c_soil) and the parameterization of deep convection
(entrorg, rhebc_land_trop, rcucov_trop). For the purpose of the analysis in this work,
the parameters are grouped into three pairs with regard to their physical implication,
namely deep-cloud (entrorg, zvz0i), below-cloud (rhebc_land_trop, rcucov_trop) and
boundary-layer (tkhmin, c_soil) parameters (see Table 4.1).

The entrainment rate (entrorg) controls the mixing of ambient air into convective
plumes. Depending on the free-tropospheric humidity, higher entrorg values may
reduce buoyancy within the convective plumes, potentially leading to decreased
convective rainfall. The terminal fall speed of ice crystals (zvz0i) influences the lifetime
of cirrus clouds and, consequently, the average high-level cloud cover. Particularly in the
tropics, this parameter can strongly affect cloud-radiative heating rates, which in turn
may impact large-scale atmospheric circulation. Despite their distinct physical roles, the
entrainment rate and terminal fall velocity of ice exhibit similar overall effects: REINERT
et al. [116] found that reduced entrainment increases the altitude of tropical convection
and enhances the production of cloud ice in the upper troposphere. To maintain
radiative forcing at a similar level, this effect must be counterbalanced by faster cloud
ice sedimentation. For this reason, the DWD varies these two parameters inversely in
operational ensemble physics perturbations [116]. Below-cloud parameters primarily
influence evaporation processes in convective regions. The parameter rhebc_land_trop

53



4 Uncertainty quantification and parameter optimization in simulations of the West African monsoon

Table 4.1: Selected uncertain model parameters including a brief description, the assumed PDF, and the
corresponding physical unit.

model description PDF! unit
parameter
a) entrorg entrainment parame- LN(u =-6.3, 0 = 0.18) m~!

ter valid for dx=20 km
(depends on model
resolution)

b) zvz0i terminal fall velocity LN (u =0.22, ¢ = 0.40) ms~!
of ice

c) rhebc_ land_trop relative  humidity $B(a =30, § =10) -
threshold for onset
of evaporation below
cloud base over land
in the tropics

d) rcucov_trop convective area frac- LN(u=-3.0, 0 =0.27) -
tion used for com-
puting evaporation
below cloud base in
the tropics

e) tkhmin scaling factor formin- LN (u=-0.29, 0 =0.36) m?s7!
imum vertical diffu-
sion coefficient for
heat and moisture

f) c_soil surface area density N(u=1.0, 0 =0.34) -
of the (evaporative)
soil surface

1 LN: log-normal distribution (1 and ¢ are the mean and standard deviation of the variable’s natural
logarithm), N: normal distribution, 8: beta-distribution.

defines a relative humidity threshold below which sub-cloud evaporation occurs in
convectively active grid cells over tropical land areas. The parameter rcucov_trop
represents the areal fraction of convection within a grid cell used for computing
evaporation below cloud base. While rhebc_land_trop affects regions where relative
humidity is near its threshold value, rcucov_trop has a broader impact, influencing
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evaporation across most of the domain. The turbulent diffusion coefficient (tkhmin)
regulates the vertical mixing of heat and moisture, which can influence cloud formation.
In reality, some level of vertical diffusion is always present. However, under highly
stable conditions with weak vertical wind shear, turbulence parameterizations tend
to underestimate this diffusion. To compensate for this, a minimum diffusion value
(tkhmin) is imposed in the model [112]. The parameter c_soil represents the fraction
of soil contributing to evaporation, expressed as a unitless fraction. Higher values
increase near-surface humidity and may enhance cloud cover formation. Particularly
for entrorg, rhebc_land_trop and rcucov_trop the net effect on area- and time-integrated
precipitation is uncertain, as it strongly depends on the meteorological context.

In meteorological studies and operational forecasts, model parameters are often
assumed to follow uniform distributions over an estimated range of plausible val-
ues [141]. This assumption is also applied in the operational ensemble forecasts
of the DWD [116]. The use of uniform distributions is reasonable when limited
prior information is available, as the primary objective is to introduce variability into
ensemble forecasts and ensure that the forecast uncertainty adequately reflects the
inherent limitations of predictability. While uniform distributions are a practical choice
for ensemble forecasting, they are less suitable for GSA. A uniform distribution imposes
an artificial discontinuity in the probability density at its boundaries, meaning that
values near the range limits disproportionately influence GSA results, while values just
outside the range contribute nothing. Consequently, alternative, non-uniform PDFs
provide a more appropriate representation of parameter uncertainty.

Although defining such PDFs presents a challenge in its own right, they are considered
more appropriate for this study. Non-uniform PDFs for the parameters analyzed
here have already been applied by Lanc et al. [66] and OLLiNaHO et al. [105], where
normal and log-normal distributions were used to represent parameter uncertainties.
The primary source for defining the PDFs in this study is the parameter ranges and
mean values used in operational ensemble forecasts by the DWD [15]. These are
supplemented by further expert knowledge. The probability distributions are chosen to
ensure consistency with physical constraints and symmetry considerations. Parameters
that must remain strictly positive are described by functions that only take positive
values, such as log-normal PDFs. Parameters bounded between 0 and 1, representing
fractional values, are better described by beta distributions. In the case of the parameter
c_soil, the standard deviation of the normal distribution is low enough to ensure positive
values and is used to assume a symmetric distribution for simplicity. The selected model
parameters and their assigned PDFs are presented in Table 4.1, while visualizations of
the distributions are provided in the results section (Fig. 4.3, at the bottom).
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In an operational forecasting framework, where the primary objective is to improve
predictive accuracy, temporally and spatially varying parameter values may enhance
flexibility and overall forecast performance. However, this study focuses on identifying
systematic relationships between parameter values and simulation outcomes. For the
sake of simplicity and interpretability, model parameters are kept constant in both
time and space within individual simulations. Consequently, each training point
corresponds to a fixed set of six model parameters, which are used in a single ICON
model simulation.

As described in Section 2.1.4, training points, i. e. model parameter configurations, are
generated using maximin Latin Hypercube Sampling (LHS) to ensure a well-distributed
sampling across the parameter space. A total of n = 60 training points are selected in
the p = 6 dimensional input space. The required number of training points strongly
depends on the nonlinearity of the investigated system. However, following the
heuristic n = 10p proposed by Loeprky, Sacks, and WeLcH [76], this choice is adopted
while recognizing the necessity of model validation. As outlined in Section 3.1.1, the
sampling is initially performed in a unit hypercube, after which the inverse Rosenblatt
transformation x; = 7,5 (w;) (i = 1...n) is applied to map the sampled points to the
physical parameter space used in the ICON model simulations. Since the six investigated
model parameters are assumed to be independent, the transformation simplifies to the
inverse CDF for each parameter x; = 7,50 (0;) = (CDF]._l(ui]-), j=1...6)".

4.2 Meteorological data

The ICON model computes a wide range of meteorological variables, including state
and diagnostic variables, which can be stored as simulation output depending on a
chosen spatial and temporal discretization. The selection of stored data, both from ICON
simulations and reference datasets used for comparison, must balance its utility with
storage constraints. This section outlines the meteorological field data directly retained
for each ICON model simulation corresponding to each parameter configuration
xi (i =1...n),as well as from reference data sets, requiring approximately 475 gigabytes
of storage in total. Additionally, to gain deeper insights into specific characteristics of
the WAM, scalar Qols are derived from both ICON output data and reference data, as
described in the following.

421 Meteorological fields

Simulation and reference data are stored at a horizontal resolution of 0.1° over the
region spanning 0°N to 25°N and 15°W to 15°E (see Fig. 4.1) for the period August 1-31
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Table 4.2: Selected meteorological fields.

j meteorological field unit
1 accumulated precipitation mm per month
2  2m temperature K
3 2m dew point temperature K
4 mean sea-level pressure (MSLP) hPa
5 column-integrated water vapor kgm™2
6 high-level cloud cover Y%
7 mid-level cloud cover Y%
8 low-level cloud cover Y%
9 u-wind at 600 hPa ms~!
10 u-wind at 200 hPa ms!
11  v-wind at 600 hPa ms!
12 v-wind at 200hPa ms™!

in the years 2016, 2017, 2018 and 2019. The selected model outputs, which represent
key characteristics of the WAM, are listed below, along with their respective temporal
resolutions. Notably, a finer temporal resolution is applied to cloud cover data to better
capture its anticipated higher variability.

The ICON model output from all 60 model parameter configurations is stored for
all meteorological field variables at the specified spatial and temporal resolutions. As
reference data, the Global Precipitation Measurement (GPM) Integrated Multi-satellitE
Retrievals (IMERG) data [52] are used for precipitation due to its high spatial and
temporal resolution, which are essential for accurately capturing the variability of
rainfall in the WAM region. For other atmospheric variables, such as temperature,
pressure, and wind patterns, the ERA5 reanalysis data are utilized. To facilitate
comparison across datasets, the ICON model output (native resolution of 0.1°), ERA5
data (native resolution of 0.25°), and GPM IMERG data (native resolution of 0.1°) are
linearly remapped onto a common rectangular grid with a mesh size of 0.5°. The
data are averaged over the four August months. The spatial resolution is chosen as
a compromise between accuracy and computational efficiency, particularly for the
parameter optimization process.
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4.2.2 Quantities of Interest

Using the meteorological fields, specific characteristics of the WAM system can be
derived to analyze the influence of model parameters in greater detail. In this study,
the Qols describing these characteristics are defined as scalar quantities. The field data
has been processed such that only the temporal average over August across all four
years (2016-2019) is considered, with a spatial resolution of 0.5°. The selected Qols and
a brief description of their computation are provided in Table 4.3.

In meteorological studies, the computation of such quantities often involves subjective
decisions, depending on the available data and the specific objectives of the analysis.
For some of the Qols considered here, such decisions were necessary and will be briefly
discussed in the following sections.

The consideration of latitudinal values for several features is only meaningful within
certain longitudinal ranges, as outside these ranges, the features may be absent or
influenced by factors that are not relevant to this study. Including such regions
could obscure the influence of model parameters on Qols. The precipitation latitude
provides a measure of the north-south shift of the rainbelt. The longitudinal range
for this computation is selected between 12°W and 2°E to minimize the impact of
distinct topographical features, such as the Guinea Highlands to the west and the
Cameroon Line and wet Niger Delta to the east. The ITD marks the interface where
dry northeasterly winds from the Sahara meet moist southwesterly winds from the
tropical Atlantic Ocean. While its latitude could be determined from 3D wind fields at
different altitudes, the available meteorological fields (Table 4.2), which were selected
due to data storage constraints, necessitate an alternative approach. Therefore, the ITD
latitude is computed using the 2m dew point temperature, which effectively captures
the sharp transition in moisture content near the surface. Specifically, the latitude
corresponding to a 2m dew point temperature of 14 °C is used [24]. The computation
is restricted to a longitudinal range of 12°W to 8°E, which is broader than that for the
precipitation center latitude, allowing for a more robust analysis, as the ITD remains
relatively stable over a wider longitudinal extent. For the southern boundary of the
SHL, computed based on a mean sea-level pressure (MSLP) threshold of 1009 hPa, a
longitudinal range of 9°W to 1°W is chosen, as the SHL is primarily confined to this
region. Expanding the latitudinal range or increasing the pressure threshold could
result in cases where the threshold is no longer met at certain longitudes, making the
characterization less meaningful. The southern boundary is used instead of the center
latitude since, given the study region’s northern limit at 25°N, the center latitude cannot
be robustly determined. In potential future studies, it may be beneficial to extend
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4.2 Meteorological data

Table 4.3: Selected Qols derived from meteorological fields.

j Qol unit description
1 accumulated mmper averaged accumulated precipitation!
precipitation average month
2 precipitation center °N weighted average of latitudes between
latitude 12°W and 2°E, using accumulated precipi-
tation as weighting factor
3  2m temperature K averaged 2 m temperature!
average
4 2m dew point K averaged 2 m dew point temperature!
temperature average
5 ITD latitude °N average of latitudes corresponding to a
14°C 2m dew point temperature for all
longitudes from 12°W to 8°E
6 SHL pressure hPa average of the 10 % lowest MSLP values
within the region from 15°N to 25°N and
15°W to 5°E
7 SHL southern °N average of latitudes corresponding to a
boundary 1009 hPa MSLP threshold for all longitudes
from 9°W to 1°W
8 column-integrated kgm=2  averaged column-integrated water vapor!
water vapor average
9 high-level cloud cover % averaged high-level cloud cover!
average
10 mid-level cloud cover % averaged mid-level cloud cover!
average
11 low-level cloud cover % averaged low-level cloud cover!
average

12 AE] speed ms~! averaged u-winds at 600 hPa along the AE]
latitude (13)

13 AE] latitude °N weighted average of latitudes, using u-
winds at 600 hPa exponentiated by 3 as
weighting factor

14 TE] speed ms~! averaged u-winds at 200 hPa along the TE]
latitude (15)

15 TE] latitude °N weighted average of latitudes, using u-

winds at 200 hPa exponentiated by 3 as
weighting factor

1

average value over all grid points of the study domain (15°W to 15°E, 0°N to 25°N)
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4 Uncertainty quantification and parameter optimization in simulations of the West African monsoon

the region where output data is stored further north to enable a more comprehensive
analysis of the SHL.

The SHL, one of the main drivers of the WAM, is characterized by its strength.
To quantify this, the average pressure field is computed for each August month within
the region 15°N to 25°N and 15°W to 5°E, where the heat low is expected based on
climatological studies [68]. For a robust characterization, the MSLP is averaged over
the 10 % lowest values within this region, rather than considering all grid points or
selecting only the absolute minimum MSLP value. Averaging all values would obscure
the localized pressure minimum, while selecting only a single grid point would be
overly sensitive to fluctuations due to the chaotic nature of the system. This approach
ensures a balance between stability and representativeness in capturing the intensity
of the heat low.

For the computation of jet latitudes, using only the latitude of the maximum zonal wind
speed proved to be a non-robust measure, as it is highly sensitive to small parameter
variations and prone to fluctuations due to the chaotic nature of the atmosphere.
To improve robustness, neighboring latitudes are also taken into account. First, the
averaged zonal wind speed for each latitude on the grid is computed. However, the
resulting distribution remains relatively flat, making it difficult to reliably determine
the latitude of maximum wind speed. To address this issue, the average wind values
are exponentiated, which enhances the sharpness of the profile and reduces the
influence of relatively high wind values located far from the jet center. In this study, an
exponent of 3 was found to yield meaningful results. Finally, the weighted average of
latitudes is computed using the exponentiated wind values as weights. Without this
exponentiation strategy, the chosen latitudinal range for analysis would significantly
affect the result, which should be avoided. When computing the jet speeds based on
the obtained latitudes, it is important to note that the maximum instantaneous jet speed
is considerably higher, as only the time-averaged wind speeds are considered for the
sake of enhanced robustness.

4.3 Surrogate models for meteorological variables

In this section, surrogate models are developed to characterize the influence of the
considered model parameters on WAM characteristics. PCR is employed to con-
struct surrogate models for meteorological fields, while GPR is used for scalar Qols.
The surrogate models for meteorological fields provide insights into how parameter
variations affect the geographical distribution of key meteorological variables. In
contrast, using scalar Qols sacrifices spatial variability in favor of a more robust analysis,
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4.3 Surrogate models for meteorological variables

emphasizing specific aspects of the WAM system. All surrogate models are trained in
the i.i. d. uniform input space based on the n = 60 training points (Section 4.1.2).

4.3.1 Meteorological fields

The meteorological fields for the 60 training points are used to construct surrogate
models via PCR to describe the relationship between the six model parameters and
the meteorological fields. The temporally averaged meteorological field for variable
j(j =1...12) at training point u;(i = 1...n) is given by {M; : ijl, k=1...50,1=
1...60} where 50 latitudinal and 60 longitudinal grid points are considered. Following
the surrogate modeling procedure outlined in Section 2.3, the mean yj.‘l (Eq. 2.10) and

standard deviation 0]1;1 (Eqg. 2.11) for each meteorological variable j(j = 1...12) are
computed. The resulting surrogate model for the meteorological field, as formulated
in Eq. 2.12, can be represented as

P
M () ~ ! + "M () with M (w) = Z Cjm(u)P!

jm *
m=1
The coefficients are modeled using a linear trend with respect to the physical model
parameters, as described in Eq. 3.3. In this study, selecting P = 3 principal fields
provides high accuracy across all meteorological variables, i. e. the changes in NMSE
errors were less than 1 % when including additional principal fields, while representing
a good compromise between accuracy and computational efficiency.

4.3.2 Quantities of Interest

The Qols derived from the meteorological fields at the 60 training points are used
to construct surrogate models via GPR, capturing the relationship between the six
model parameters and the scalar Qols. To enhance numerical stability and ensure the
well-posedness of the problem, as is well established, the Qols are standardized for the
surrogate modeling process [55], ensuring zero mean and unit variance. The value of
Qol j(j =1...15) for training point u; (i = 1...n) is given by Yorig,;j. The standardized
data are then computed as

1
Yij = @(}/orig,zj - HQOI]-) ’ (4,1)
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4 Uncertainty quantification and parameter optimization in simulations of the West African monsoon

with the mean and standard deviation defined by

1 n
[JQOIj = E Z yorig,ij ’ (42)
i=1

n

GQOIj = J % Z (]/orig,ij - #Qolj)Z . (43)

i=1

Following the surrogate modeling procedure described in Section 2.2.2, the predictive
mean and predictive covariance for prediction points U, of a given Qol j are

9001,/ (Ux) = KK 'y; + R
6001,j(Ux) = Ky — K] K 'K, + RT(HK'H")"'R

with R = H, - HK"'K, and § = (HK"'HT)"'"HKly;.

For the trend functions h(u) (Eq. 2.5 and Eq. 2.6), a linear trend w.r.t. the physical
model parameters x is used as elaborated in Section 3.1.2. Given pqor, (Eq. 4.2) and
0Qol; (Eq. 4.3), the surrogate model results for each individual Qol j can be transformed
back to the original data space for visualization and analysis.

4.3.3 Validation

In this study, only temporally averaged quantities over August from 2016 to 2019 are
considered. Due to the complex and chaotic nature of the atmosphere, long-term
predictions of meteorological variables in the tropics are particularly challenging, often
resulting in larger deviations between ICON model simulations and reference data.
However, the focus here is on the climatological mean state for the given period,
where simulation data is expected to better align with reference data. Validation is
therefore conducted only for temporally averaged meteorological fields and the Qols
derived from them. First, the ICON simulation results are compared against reference
data. While these results depend on the model parameters, the simulation output —
especially when using default parameters — should reasonably match the reference
data, confirming the plausibility of the model configuration and computation strategies
for Qols. Nevertheless, optimizing the model parameters to improve this agreement
remains a key objective of this study. Next, the surrogate models for the meteorological
fields and Qols are validated. Given the computational demands of weather models, no
separate validation dataset is used. Instead, leave-k-out cross-validation is employed
to assess the performance of the surrogate models.
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4.3 Surrogate models for meteorological variables

For validation of the mean ICON model output fields against reference data, the
RMSE and NMSE from Section 2.4 are adapted as

where M i‘elf represents the reanalysis data for meteorological variable j at grid points
(k, 1) (see 4.2.1 for details). The validation results of the ICON model output are
presented in Table 4.4. The RMSE for accumulated precipitation is 47.7 mm, which
corresponds to 15.8 % in NMSE. An inspection of the spatial distribution shows that
the differences are mostly due to wetter conditions along the rainy southwestern coast
of West Africa and Niger Delta region in ERA5. Differences in cloud cover are also
substantial. While high clouds exhibit the best agreement (7.6 % RMSE), low- and
mid-level cloud cover is substantially higher in ICON with RMSEs of 15.5 % and 6 %,
respectively. These values correspond to NMSEs of 46.9 % and 24.1 %, indicating notable
discrepancies. Low clouds over tropical West Africa are controlled by a subtle balance
of advective, radiative and turbulent processes [77], and differences between models
tend to be large [45]. Given that cloud cover and precipitation are strongly influenced
by model parameterizations, such differences are expected. Moreover, while ERA5
has undergone significant improvements compared to earlier reanalysis products,
it may still have uncertainties in these quantities [33]. The other moisture-related
variables, column-integrated water vapor and 2 m dew point temperature, show only
minor deviations, as does MSLP. However, differences in 2m temperature are more
pronounced with an RMSE of 1.7 K and a NMSE of 20.1%. This discrepancy is
primarily due to warmer temperatures over the Sahara in ICON (not shown). Modeling
near-surface temperature in desert regions is particularly challenging due to intense
solar heating and turbulent surface sensible heat fluxes, which can lead to superadiabatic
lapse rates in the lowest atmospheric layers [65]. Finally, the four wind variables exhibit
good agreement with the exception of v-winds at 600 hPa, where the NMSE is 26.4 %,
corresponding to a RMSE of only 0.6 ms~'. This deviation is primarily attributed to
stronger northerlies over the Sahara in ERA5 (not shown). These validation results
confirm that the model setup is generally valid, despite notable discrepancies in certain
quantities. Further reducing these discrepancies will be a key objective of the parameter
optimization studies in Section 4.5, where the differences between ICON and reference
data will be examined in greater detail, with a particular focus on their physical
implications.
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4 Uncertainty quantification and parameter optimization in simulations of the West African monsoon

The accuracy of the obtained surrogate models for meteorological fields and Qols
depends on several factors, including the number of training points, the modeling
methodology, the choice of ansatz functions (e. g., coefficient ansatz, number of principal
fields for PCR, or kernel functions for GPR), and the presence of nonlinearities or
chaotic behavior within the physical model. As a compromise between accuracy and
computation efficiency, leave-k-out cross-validation with k = 2 is applied individually
to all meteorological fields (Eq. 2.18,2.19) and Qols (Eq. 2.16,2.17). The validation
results are presented in Table 4.5. The observed errors in the validation process include
both aleatoric uncertainties inherent in weather simulations (which are inevitable due
to the chaotic nature of the system) and uncertainties introduced by the surrogate
models. It is important to acknowledge that large errors do not necessarily indicate low
surrogate model accuracy, as they may also reflect substantial aleatoric uncertainties
in the respective quantities. A small RMSE (or NMSE) suggests that both surrogate
model accuracy is high and aleatoric uncertainty is low, providing confidence for the
subsequent analyses. Regarding the validation of meteorological fields, the presence
of regional variability means that comparing grid point data within the validation
procedure inherently results in substantially larger errors compared to domain-averaged
comparisons used for validating Qols. Small NMSE values are evident across all
meteorological fields, except for high-level cloud cover (NMSE 8.06 %) and v-winds at
600 hPa (NMSE 4.37 %). For GPR, the predictive variance (Eq. 2.9) can be considered
as a measure for the uncertainty of the surrogate model. The noise variance o, of the
kernel function (Eq. 2.1) as a result of maximum likelihood estimation provides an
estimate of the aleatoric uncertainty (see Table 4.5). Since the values of o, are generally
lower but of a similar magnitude compared to the RMSE, this suggests that a significant
proportion of the observed validation errors may be attributed to aleatoric uncertainties
inherent in the weather model. NMSE values are considered small for all Qols except
for the AE] speed and precipitation latitude. However, the small RMSEs for the v-winds
at 600 hPa, AE] speed and precipitation latitude indicate that the absolute errors are
very small. The variance 05 (Eq. 2.17, corresponding to oqor; in Eq. 4.1) used for
normalization is also small due to low absolute variations in these variables, leading
to larger NMSE values. Consequently, high NMSE values in these cases do not affect
the overall validity of this study. Furthermore, these variables will be assigned low
weights in the optimization process, so their larger NMSE values are not expected to
impact the study’s overall validity. Errors could be further reduced by increasing the
number of training points or averaging over a longer period (i. e. incorporating more
years of data).
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4.3 Surrogate models for meteorological variables

Table 4.4: Validation results of the ICON model output compared to reference data.

j meteorological field (Ell\\/l/é}é]])
1  accumulated precipitation 47'(71?%52 )O_l
2 2m temperature (21(.)_7(())91;,)
3  2mdew point temperature ?394?30/5

4 MSLP (5407761;a)

5  column-integrated water vapor 1'%421.15%’;3_2
6  high-level cloud cover (;Z%:/f)

7  mid-level cloud cover (264(')134(2{2))
8  low-level cloud cover (igg;{;;)
9  u-wind at 600 hPa 0,?;)2305)_1
10  u-wind at 200 hPa 1(1711;)2)_1
11 v-wind at 600 hPa 0'(2969_4?2)_1
12 v-wind at 200 hPa 0?39%?/3)_1
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4 Uncertainty quantification and parameter optimization in simulations of the West African monsoon

Table 4.5: Validation results for surrogate models of meteorological fields and Qols. For Qols, o, represents
the noise term in the kernel function (see Eq. 2.1), obtained from hyperparameter estimation.

meteorological RMSE;

field [unit] (NMSE;) o2 Qol[unif] j
1365 average
) accu'm'l;la:ced 155  (11.64%) 0.385 [mm mo1] 1
F;fﬁf;oa,i?n (1.56%)  0.057 0049 Center latitude 5
| (2898%) [°N]
2m temperature 0300 : 0.054
2 K] (045%) | (3.88%) 0.025 average [K] 3
+ - 0.052
. 2mdew point 0342 | (5.05%) 030 average[K] 4
temperature [K] (0.43%) : 0.100 . o
(7.23%) 0.055 ITD latitude [°'N] 5
1 5.392
4 NSLP [Pl 1482 | (9.62%) 4.061 SHL pressure [Pa] 6
a (0.47%)  0.145 0005 SHL boundary ”
@rsw) [°N]
column-
5 integrated water ((g) 353305)) w (;) 01420? ) 0.071 average [kgm™] 8
vapor [kgm~2] oo D ’
high-level cloud 6.64 0.862 0
6 cover [%] (8.06%) | (120%) 0247 average[%] ?
mid-level cloud 191  0.193 o
7 cover [%] (153%) | (171%) 106 average[%] 10
low-level cloud 1.60 0223 o
8 cover [%] (044%) | (473%) 0128 average[%] 1
" 0.069 o
, uwwindate0hPa 0436 | (s524%) 0% AFspecd [ms™] 12
[ms™!] (1.52%) : 0.078 . o
- (5.81%) 0.053  AEJ latitude [°’N] 13
0116 o
o wwindat200hPa 0454 [ (7.02%) 0.059  TEJspeed [ms™] 14
[ms™] (0.40%) © 0.044 ‘ .
(17.62%) 0.022  TE]J latitude [°N] 15
17 V-wind at 600hPa 0177 i i i ]
[ms™] (4.37%)
1p Vv-wind at 200hPa 0.346 ) i i i
[ms™1] (1.34%) |
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4.4 Investigation of parameter impacts

4.4 Investigation of parameter impacts

To ensure a structured progression from fundamental concepts to more complex
analyses, the study first examines scalar Qols, applying GSA and presenting the
corresponding results. Subsequently, the influence of model parameters on Qols
and meteorological fields is investigated through parameter studies.

4.4.1 Global sensitivity analysis

To assess the magnitudes of model parameter impacts on scalar Qols, GSA is applied as
detailed in Section 2.5, specifically using the FAST method, with respect to the model
parameters and their corresponding PDFs (Table 4.1). Since the surrogate models
have been developed in the i.i. d. uniform input space, this input space can be directly
utilized in GSA.

The results of GSA are shown in Fig. 4.2. For each Qol, the bar plots indicate the
main and total effect sensitivity indices of the six uncertain model parameters. These
results should be interpreted as relative contributions to the total variance of each Qol,
meaning that comparing magnitudes between different Qols is not meaningful. A
comparison of absolute uncertainty contributions between different Qols is inherently
difficult or impossible, as they have different units. Overall, the main and total effect
indices do not differ significantly, indicating that interactions between parameters are
relatively weak. This justifies analyzing the influence of individual model parameters on
Qols separately, as done later in this study. However, interactions between parameters
are expected to be larger for broader parameter ranges, where nonlinear effects may
become more dominant.

Sensitivities of high- and mid-level cloud cover are generally dominated by the two
deep-cloud parameters, the entrainment rate (entrorg) and the terminal fall velocity of
ice (zvz0i). High-level clouds are strongly affected by entrainment, which can prevent
convection from reaching high levels, whereas effects on mid-level clouds are minor.
The fall velocity of ice controls the dissolution of high clouds but also has a dominant
effect on mid-level clouds. Low-level clouds are affected by more parameters in a
more complex way. As expected, below-cloud and boundary-layer parameters have
a substantial effect at these altitudes. Particularly, the relative humidity threshold
for onset of subcloud evaporation (rhebc_land_trop) and the surface area density of
the evaporative soil surface (c_soil) exert the strongest influence on low clouds, while
deep-cloud parameters play only a minor role (20 % combined).
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4 Uncertainty quantification and parameter optimization in simulations of the West African monsoon

Column-integrated water vapor is mostly influenced by deep-cloud parameters, similar
to high clouds, although boundary-layer parameters also play a minor role. This
suggests that column-integrated water vapor is more sensitive to interactions with
mid- and high-level clouds than to evaporation and vertical mixing at low levels.
Somewhat unexpectedly, 2m temperature and 2m dew point temperature are also
predominantly influenced by deep-cloud parameters, with entrainment rate being the
most significant factor. This suggests that entrainment processes induce substantial
indirect effects beyond clouds. More intuitively, c_soil significantly affects surface-level
thermodynamics.

Precipitation exhibits the most complex response, as it is influenced by all model
parameters except for the convective area fraction used for computing evaporation
below cloud base (rcucov_trop). While the impact of deep-cloud parameters is expected,
the significant influence of boundary-layer parameters highlights the importance of
low-level moisture for precipitation. The parameter rhebc_land_trop also exhibits a
minor influence, as evaporation below cloud base directly affects surface rainfall.

The AE] speed and position are most sensitive to entrorg, followed by zvz0i, suggesting
that deep clouds play the dominant role, likely via their effects on baroclinicity and
vertical momentum transport. Notably, the AE] speed is the only variable with a
significant contribution from rcucov_trop, possibly due to its location in the relatively
dry Sahel, where evaporation below cloud base is substantial. The latitudes of the
ITD and AEJ exhibit similar sensitivities, indicating a tight coupling between the two.
The TE] speed is primarily controlled by zvz0i, as it influences divergent outflow from
convective anvils, which feeds the TEJ [74]. Interestingly, the TE] position is also
sensitive to entrainment and even boundary-layer parameters, showing the largest
difference between total and main effects among all variables. The strength and latitude
of the SHL are most sensitive to entrorg, which is surprising given the absence of
deep clouds over most of the Sahara. A possible explanation is that entrainment
influences free-tropospheric water vapor content, which strongly affects longwave
cooling in dry regions [108]. Finally, the latitude of the precipitation maximum is
primarily controlled by rhebc_land_trop (~65 % contribution) with minor contributions
from all other parameters. This behavior is in stark contrast to precipitation amount
and almost all other Qols in Fig. 4.2. Given the strong gradient in absolute and relative
humidity across the Sahel, this finding suggests that modifying the onset of subcloud
evaporation in the model is a powerful mechanism for shifting the entire rain belt
meridionally. This result may help explain variability in rain belt position observed in
model intercomparison projects [30].
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Figure 4.2: Total and main effect sensitivity indices of model parameters for all Qols.
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4.4.2 Parameter studies

The surrogate models for Qols and meteorological fields are used to analyze the effects
of parameter variations on the respective quantities. Since surrogate model predictions
depend on all six parameters simultaneously, a full graphical representation of these
relationships is not feasible. Instead, a one-at-a-time variation approach is applied,
where a single parameter is varied while all others are held at their mean values,
corresponding to the ICON default settings. This approach is justified by the relatively
low parameter interactions identified in Section 4.4.1.

Figure 4.3 illustrates the relationships between each model parameter and each Qol.
Given the weak parameter interactions, choosing different fixed values instead of mean
values would primarily result in vertical shifts of the depicted curves. The predictive
variance from GPR (Eq. 2.9) is represented by shaded areas around the curves.

Figure 4.4 presents reference fields for all meteorological variables, obtained by
averaging ICON simulation outputs over all 60 training points and the entire eval-
uation period (August 2016-2019). These reference fields are preferred over the
simulation output from the ICON default parameter settings, as they provide a
more robust representation of the system’s average state. A continuous graphical
visualization of parameter-dependent variations in meteorological fields would require
three-dimensional plots, which are impractical. However, given the predominantly
monotonic dependencies observed in the Qols (Fig. 4.3), it is reasonable to consider
the average impact of parameter changes on meteorological fields. To quantify this
effect, the mean change in meteorological fields is computed for parameter variations
from —o to o, where ¢ is the standard deviation of the corresponding PDF. This is
done by subtracting the surrogate field for parameter —¢ from that for parameter o for
each parameter and meteorological variable, respectively. The resulting fields, referred
to as spatial variability fields, indicate the regions where a meteorological variable
increases or decreases in response to an increase in a specific model parameter. Spatial
variability fields for all three parameter groups are shown in Figs. 4.5, 4.6, and 4.7,
respectively. Since the full dependence structure cannot be visualized in such plots,
an interactive tool has been developed as part of this research. This tool, accessible at
mattfis.github.io/wam-simulations [159], is based on the results from PCR and enables
modelers to explore the spatial effects of combined parameter changes. Figure 4.8
shows a screenshot from this website for a specific parameter configuration.
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Figure 4.3: Dependencies of all Qols (ordinate) with respect to the six selected uncertain model parameters
(abscissa), respectively. The shaded area around curves illustrates the predictive variance (see Eq. 2.9). In
each plot, only one model parameter is varied while all others are fixed at their default value. The PDFs of
the model parameters, including their default values, are shown at the bottom. Triangles on the left indicate

the values computed from the reference data (Section 4.2.1).
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Figure 4.4: Average of selected meteorological fields over the evaluation period (Augusts 2016-2019),

computed from the ICON simulation output and averaged over all 60 training points. All color scales
are linear.
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Figure 4.5: Spatial variability fields for entrorg and zvz0i. Colors indicate an increase (red) or decrease (blue)
in the meteorological variable in response to an increase in the respective model parameter from —o to o of
its PDF. All color scales are linear.
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Figure 4.8: Screenshot of the developed online tool [159], accessible at mattfis.github.io/wam-simulations

Deep-cloud parameters

The effect of the investigated deep-cloud parameters, entrainment rate (entrorg) and
terminal fall velocity of ice (zvz0i), is considerably greater for most Qols than that of
other parameters, as evident from Fig. 4.2 (blue-colored bars) and Fig. 4.3. Since both
parameters directly affect cloudy regions, signals outside the rain belt arise primarily
due to indirect effects.

As shown in Fig. 4.3, an increase in entrorg leads to a decrease in 2m dew point,
column-integrated water vapor, high-level cloud cover, and precipitation, suggesting
an overall drying of the WAM system. This is accompanied by an increase in 2m
temperature and lower pressure in the SHL. Additionally, a consistent southward shift
of the northern WAM features (ITD, SHL boundary, and AE]) is observed, while the
southern features (precipitation center and TE]) remain at their latitudes. The strengths
of the jets as well as low- and mid-level cloud cover are barely affected.
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Figure 4.5a (i. e. the 1st and 3rd column from the left) shows the corresponding results
on a horizontal map. Increasing entrorg reduces precipitation north and south of the rain
belt, as expected from Fig. 4.3, but surprisingly slightly increases precipitation within
a narrow strip through the rain belt (Fig. 4.5al). This increase may be attributed to
rainfall becoming concentrated in regions where ambient conditions are most favorable,
while higher entrainment suppresses precipitation in more marginal areas. It is also
possible that the southward shift of the AE] (Fig. 4.3) alters the distribution of low-level
wind shear, which plays a crucial role in convective organization [22]. Despite the local
precipitation increase, high clouds decrease across the entire domain by up to 25%
(Fig. 4.5a6), though less so over the rain belt, where they climatologically maximize
(Fig. 4.4.6). This suggests that weaker convective systems are suppressed, and rainfall
is generated more efficiently by fewer, more intense systems. A higher entrorg also
results in an increase in mid-level clouds in the southeastern parts of the domain
(Fig. 4.5a7), while oceanic and western land areas show a slight decrease. Given
that entrainment reduces convective instability, it is plausible that clouds are retained
at mid-levels in marginally unstable regions, though the exact mechanisms behind
the spatial distribution remain unclear. Regarding low-level cloud cover (Fig. 4.5a8),
increased entrainment leads to a widespread reduction over the Sahel, suggesting that
the northern edge of the low-cloud zone over southern West Africa (see Fig. 4.4.8)
retreats southward, while cloud cover over the ocean and coastal areas increases. This
shift may be linked to the overall southward displacement of several WAM features,
as shown in Fig. 4.3. The high sensitivity of high-level clouds largely determines the
signal in total cloud cover (not shown).

The column-integrated water vapor (Fig. 4.5a5) decreases in and around regions
with reduced precipitation and increases (or remains unchanged) in wetter regions,
particularly in the southeast, where an increase in mid-level clouds is also observed
(Fig. 4.5a7). Over the Sahara, drying is also pronounced at the surface (2m dew point,
Fig. 4.5a3) but less so farther south. The decrease may be a result of reduced rainfall
and evaporation, coupled with a southward-shifted monsoon circulation. Conversely,
the slight increase in water vapor over the rain belt is likely a direct consequence of
enhanced rainfall. The overall reduction in cloud cover, precipitation, and evaporation
leads to surface warming across nearly the entire land area of the domain (Fig. 4.5a2),
which is associated with a lower MSLP due to thermal expansion (Fig. 4.5a4). The
maximum MSLP reduction occurs south of the climatological SHL center (Fig. 4.4.4),
contributing to a southward shift. Additionally, altered temperature advection linked
to the southward shift of the ITD (see Fig. 4.3) may also play a role.

As already noted in the discussion of Fig. 4.3, the sensitivity of the zonal jets to
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entrorg is relatively weak. The most systematic response is a clear southward shift
in zonal wind at 600 hPa (Fig. 4.5a9), with a decrease of several ms~! south of the
climatological axis (Fig. 4.4.9). In the meridional direction (Fig. 4.5all), an overall
strengthening of the climatological northerlies is observed (Fig. 4.4.11), suggesting
a stronger shallow monsoon circulation, consistent with the more pronounced SHL
(Fig. 4.5a4). At the TE] level (200 hPa), the broad climatological easterlies (Fig. 4.4.10)
are slightly weakened by higher entrainment, except in the southeastern corner of the
domain (Fig. 4.5a10). In the meridional direction (Fig. 4.5a12), the reduction in rainfall
over the Guinea Coast is associated with a weakening of the northerly divergent outflow
toward the equatorial Atlantic (Fig. 4.4.12), which likely contributes to a weaker TE] in
the west [74]. At the same time, the outflow into the Northern Hemisphere is slightly
enhanced, shifting the relative importance of the two deep monsoonal overturning
cells. Given the substantial decrease in high-level cloud cover (Fig. 4.5a6), it is also
plausible that radiative cooling in the upper troposphere increases [126], which would
contribute to a weaker monsoon cell, consistent with a Gill-type circulation response to
reduced off-equatorial heating [38].

Comparing the effect of increased entrainment with that of a higher terminal fall velocity
of ice, several similarities emerge, despite the fundamentally different microphysical
processes involved. Regarding the overall effects presented in Fig. 4.3 (first two
columns), most signals are consistent in sign and, in many cases, in magnitude. The
most notable differences include a northward shift of the TE] with increasing zvz0i, a
weaker impact on SHL strength, a decrease in mid-level clouds, and a smaller effect on
the 2m dew point. Examining the corresponding horizontal distributions (2nd and 4th
columns in Fig. 4.5), a striking similarity in spatial patterns is evident, albeit with some
differences in magnitude. For instance, the signal in high-level cloud cover (Fig. 4.5b6)
is stronger, as it is directly influenced by ice particles, while the effects on surface
temperature, dew point, MSLP, and low-level cloud cover (Figs. 4.5b2, b3, b4, b8) are
weaker, as these are predominantly indirect responses. The most striking difference is
the absence of an anomalous response in the southeastern part of the domain. Here, the
effects of higher zvz0i align more closely with those observed elsewhere, i. e. implying
fewer mid-level clouds (due to faster dissipation), reduced column-integrated water
vapor, and a weaker or unchanged TE] (Figs. 4.5b5, b7, b10). Other circulation-related
changes are almost identical (compare Figs. 4.5a9, all, al2 with Figs. 4.5b9, b11, b12).
The impact of a higher zvz0i on precipitation closely resembles that of entrorg, but with
a lower amplitude.
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Below-cloud parameters

The investigated below-cloud parameters, namely the relative humidity threshold
for the onset of evaporation (rhebc_land_trop) and the convective area fraction used
for computing evaporation (rcucov_trop), affect cloudy areas only. Consequently, their
effects outside the rain belt are largely indirect. Their impact on almost all Qols (Figs. 4.2,
green-colored bars, and Fig. 4.3) and meteorological fields (Fig. 4.6) is considerably
smaller compared to the deep-cloud parameters discussed in the previous subsection.
Increased evaporation leads to cooler subcloud layers, which results in greater negative
buoyancy and enhanced lateral acceleration relative to adjacent grid cells, resembling
intensified cold pools. However, given the 13 km grid spacing used in the simulations,
this process — particularly the triggering of new storms by cold pools — may not be
fully resolved. Therefore, the findings provide only limited insights into the actual
role of cold pools in the monsoon system and the potential benefits of a cold pool
parameterization.

The most prominent signals in Fig. 4.2 are those for low-level cloud cover and
precipitation latitude (both rhebc_land_trop), followed by precipitation amount, TE]J
speed, SHL latitude and intensity (all rhebc_land_trop) and, to a lesser extent, AE]
speed (rcucov_trop). Examining the dependencies of the Qols in Fig. 4.3 reveals
that allowing evaporation at higher relative humidity in the model (i. e. increasing
rhebc_land_trop) suppresses precipitation and induces a slight southward shift of the
rain belt. This shift is driven by a precipitation decrease over the Sahel (Fig. 4.6¢c1),
where cloud bases are higher and subcloud relative humidity is climatologically near
the threshold. At the same time, MSLP increases across the northern and central parts
of the domain (Fig. 4.6c4), which is associated with a weakening and slight northward
shift of the SHL (Fig. 4.3). The increase in subcloud evaporation also corresponds
to slightly more low-level clouds over inland areas south of the Sahara (Fig. 4.6c8),
whereas 2 m temperature and dew point remain largely unchanged (Fig. 4.6c2 and c3).
The small temperature response near the surface could result from reduced surface
evaporation due to lower rainfall and soil moisture, which might compensate for the
reduced radiative heating from increased low-level clouds and the enhanced subcloud
evaporative cooling. Additionally, changes in temperature advection associated with
the weaker SHL may also contribute. Interestingly, increasing rhebc_land_trop also
influences column-integrated water vapor (Fig. 4.6c5), but predominantly outside
the rain belt, particularly over the Gulf of Guinea and Mauritania. The increase in
moisture in these areas aligns with weaker overturning circulations due to suppressed
precipitation, possibly leading to a redistribution of atmospheric moisture. Some
indications of this can also be seen in the 200 hPa wind field, which exhibits a slight
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reduction in northerly outflow over Nigeria (Fig. 4.6c12) and a weakening of the TE]
(Fig. 4.6¢5). Other fields for rhebc_land_trop and all fields for rcucov_trop (Fig. 4.6d) show
no significant signals, consistent with Figs. 4.2 and 4.3.

Boundary-layer parameters

The effects of the scaling factor for minimum vertical diffusion of heat and moisture
(tkhmin) and the surface area density of the evaporative soil surface (c_soil) are less
pronounced compared to those of the deep-cloud parameters. The strongest sensitivities
are observed for near-surface Qols, including low-level cloud cover, 2m temperature,
and 2m dew point, as well as for integrated quantities such as column-integrated water
vapor and precipitation (Fig. 4.2, brown-colored bars).

For higher values of tkhmin, moisture is transported more efficiently upward, resulting
in an increase in column-integrated water vapor across most of the domain (Fig. 4.7e5),
as also evident in Fig. 4.3. This enhanced vertical moisture transport leads to an
increase in high clouds in various regions (Fig. 4.7e6), while mid- and low-level cloud
cover remain largely unchanged. The stronger vertical transport of moisture from
the surface also enhances evaporation, which is reflected in lower 2m dew points
over the Sahel (Fig. 4.7€10). The impact on 2m temperature (Fig. 4.7e2) is minimal,
except for an increase over the Sahara, where longwave warming due to higher column
moisture and/or the mixing of warm air from above the boundary layer inversion may
contribute. The enhanced vertical exchange of moisture leads to a slight increase in
accumulated precipitation (Fig. 4.3), though this effect is not clearly visible in the spatial
field (Fig. 4.7el). Similarly, MSLP exhibits a slight strengthening of the SHL (Fig. 4.3),
yet the spatial field shows little signal (Fig. 4.7e4). Other fields are only marginally
affected or remain unchanged by tkhmin.

In contrast, c_soil directly enhances surface evaporation, resulting in a significant
increase in 2 m dew point (Fig. 4.7f3) and a decrease in 2 m temperature (Fig. 4.7f2) over
nearly all land areas. This effect is also clearly evident in the overall dependencies shown
in Fig. 4.3. Column-integrated water vapor (Fig. 4.7f5) also increases, particularly north
and south of the rain belt, where enhanced precipitation (Fig. 4.7f1, see also Fig. 4.3)
likely removes some of the additional moisture. This increase in precipitation is also
accompanied by a slight enhancement of high-level clouds (Fig. 4.7f6). As increased
surface latent heat fluxes over land areas moisten the boundary layer, low-level cloud
cover rises over the southern parts of West Africa (Fig. 4.7f8), which may further
intensify near-surface cooling. This cooling, in turn, leads to an increase in MSLP
(Fig. 4.7t4), contributing to a weakening of the SHL and a northward shift of both the
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SHL and ITD (Fig. 4.3). Since an increase in c_soil promotes stronger convection and
enhanced precipitation (Fig. 4.3), i. e. an overall strengthening of the WAM system, the
200 hPa outflow from the rain belt to the south is intensified (Fig. 4.7f12), leading to an
acceleration of the TE] (Fig. 4.7f10). In contrast, the AEJ remains only weakly affected.

Summary of parameter impacts

Although the magnitude of the impact of individual model parameters varies consid-
erably, most parameters exhibit distinct effects on multiple aspects of the system. These
effects are schematically illustrated for the four most influential parameters in Fig. 4.9.
The key findings can be summarized as follows:

* The entrainment rate (enfrorg) and terminal fall velocity of ice (zvz0i) exert the
strongest influence on the WAM system (see Fig. 4.9a). Higher values of these
parameters reduce cloud cover and precipitation, particularly north and south
of the rain belt across West Africa. However, for entrorg, precipitation increases
along a narrow strip within the rain belt, likely benefiting from suppressed rainfall
in adjacent areas. Larger values of both parameters contribute to a stronger SHL,
characterized by warmer and drier conditions over the Sahara, as well as a stronger
shallow overturning circulation. This is accompanied by a southward shift of the
ITD and AE]J, while the TE] weakens.

® The parameters rhebc_land_trop and rcucov_trop regulate evaporation below the
cloud base in the tropics and have a weaker overall impact on the WAM. Increasing
rhebc_land_trop (Fig. 4.9b) leads to reduced precipitation and increased low-level
cloud cover. This appears to weaken monsoon overturning, as reflected by a
weaker SHL and moister atmospheric columns in subsidence regions over the
northwestern Sahara and the Gulf of Guinea, though its effects on the AE] and
TEJ are minimal. Changing rcucov_trop has only marginal effects.

* The scaling factor for vertical diffusion of heat and moisture (tkhmin) influences
moisture exchange between the boundary layer and the free troposphere. Increas-
ing this parameter leads to higher column-integrated water vapor and more
high- and mid-level clouds, though precipitation remains largely unchanged.
The evaporative soil surface (c_soil) also increases column-integrated water vapor
and cloud cover, but primarily enhances low-level clouds, resulting in a small
precipitation increase along the southern side of the rain belt (see Fig. 4.9c).
Near-surface temperatures decrease due to enhanced evaporation, while 2m dew
point temperature and MSLP increase, shifting the SHL northward. The impacts
of both tkhmin and c_soil on the AE] and TEJ are minor.
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Figure 4.9: Illustration of the qualitative effects on the WAM system due to an increase in respective model
parameters with the strongest impacts.
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4.5 Multi-objective optimization for parameter
identification

In this section, the methods introduced in Section 3.2 are applied to determine optimal
model parameters, optimizing either meteorological fields or scalar Qols using the
surrogate models obtained in Section 4.3. These methods provide insight into the
sensitivity of optimization results to variations in weights assigned to individual
objectives when formulating a reduced single-objective optimization problem from
multiple objectives. To better interpret the optimization results and place them in
a broader context, it is first necessary to identify the meteorological changes being
targeted. For this purpose, a detailed comparison is conducted between ICON
simulation results and reference data, against which the ICON model is optimized.

451 Comparison of ICON output to the reference data

Notable discrepancies between the ICON model output and the reference data (GPM
IMERG and ERAS5) are examined to identify constraints and opportunities for the
optimization process. In Fig. 4.3, alongside the dependencies of Qols describing the
ICON model output, the triangles on the left indicate the reference values that serve
as optimization targets. Additionally, Fig. 4.10 presents the differences between the
ICON model output, using default model parameters, and the reference data fields
(see Section 4.2.1) for each considered meteorological field. The following discussion
focuses on the most critical variables, determined by the assigned weights (Table 4.6).

With respect to precipitation, the domain-mean rainfall in ICON simulations is
approximately 10 % lower than observed in GPM IMERG data (Fig. 4.3, first row).
ICON underestimates rainfall in coastal regions (southwestern West Africa, Niger
Delta) and mountainous areas (Guinea Highlands, Cameroon Line) as well as over
the Sahara, while exhibiting a slight overestimation in central West Africa (Fig. 4.10.1).
This overestimation results in a small northward shift of the precipitation center
(Fig. 4.3, seventh row). The underestimation in coastal and mountainous regions
suggests that the model struggles to capture rain enhancement due to topographic
features. The northward shift of the precipitation center may be linked to the use
of convection parameterization in the ICON simulations. Knirrka, KNipPERTZ, and
Fink [63] demonstrated that models employing parameterized convection tend to
misrepresent the northward migration of the rain belt, leading to reduced rainfall in
the Sahel. A follow-up study by Knirrka et al. [64] found that total rainfall from ICON
simulations with parameterized convection is largely consistent with station data in
southern West Africa, whereas GPM IMERG data show a negative bias relative to
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the stations, highlighting uncertainties in the observational reference. Overall, these
findings leave open the question of whether adjusting model parameters can resolve
the rainfall deficiencies or whether improvements in topographic representation are
the primary requirement.

The dominant pattern in the MSLP differences between ICON and ERAS5 is a zonal
dipole, with slightly higher pressure in the east and lower pressure in the northwest of
the domain (Fig. 4.10.4). This results in a deeper SHL in ICON (Fig. 4.3). The pressure
pattern is strongly correlated with 2m temperature, where higher pressure values
correspond to lower surface temperatures (Fig. 4.10.2). At the same time, ICON exhibits
lower 2m dew point values, except for a region near the Algeria-Mali-Niger border
(Fig. 4.10.3), though this has little effect on the mean ITD latitude (Fig. 4.3). Despite
this, ICON simulates higher column-integrated water vapor across most of West Africa
(Fig. 4.10.5) and on average (Fig. 4.3), suggesting differences in the vertical distribution
of water vapor between ICON and ERAS5.

This is partially reflected in cloud cover differences at low, mid, and high levels.
Regarding low-level cloud cover, ICON simulations exhibit a pronounced positive bias
across nearly the entire rain belt relative to ERA5 reanalysis, with a minor negative bias
over the equatorial Atlantic Ocean (Fig. 4.10.8). This suggests a northward extension of
the low-level cloud belt in ICON. The domain-averaged low-level cloud cover in ICON
reaches 30 %, significantly exceeding the 25% in ERA5 data (Fig. 4.3). Such a large
discrepancy is somewhat unexpected, as it is primarily accompanied by lower 2m dew
point temperatures, indicating lower absolute humidity. This suggests that calibrating
the model using the selected uncertain parameters will not be straightforward, as
achieving agreement with observations would likely require complex interactions
within the WAM system.

Accurately representing low-level cloud cover has been identified as a major challenge
in previous studies, with significant discrepancies observed between various models
and observational data [45, 64]. Knirrka et al. [64] demonstrated that low-level cloud
cover in ICON with parameterized convection deviates by only 2 % from station data,
raising questions about the reliability of ERA5 cloud estimates. Mid-level clouds are
mostly enhanced in ICON over the rain belt area but reduced elsewhere (Fig. 4.10.7).
In contrast, high-level clouds are generally less widespread in ICON, except for specific
regions in Mali and Niger (Fig. 4.10.6). This partially contradicts the findings of Knirrka,
KnipperTZ, and Fink [63], who reported an overestimation of high-level clouds in ICON.

Moderate differences are also observed in the circulation patterns. The AE] is
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Figure 4.11: Desired adjustments of WAM characteristics based on the default ICON model output to better
approximate reference data. See Fig. 4.10c for quantitative maps.

slightly stronger in ICON, whereas the TE] is weaker and shifted southward (Fig. 4.3).
The horizontal distribution of differences between ERA5 and ICON reveals that the
subtropical jet is also displaced southward in ICON (Fig. 4.10.10), while differences in
zonal wind at 600 hPa remain relatively small (Fig. 4.10.9). Finally, meridional wind
fields exhibit only moderate differences, characterized by a fairly patchy pattern at both
600 hPa and 200 hPa (Figs. 4.10.11 and 12).

For a clearer overview, Fig. 4.11 summarizes the necessary adjustments in WAM charac-
teristics in ICON simulations to improve agreement with reference data. Precipitation
should increase overall, particularly in mountainous regions near the Atlantic coast.
The SHL should weaken and shift northward. Cloud cover should decrease at low and
mid levels, while high-level cloud cover should increase south of the rain belt. 2m
temperature and 2 m dew point temperature should increase on average over southern
West Africa. The TE] should be slightly strengthened, while the AE] should remain
unchanged.

4.5.2 Optimization objectives

As a first step, separate objective functions for the Qols and meteorological fields are
defined with respect to the model parameters u in the i. i. d. uniform input space. These
objective functions are formulated such that their minimization leads to an improvement
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in the considered meteorological variables relative to the reference data. For the Qols,
the goal is to adjust the model parameters so that the Qol values describing the ICON
model output closely match the Qol values from the reference data, as represented
by the triangles in Fig. 4.3. For the meteorological fields, the objective is to modify
the parameters such that the differences illustrated in Fig. 4.10 are minimized, ideally
canceling out the deviations as much as possible, leading to a white image.

The individual objective functions for the Qols fgorj(u) and meteorological fields
field,j(u) are formulated as the square errors between the surrogate model and the
reference data

faor,j() = (fgor,j(0) = Yretj)* (j=1...15),
50 60

frield,j(w) = ZZ(M“(u) Mref])2 (j=1...12),

k=1 I=1

where, for the meteorological fields, the average over all 50x60 grid points is considered.

The aim of this study is to solve a MOO problem involving 15 Qols or 12 meteorological
field objectives. Given the complexity of the high-dimensional objective space,
identifying Pareto fronts is considered impractical due to the substantial computational
resources required and the challenges in interpreting the results. To address this, the
MOO problem is simplified by reducing it to multiple single-objective optimization
problems, a common approach in meteorological literature [10]. The reduced objectives
are formulated by combining components of the original MOO problem. By applying a
weighted sum approach, a relative importance is assigned to each individual objective,
ensuring a structured and computationally feasible optimization process.

The total reduced objective functions using the Qols and the meteorological fields
are defined as

=

5

WQol,j
faor(u) = Z  foo (),
j=1 L
O Whicld
ield,j
ffield(u) ffleld ](u)
o1 Cfield ]

where wqor,j and Woutput,j are the weights for the individual objectives that have to be
specified in advance.
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Table 4.6: Default weight configuration wy of the objectives in MOO, including the spread for the weight
uncertainty method in MOO.

j ﬁmeelf([)ljili?]glcal weight range Qol [unit] j
| 1
‘ o average
accu.m.ulafced ‘ 10 £ 50 % [mm rgno‘l] 1
1  precipitation 10+50% | ter latitud
[mmmo™] L 01£50% e ande g
| [*N]
2 [21211 temperature 5, 50% | 5+50% average! [K] 3
3 2m dew point 54 50% 3 5+50% averagel [K] 4
temperature [K] . 0.1+50% ITD latitude [°’N] 5
. 5+50% SHL pressure [Pa] 6
4  MSLP [Pa 5+50%
[Pa] ' 01+50% S;HL boundary -
| [°NI
column- |
5 integrated water 5+50% ! 5+50%  average' [kgm™2] 8
vapor [kg m~2] !
6 h1gh—1e0v el cloud 1+50% 1+ 50 % avelragel [%] 9
cover [%] !
7 mld—lezfel cloud 1+50% 1+ 50 % averagel [%] 10
cover [%] 1
g low-level cloud 3£50% | 3+50%  average! [%] 11
cover [%] 1
Wi . 01+50% AFEJspeed [ms™'] 12
9 uwgd at600hPa o 500 J p. [ ]
[ms™] ' 0.1£50%  AFJ latitude [°’N] 13
Wi . 01+50% TE d[ms™'] 14
10 U w1_r}d at 200 hPa 0.1+50% | ] Spée [ms™]
[ms™] ' 0.1+50% TEJ latitude [°’N] 15
1 V—Wl_l}d at 600 hPa 01+50% | ) ) )
[ms™] !
12 V-Wl_l‘}d at 200 hPa 01+50% | ) ) }
[ms™] !

average value over all grid points of the study domain (15°W to 15°E, 0°N to 25°N)

1
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The considered Qols and meteorological fields, along with the default weight combi-
nation wy, are presented in Table 4.6. Precipitation is assigned the highest importance,
reflecting its pivotal role in the WAM system and its relevance for user applications.
Temperature, dew point temperature, pressure, and column-integrated water vapor
are assigned secondary importance, as they are essential meteorological variables but
remain subordinate to precipitation. Cloud cover is given a lower weight, with greater
emphasis on low-level clouds. Finally, wind speeds receive the smallest weights but are
still considered, ensuring that all quantities contribute to the optimization, with some
acting more strongly while others serve as a form of regularization.

To ensure that variable weighting is meaningful and significant, the meteorological
variables are normalized based on their variability. For this purpose, the standard
deviations 0qo,j of Qols y;j(i = 1...60) and Goutput,j of meteorological fields M:‘jl(i =
1...60,k=1...50,1 =1...60) are used. It should be noted that other normalization
methods are conceivable, which could, in turn, influence the weighting. This further
highlights the issue with selecting fixed weights, thus motivating an investigation into
the impact of different weights in this study.

Investigations in previous chapters have shown that three of the considered model
parameters — namely the entrainment rate, the terminal fall speed of ice crystals,
and the soil moisture evaporation fraction — exert a substantially stronger impact on
the considered meteorological variables compared to the other three parameters (see
Section 4.4.1, 4.4.2). Optimizing parameters with little or no impact on the objectives
would not yield meaningful results. In particular, optimal values might be found at
the boundaries of the allowed parameter range, despite having no notable effect on
the objectives, a phenomenon that could be referred to as over-tuning. To avoid this
issue, the optimization studies are restricted to the three parameters with the strongest
influence on the considered meteorological variables. This approach also simplifies
the interpretation of results by reducing the risk of over-tuning and ensuring that the
parameter space remains more tractable. In the employed surrogate models, the other
three parameters — which are not investigated here — are set to their default values.
The parameter boundaries in the optimization process are set at the 1% and 99 %
levels of the respective CDFs. These limits are considered appropriate to maintain the
physical plausibility of the parameter values while accounting for the reduced accuracy
of surrogate models at the distribution tails, where the training point density is lower.

For both cases — the consideration of Qols and meteorological fields — both optimization

strategies proposed in Section 3.2 are applied. The sample size is chosen to balance
result integrity and computational efficiency. For the weight uncertainty method, a total
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of 1000 samples is generated using MC simulation. In contrast, for the weight variation
method, a total of 15 incremental steps is applied to adjust the weight of each objective.
All optimization problems are solved using the SciPy package for Python, employing
the Nelder-Mead method [137], which is well-suited because the objective function
is treated as a black box, may be noisy, and has no directly available derivative with
respect to the model parameters.

4.5.3 Optimization results

First, the optimization results based on Qols are presented, followed by the consideration
of meteorological fields. In both cases, the weight uncertainty method is applied first,
followed by the weight variation method, to assess the impact of objective weighting
on the optimal model parameters. The optimization yields results for uniform model
parameters, which are then transformed back to the physical parameter space using
PIT (Section 3.1.1) for graphical visualization.

Optimization based on quantities of interest

Figure 4.12 presents histograms of the three optimized model parameters obtained
using the weight uncertainty method based on the Qols. For reference, the original
parameter PDFs are shown in light grey. For entrorg, the histogram collapses towards
optimal values near the lower boundary defined in the optimization process. This
result indicates that the optimization is primarily driven by the attempt to enhance
rainfall in ICON, aligning it more closely with the wetter GPM IMERG data. The most
effective way to achieve this is by reducing entrainment rates, pushing the optimal
values toward the lowest plausible level. However, given the potential influence of
topographic rainfall enhancement (see Section 4.5.1), this adjustment may improve
agreement with reference data but does not necessarily result in a physically more
realistic model configuration. In contrast, the other two parameters, zvz0i and c_soil,
tend to converge toward values near the means of their original PDFs. Specifically,
zoz0i is narrowly clustered slightly above its mean (~ 1.7 ms™!), whereas ¢_soil is more
broadly distributed slightly below its mean (~ 0.8). This suggests that the default
settings for these two parameters already provide a relatively balanced configuration
for the considered system. The pronounced histogram peaks for entrorg and zvz0i
indicate a relative insensitivity to weight variations. This is further supported by the
GSA results (Section 4.4.1), where most Qols exhibited strong sensitivity to these two
parameters, implying that even small adjustments would significantly impact most Qols.

Figure 4.13 presents histograms of the optimized Qols, corresponding to the optimized
parameters shown in Fig. 4.12. Horizontal lines indicate the values obtained from
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Figure 4.12: Histograms of optimal model parameters resulting from MC simulations using the weights from
Table 4.6 for optimizing Qols.

ICON simulations using default model parameters (solid) and reference data (dashed),
corresponding to the triangles in Fig. 4.3. In general, Qols with larger weights (Table 4.6)
exhibit stronger shifts from their default values toward the reference values. The strong
weighting for precipitation leads to an approximately 30 % improvement relative to
GPM IMERG data. Similarly, 2m dew point temperature and MSLP show significant
improvements relative to ERA5 data, owing to their medium weights. However,
column-integrated water vapor and 2m temperature deteriorate, highlighting an
inevitable trade-off in MOO when aiming for an overall optimum. The underlying cause
of these changes is evident, as only the entrainment rate is significantly adjusted, and
decreasing this parameter leads to increased precipitation, reduced 2 m temperature,
higher 2m dew point, a weaker SHL, and more column-integrated water vapor
(see Fig. 4.3). Regarding cloud cover, only mid-level cloud cover exhibits a notable
improvement, attributed to the slightly increased fall velocity of ice (Fig. 4.3). In contrast,
low- and high-level cloud cover show no substantial improvement, primarily due to their
lower weighting. As discussed in Section 4.5.1, accurately capturing low-level cloud
cover remains a persistent challenge for both models and measurements, with none of
the considered model parameters or their combinations yielding a fully satisfactory
solution. This is further illustrated in Fig. 4.3, where for certain Qols, such as low-level
cloud cover, no parameter combination leads to alighment with the reference data.
Additionally, Qols with even lower weights exhibit diverse changes through the
optimization process, including deterioration relative to the reference values (e.g.,
ITD latitude, AE] and TE] speeds and latitudes). This phenomenon illustrates that
enhancing certain Qols often compromises others, a characteristic indicative of results
located on Pareto fronts. The inability to simultaneously optimize all Qols to match
reference data suggests potential physical inconsistencies either in the reference datasets
or within the ICON model itself. The notable degradation of certain low-weighted Qols
further highlights the potential risk of overfitting to highly weighted Qols.
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Figure 4.14 presents the optimal model parameters for varied weights, where each
data point represents a single-objective optimization result. The optimal parameters
generally align with those in Fig. 4.12. However, substantial variations in the optimal
parameters are observed for several Qols when weights are adjusted. In some cases,
despite clear overall trends, minor oscillations or jumps occur. These fluctuations
are likely due to factors inherent in the optimization process, such as tolerances and
numerical considerations, but could also indicate the existence of multiple local minima.
Given the extensive methodology, which involves numerous separate optimization runs,
a global optimization approach is considered computationally infeasible. However,
these variations do not compromise the validity of the results, as the dominant trends
remain well-defined. For high-weighted low-level cloud cover, significant parameter
adjustments are observed, specifically higher entrainment rates and fall velocities of
ice. This correlates with the substantially lower reference values of low-level clouds
shown in Fig. 4.3. However, despite these adjustments, the achievable values for
low-level cloud cover still deviate significantly from the reference values. As discussed
in Section 4.5.1, enforcing an optimal match for this quantity remains challenging. For
higher weights assigned to 2 m dew point temperature and accumulated precipitation,
higher values of c_soil are preferred, as increased surface latent heat fluxes consistently
lead to higher dew points. These findings are supported by Fig. 4.3, where higher c_soil
values result in Qol values approaching the reference values. Regarding the considered
latitudes, entrorg exhibits the strongest influence (see Fig. 4.3). Higher weights assigned
to latitudes generally lead to larger optimal entrainment rates, which compress the
latitudes and make the WAM system narrower, aligning it more closely with ERA5
reanalysis data. The relatively unpredictable changes in c_soil, which occasionally
contradict expected trends based on the reference data in Fig. 4.3, can be attributed to
its weaker influence compared to the other two parameters. As a result, the optimal
parameters are predominantly determined by entrorg and zvz0i, with c_soil adjusting
accordingly.
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Figure 4.13: Histograms of Qols corresponding to optimal model parameters (Fig. 4.12) obtained using the
weights from Table 4.6 for optimizing Qols. Horizontal lines indicate the values for ICON simulations with
default model parameters (solid lines) and reference data (ERA5 and GPM IMERG; dashed lines).
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Figure 4.14: Optimal model parameters resulting from MOO. The weights (relative importance) for individual
Qols are successively increased, while the weights for all other Qols are specified based on their default
values according to Table 4.6, ensuring a total sum of 100 %. A separate optimization problem is solved for
each Qol and weight combination.
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Optimization based on meteorological fields

In contrast to the previous section, this optimization is based on meteorological
fields. Figure 4.15 presents histograms of the optimized model parameters obtained
using the weight uncertainty method. The optimized parameters generally cluster near
their default values, with slightly lower values for entrorg, slightly higher values for
zvz0i, and lower values for c_soil. This suggests that the default parameter settings
already provide a reasonable balance across all output variables for the specified time
period and region, given the weight ranges from Table 4.6. The parameter values for
entrorg and zvz0i exhibit greater concentration compared to c_soil, further highlighting
their stronger influence on meteorological variables. This is supported by the larger
magnitudes in the spatial variability fields (compare Fig. 4.5 with Figs. 4.6, 4.7). These
variability fields, when compared with the target difference fields (Fig. 4.10), provide
insights into whether modifying individual model parameters can achieve the desired
changes in specific meteorological variables. For several variables, the spatial patterns
of the spatial variability fields and the target difference fields differ significantly,
particularly for precipitation, column-integrated water vapor, 2m temperature, 2m
dew point temperature, MSLP, and, to a lesser extent, wind speeds. This suggests that
adjusting model parameters alone would not lead to an overall improvement across
the entire domain. For precipitation, parameter modifications primarily induce zonally
oriented changes (Figs. 4.5a1, b1; 4.7f1), which do not align with the target differences,
particularly over mountainous regions such as the Guinea Highlands and the Cameroon
Line. This discrepancy is likely linked to the representation of convection, which
is parameterized rather than explicitly resolved. While parameterized convection
can yield realistic rainfall amounts — for example, over the DACCIWA region, as
demonstrated by Knirrka, Knrprertz, and Fink [63] — it still exhibits notable spatial
discrepancies (Fig. 4.10.1). Additionally, the model’s spatial resolution may struggle to
capture complex topography and coastal dynamics. These discrepancies underscore
the need for alternative approaches, such as increasing model resolution in simulations
and improving physical representations within the model.

While the spatial variability fields for certain parameters exhibit some correlation
with the target difference fields, the potential for achieving a combined optimal
state across all variables remains limited. This limitation arises when the desired
changes across multiple variables do not align with the directions of change induced
by parameter adjustments. A notable example of this effect is 2m temperature and
2m dew point temperature. Increasing c_soil enhances evaporation, leading to lower
low-level temperatures and higher dew point temperatures (see Fig. 4.3, opposite sign).
However, since the differences between ICON and ERAS5 are predominantly of the
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Figure 4.15: Histograms of optimal model parameters resulting from MC simulations using the weights from
Table 4.6 for optimizing meteorological fields.

same sign (Fig. 4.10.2 and 3), adjusting c_soil cannot resolve this discrepancy. Thus,
modifying the three selected parameters alone is insufficient for reducing the regional
discrepancies between the ICON model outputs and the reference data.

Figure 4.16 presents the optimized parameters when varying the weights assigned
to the meteorological variables, analogous to Fig. 4.14 for the Qol optimization. A
notable difference compared to the Qol optimization is the increase in the optimal
entrainment rate when higher weights are assigned to precipitation and high-level
clouds. This suggests that a higher entrainment rate can more effectively address
regional changes in these variables but not necessarily improve the domain-average
values. For precipitation, in particular, the increase over the Guinea Highlands and the
decrease over the eastern Gulf of Guinea under higher entrainment rates are dominant
effects (Fig. 4.5a1), which guide the optimization towards the reference data (Fig. 4.10.1).
Other dependencies of the optimal model parameters on assigned weights, as well as
discrepancies between the two optimization strategies, provide valuable insights for
model developers to refine parameter definitions or to better understand their effects.
However, these findings should be interpreted with caution, given the limited domain
and parameter set considered in this study.
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Figure 4.16: Optimal model parameters resulting from MOO. The weights (relative importance) (relative
importance) for individual meteorological fields are successively increased, while weights for all other
meteorological fields are specified based on their default values according to Table 4.6, ensuring a total sum
of 100 %. A separate optimization problem is solved for each meteorological field and weight combination.
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5 Conclusions

This section first summarizes the key findings of the study. It then discusses limitations
and perspectives, providing a foundation for future research and further investigations.

51 Summary

The aim of this study was to develop surrogate models as cost-effective alternatives
to represent the characteristics of the WAM system during boreal summer, simulated
using the ICON model. These surrogate models were designed to explore how model
parameters contribute to uncertainties and to conduct parameter optimization studies
using reference data. To achieve these objectives, methods related to surrogate model-
ing, UQ, and optimization were carefully selected, with methodological improvements
made as needed for effectiveness. In particular, surrogate models using PCR and GPR
were constructed to represent meteorological fields and scalar Qols.

The investigations in this work lead to the following conclusions:

e In UQ, a comprehensive framework that combines space-filling designs in a
uniform input space with input space transformation in surrogate models has
proven to be an effective, streamlined, and accurate approach. This method
removes the need to set arbitrary bounds at the tails of PDFs in the parameter space.
Additionally, it aligns the density of training points with the PDF values, making
such methods more accurate in regions that are sampled more frequently, which
is particularly beneficial for applications like GSA. Overall, this method combines
the advantages of space-filling designs, such as LHS, which are particularly suited
for a unit uniform input space, with the benefits of considering the physical
input space — directly related to the computational model — when defining trend
functions that capture general physical tendencies.

¢ In MOO, variations in objective weights can significantly impact optimization
outcomes. In the meteorological study, parameters with high uncertainty contri-
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butions to outputs were less sensitive to changes in objective weights compared
to those with lower contributions. This finding highlights a potential risk:
parameters deemed less critical, with weaker effects on system outputs, may
respond strongly to weight variations. This increases the risk of overfitting,
especially in systems with uncertainties where unmodeled processes prevent any
parameter combination from fully matching reference data. While other studies
that aimed to reduce the multi-objective problem using similar weighted-sum
approaches typically relied on a fixed combination of weights — often assigning
equal weights to all variables — to keep the dimensionality manageable for both
computation and interpretation, the approach proposed in this work offers a more
flexible and generalized framework. By allowing for systematic weight variations,
it provides higher evidence for the optimization results.

In the meteorological context, the WAM system exemplifies a complex, interde-
pendent system where model parameters can have counterintuitive effects. Key
Qols are influenced by multiple parameters, reflecting the coupled relationships
within the WAM system. Three of the considered uncertain parameters strongly
influence WAM characteristics: the entrainment rate, terminal fall speed of ice
crystals and soil moisture evaporation fraction. In particular, an increase in the
first two — both directly affecting cloudy regions and convective processes — leads
to a substantial reduction in cloud cover and precipitation, except for a distinct
increase along a narrow strip in the center of the rain belt. Overall, these changes
contribute to warmer and drier conditions over the Sahara.

Results indicate that model parameters in the default setup are generally well-
calibrated, although optimal values are sensitive to the weighting of meteorologi-
cal variables in the optimization. For instance, a low entrainment rate improves
the representation of average WAM quantities, including increased rainfall, higher
2m dew points, and a weaker SHL. For meteorological fields, default parameters
provide a reasonable balance. In most cases, parameter changes alter patterns
without achieving desired spatial alignment with reference data, suggesting that
these parameters cannot fully account for spatial discrepancies. This indicates
that the underlying spatial mismatches likely originate from structural issues
within the model rather than parameterization choices. Furthermore, improving
accuracy for specific variables often compromises others.

Supported by an interactive tool, the findings provide meteorologists with
valuable insights for refining parameter specifications and improving model
performance. In the context of the WAM system, the use of PCR-based surrogates
to illustrate the variability of spatial fields offers a novel approach for analyzing
parameter impacts.



5.2 Limitations and Perspective

5.2 Limitations and Perspective

In this study, the analysis was based on climatological mean values over a four-year
period, disregarding interannual trends. While averaging over multiple years mitigates
the influence of year-to-year variability, some dependence on the selected years may still
persist. Consequently, the results do not represent instantaneous WAM characteristics
for a specific forecast time but instead provide insights into its mean state. For these
findings to contribute to improving daily weather predictions, further investigations
would be necessary, particularly focusing on individual forecasts and their diurnal
variability. This could include statistical analyses to assess the temporal and spatial
spread of forecast variables, providing deeper insights into short-term predictability
and potential forecast improvements.

Regarding the selected uncertain model parameters (Section 4.1.2), given the limited
information available in the literature, these definitions are rough estimates, and the
results should be interpreted with caution. Particularly, the results in GSA are directly
influenced by the parameter PDFs, where changes in PDF spread can significantly
impact the sensitivity indices.

The findings of this study suggest that the entrainment rate, ice fall speed, and
surface evaporation parameters have the stronges impact on monsoon characteristics
and therefore require more precise specification to further enhance model accuracy
in the considered region. This could be achieved through more and different types
of measurements, more comprehensive expert input or improvement of physical
representation of processes related to these parameters. Furthermore, this study has
shown that some parameters exert only a marginal influence on the considered system,
yet they were included in the entire surrogate modeling procedure. This suggests that,
for future studies, it may be advisable to first conduct one-at-a-time studies to assess
whether a parameter has a significant impact and should be included in the analysis
or whether the parameter space could be reduced to enhance computational efficiency
and focus on the most relevant parameters.

Additionally, only six model parameters were included in the parameter studies and only
the three parameters with strongest impact were considered for the optimization studies.
However, other parameters or processes may also contribute relevant uncertainties.
This limited selection risks overfitting, as the optimization may adjust model parameters
to values that improve alignment of the ICON model output with reference data, even
when discrepancies are caused by processes not captured by these parameters. The
limitation of the optimization to three parameters reduces the risk of overtuning the
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parameters with only weak impacts, however, it also increases the risk of mistuning the
parameters with strong impacts. Furthermore, results from parameter optimization
studies - even though parameters may have a similar effect in other parts of the
atmosphere - are specific to the West African region. Consequently, parameters
optimized for specific regions might be implemented in the weather model to be only
valid within those areas, similar to rhebc_land_trop and rcucov_trop, which are tuned for
tropical regions.

Results based on this version of the ICON model cannot necessarily be generalized to
other model versions or models, which may use different parameters in their parameter-
izations. Nevertheless, this study demonstrates the utility of the applied methodology,
including the training procedure and surrogate models. The methodology is adaptable
and can accommodate more parameters, with computational costs expected to increase
linearly with the number of parameters. Given the strong influence of the entrainment
rate and ice fall speed observed in this study, other deep-cloud-related parameters may
also be worthwhile to investigate, with cloud inhomogeneity being one particularly
interesting aspect for future studies.

Moreover, this study highlights the limitations of parameter tuning in meteorology,
particularly in regions influenced by factors like complex topography or coastal
dynamics. To further enhance model accuracy, alternative strategies should be explored,
such as increasing spatial resolution, refining physical process representations, or
adopting novel approaches like artificial intelligence for weather prediction and climate
projection [4].

From a methodological perspective, the study could be enhanced by reevaluating
the surrogate modeling methods and comparing alternative approaches. For instance,
rather than using separate models for meteorological fields and scalar Qols, a unified
framework could be developed. This could involve calculating Qols directly from
surrogate models for meteorological fields, though this approach would increase
computational demands, as each sample from the surrogate model would require
recalculating the Qols from the fields. Alternatively, to improve surrogate models
for field data by means of PCR, GPR could be applied to the PCA scores rather than
relying on linear (or transformed linear) models. Other surrogate modeling techniques,
such as polynomial chaos expansion, artificial neural networks, and support vector
regression, are less represented in meteorological literature but may offer valuable
insights, though they often require more training data and may lack uncertainty
quantification. Comparative studies between these approaches could highlight the
strengths and limitations of each method in specific contexts.
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The proposed methodology, which employs transformed input parameter spaces,
has demonstrated its relevance in the context of UQ. By increasing the density of
training points in regions of the input space associated with higher probabilities,
this approach aligns naturally with GSA, where more samples are drawn in regions
of high probability density. However, if the primary objective were to develop a
surrogate model with uniform accuracy across the entire parameter space — including
the tails of the probability distributions — a uniform training point density would be
more appropriate. In such a case, the choice of parameter space boundaries becomes
crucial, as probability distributions may not be strictly bounded. Setting overly wide
bounds would result in a large proportion of training points being drawn from the
distribution tails, reducing surrogate model accuracy in regions of high probability.
Conversely, choosing narrow bounds would confine the surrogate model to a limited
region, rendering it inapplicable beyond these bounds. A reasonable compromise is to
define the parameter space using the 30-bounds of the distributions. The framework
presented in this study addresses this decision challenge by transforming the input
space to a uniform distribution, thereby ensuring a systematic and adaptive approach
to training point allocation.

A natural extension of parameter optimization might be the use of Bayesian methods
to update prior distributions based on the optimized parameter values. However,
since the prior distributions in this study are only rough estimates without a solid
foundational basis, and since optimization inherently incorporates effects that may lead
to implausible values — such as over-tuning, incorrect tuning due to missing model
parameters or processes, or limitations imposed by the domain of the framework —
combining these datasets would not be appropriate. Instead, the focus should be on
analyzing the optimal parameter values identified for this specific case in comparison
to the assumed default parameter values and ranges, which are also utilized by the
DWD in their ensemble forecasts.

If, however, the prior parameter distributions were derived from well-founded knowl-
edge, and if the optimization results were obtained in a broader context — potentially
including a global atmospheric model with a sufficiently comprehensive representation
of parameters and processes — then one could assume that optimization-based tuning
would yield reliable and globally applicable results. In such a case, Bayesian updating
of prior probability distributions using optimization results could be a meaningful and
promising next step.

Considering multiple outputs for both Qols and meteorological fields, a useful extension
beyond separate models may be to employ comprehensive multi-output regression
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models. For scalar quantities, co-kriging is a common extension of GPR for handling
multiple outputs. Other multi-output regression methods, such as multi-output
support vector regression [150], have been shown to improve prediction accuracy when
outputs are correlated, though mainly in simple examples. In preliminary studies for
this work and a Master’s thesis [162], multi-output methods did not yield significant
accuracy improvements and were deemed computationally prohibitive due to their
high costs relative to the modest, if any, gains in accuracy.
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A Matrix identities

Derivatives of the elements of an inverse matrix:

M(x)

2 M) = -M() P

M(x)™!

Derivative of the log determinant of a positive definite symmetric matrix:

Sx TogIMe) = tr (Mo )

Cyclic permutation of matrices in the argument of a trace:

tr(M; My M3) = tr(My M3 M) = tr(M3 M; M»)

(A1)
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B  Gradient of the log marginal
likelihood for universal kriging

Hyperparameter optimization can be computationally intensive for high-dimensional
problems with a large number of training points. For simple kriging, the gradient of the
log marginal likelihood has been shown in Eq. 2.3. In the following, the derivation of
the gradient of the log marginal likelihood for universal kriging is carried out as shown
by Fiscrer and Prorpk [158], where suitable abbreviations for efficient computation are
introduced.

The log marginal likelihood for universal kriging, as shown by Rasmussen and WiLLiams
[113],is

n —2m log2m, (B.1)

11 1 1
logp(y|U, 0) = -5y "K'y + 5y" Cy - 5 log K| - ~ log|A| -

where A = HK'HT, C = K'THTA"'HK™! and m = rank(H").
Inserting A and C in B.1 results in

1o 1, R
logp(ylU, 0) = - 5y "K'y + 5y (K'HT(HK™'H')'"HK™') y

1 1 ey, N-—mM
2log|K| 2log|HK H'| > log2m
14 1 4
ST oy @tsy yne
1 1 n-—m
-5 log|K| - 5 log|Hy| - > log2m,
where a, y and 1 are defined as
a=K'ly=L(Ly), (B.2)
y=K'H" =L (Ly'H"), (B.3)
n=HK'H)'H=1L,"(L,"H) (B.4)
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B Gradient of the log marginal likelihood for universal kriging

with Lg = cholesky(K) and L, = cholesky(HK™'HT). Cholesky decomposition is
applied in order to efficiently determine the inverse.

Taking the derivative with respect to @ by the use of matrix identities in Appendix A
results in

d
20, log p(ylU, 0)

1 T _1&K
= yK Ik
2 20, = Y
1 19K T el - -
-5y (K Zo K TH(HKTHT) THK !y

oK
-1
K55

1 K
_ _yT K—lHT(HK—lHT)—lHK—la_K—l y
2 20,

1
+ EyT (K—lHT(HK—lHT)—lH —1HT(HK—1HT)—1HK—1) y

_1 18K _1 _ —1gyT)-1 —1‘9_K 1T
tr(K 891) 2’cr( (HK"'H')""HK &GIK H'|.

In the next step, symmetry and positive definiteness of K (by definition) and therefore
symmetry of K™! are taken into account. Furthermore, the matrix identity in Eq. A.1 is
used to simplify the result. With &, 1 and y, it follows

J
26, log p(y|U, 0)

_ 19K 1 coK 1 oc s - K
- 8610‘ 2 & S5 Yina 0"1)’ &9 S5 Ve

aTnTyT JK _1 _13K 1 _1&_K
any 391114 2‘r K 20, + tr ynK 20,

TTT&

a —a-—a T K a+a a—a TTT&—Ka
90, 90, S5 V1 ny 20, ! ny 90,

JK 1
— -17* hl -17
tr (K 861) + 2tr (ynK 861)

5 ((zxaT —ynaa” +ynaa’n yT —aa"nTyT -K + ynK‘l)

|

|
-
=

JK
0,
The abbreviations p = aa’, ¢ = yn and & = ¢p are introduced. It follows

889 logp(yIU, 0) = %ff((P—é—fSW&sW(e DK™ aK)

a9
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B Gradient of the log marginal likelihood for universal kriging

Using the Einstein summation convention, the following calculation steps are required
to determine the derivative of the log marginal likelihood given &, y and n from Eq. B.2,
Eq. B.3 and Eq. B.4:

pij = aia;,
€ij = YikMkj
il = €ij pji
2 logp(ylU, 0)
00,
= % ((Pij = &ij = &ji + Eim€jm + (€im — 6im)[K_l]m]-) &;LQ];) (B.5)

with Kronecker delta 6;,,.

The complexity of the computation of the gradient of the log marginal likelihood (Eq. 2.3
and Eq. B.5) is dominated by the inverse of matrix K which is of the computational
complexity O(n%). Once the inverse is determined, it can be used for the computation
of all hyperparameters 0;. In contrast, computation of the gradient of the log marginal
likelihood based on Eq. B.1, i.e. without using the gradient of matrix K, is of the
computational complexity O(p - n%), because the inverse of K has to be determined
towards all input dimensions p. Gradient-based hyperparameter optimization with
incorporation of gradient information is therefore more beneficial.
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List of Abbreviations

AE] African Easterly Jet

CDF cumulative distribution function

DWD Deutscher Wetterdienst (German Meteorological Service)

ERA5 reanalysis data provided by the European Centre for Medium-Range
Weather Forecasts

FAST Fourier Amplitude Sensitivity Test

GPM Global Precipitation Measurement

GPR Gaussian process regression

GSA global sensitivity analysis

i.i.d. independent and identically distributed

ICON Icosahedral Non-Hydrostatic (weather forecasting model)

IMERG Integrated Multi-satellitE Retrievals for GPM

ITD Intertropical Discontinuity

LHD Latin hypercube design

LHS Latin hypercube sampling

MC Monte Carlo

MOO multi-objective optimization

MSE mean square error

MSLP mean sea-level pressure

NMSE normalized mean square error

PCA principal component analysis

PCR principal component regression

PDF probability density function

PIT probability integral transformation

PPF percent-point function

Qol quantity of interest

RMSE root mean square error

SHL Saharan heat low

SST sea surface temperature

113



List of Abbreviations

TE] Tropical Easterly Jet
UuQ uncertainty quantification
WAM West African monsoon
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The West African monsoon (WAM) is a key clima-
tic system with far-reaching impacts. Its complex
and nonlinear interactions present significant chal-
lenges for weather and climate modeling. In par-
ticular, uncertainties in model parameterizations —
such as those related to deep convection and
cloud microphysics — can strongly affect forecast
accuracy.

This study presents a surrogate-based framework
to quantify these uncertainties and systematically
improve model parameters. The framework be-
gins by transforming the parameter space into a
uniformly distributed input space, enabling the
application of advanced sampling techniques and
surrogate modeling. Simulations are conducted
using the Icosahedral Non-Hydrostatic (ICON)
model developed by the German Meteorological
Service. Gaussian process regression and principal
component regression are employed to investiga-
te the system while reducing computational costs.

The influence of model parameters on WAM cha-
racteristics is assessed through global sensitivity
analyses and parameter studies, followed by opti-
mization with respect to meteorological reference
data. The results demonstrate the effectiveness of
the proposed methodological approach and pro-
vide valuable insights into the magnitude and na-
ture of parameter impacts.
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