

Energy Efficiency Analysis of Federated Learning: Insights from UAV-Based Thermal Imaging Applications

L. Duda¹, F. Alibabaei¹, V. Kozlov¹, L. Berberi¹, E. Vollmer¹, L. Klug¹, M. Benz¹, R. Volk¹, J.P. Gutiérrez Hermosillo Muriedas¹, M. Götz¹, J. Sáinz-Pardo Díaz², Á. López García², F. Schultmann¹, A. Streit¹

Karlsruhe Institute of Technology (KIT), Instituto de Física de Cantabria (IFCA)

EGI2025, 02-06. June 2025, Santander, Spain

Energy Efficiency Analysis of Federated Learning: Insights from UAV-Based Thermal Imaging Applications

AI4 cosc

Agenda

- Motivation & Foundations
 - Traditional machine learning
 - Thermal urban feature semantic segmentation
- Federated Learning
 - FL algorithms and approaches
- Frameworks
- Energy and accuracy results
- Conclusion

Traditional Machine Learning

- Train a model such that it recognizes a pattern or behavior
- Data is centralized in one spot
- "Data hunting" the more data the better?
- GPT-3 (Generative Pre-trained Transformer 3) needed ≈ 570 GB of text data [1]

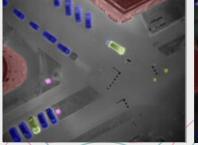
Challenges:

- What about distributed data that is not shareable?
- Unequally distributed data?

Thermal urban feature segmentation

- Identifying thermal anomalies (hot spots) in urban environments to improve the efficiency of energyrelated systems [9]
- Images of Karlsruhe and Munich taken by drones at night





Example of thermal urban feature segmentation (I): combined RGB (top left) and TIR (top right) inputs, manual segmentation mask (bottom left), and U-Net model prediction (bottom right). Source [10]

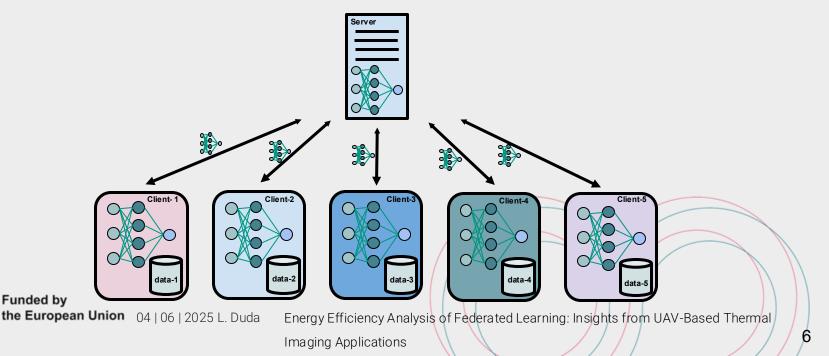
Thermal urban feature segmentation

- Semantic segmentation model
- U-Net [11] with ResNet-152 [12] backbone
- 700 images from Munich
- 93 images from Karlsruhe
- 8001 annotations

Class	# Annotations	# Pixel (*10³)
Background	-	37 063.96
Building	1404	9 087.95
Car (cold)	2531	601.90
Car (warm)	1034	325.60
Manhole round	1536	50.51
Manhole square	358	12.79
Miscellaneous	81	8.38
Person	275	7.64
Street Lamp	782	27.18

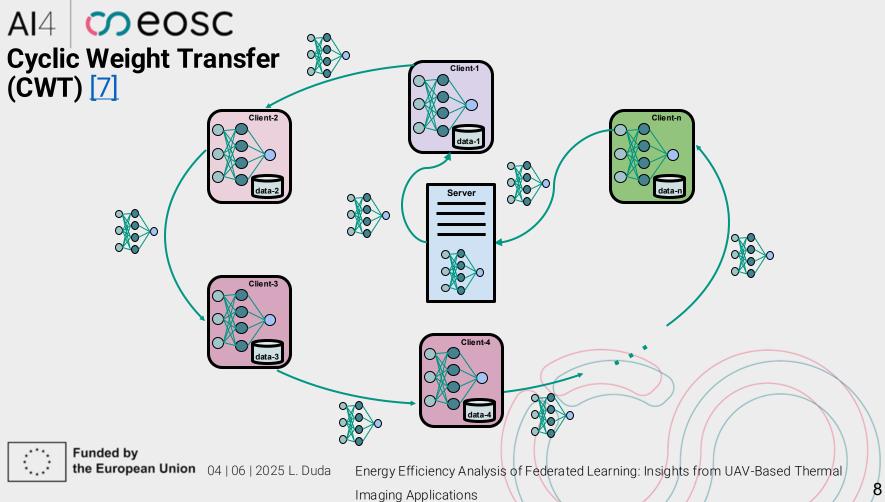
Federated Learning

An approach enabling multiple peers to collaboratively learn a shared prediction model by sharing the weights of the model but not the data itself [2].

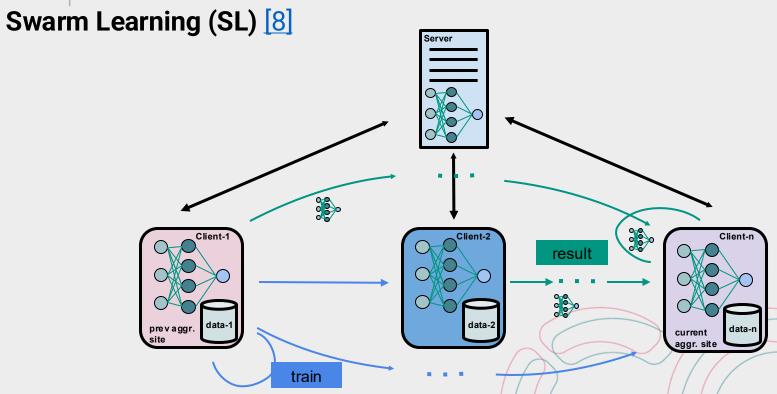


Scatter & Gather with different FL algorithms

- FedAvg [3]: Basic approach using weighted average for the aggregation of the updated weights
 - **Fedprox** [4]: Extension of FedAvg that adds a regularization term to the local loss function to penalize the local weights that deviate from the global model
- Fedopt [5]: Added option of using a specified Optimizer on the client- and server-side when updating the model to improve the effectiveness
- Scaffold [6]: Added correction term to the model weights after each epoch of local training to prevent them from deviating too much from the global weights



AI4 cosc



Funded by the European Union 04 | 06 | 2025 L. Duda

Energy Efficiency Analysis of Federated Learning: Insights from UAV-Based Thermal

Frameworks

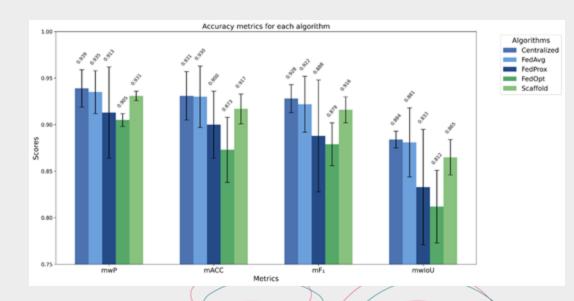
- NVFlare [13]: Open-source library
 - allowing to adapt existing machine learning workflows to a federated paradigm,
 - o facilitating secure, privacy-preserving, and distributed multi-party collaboration.
 - Also available within the AI4EOSC Dashboard
- MLFlow [14] for experiment tracking, provided by AI4EOSC Project

Imaging Applications

 Perun [15] for calculating the energy consumption, provided by Helmholtz AI Energy

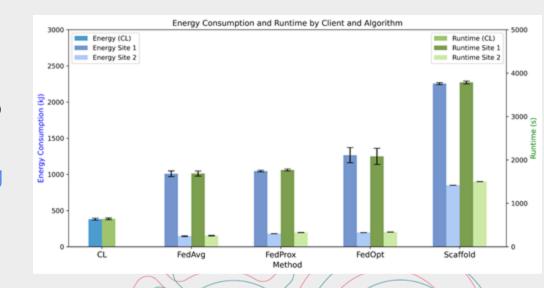
Accuracy metrics per algorithm

- CL shows the highest accuracy with FedAvg and Scaffold close
- FedOpt underperformed consistently across all metrics



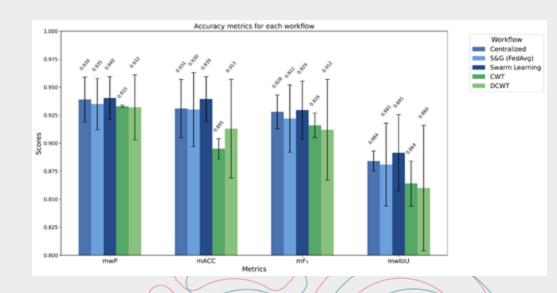
Energy metrics per algorithm

- FedAvg consumes ~164% more energy than CL FedOpt
- FedAvg takes ~162% more time to execute than CL
- Scaffold required the most training time and energy



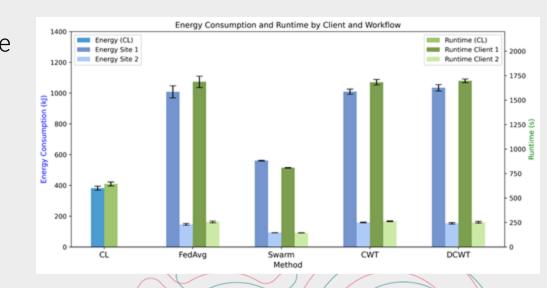
Accuracy metrics per workflow

- SL outperforms all other workflows including CL
- Client Order in CWT matters in regard of accuracy: Training KA (smaller dataset) first, then MU (larger dataset) improved generalization



Energy metrics per workflow

- SL reduced FedAvg's training time by ~206% by eliminating serverclient communication
- CWT required ~105% more time than SL due to sequential client training delays



Conclusion

- FL can consume more energy than Centralized Learning in some scenarios, but is also strongly depending on the algorithm and workflow
- Decentralized workflows (SL, DCWT) reduce training time
- Conversion of energy to carbon emissions depending on regional grid characteristics [16]

[1] Tom B. Brown, et al. (2020). Language Models are Few-Shot Learners. arXiv: https://arxiv.org/abs/2005.14165

[2] Roth, H. R., et al. (2022). NVIDIA FLARE: Federated Learning from Simulation to Real-World. *arXiv*. https://arxiv.org/abs/2210.13291

[3] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, & Blaise Agüera y Arcas. (2016). Communication-Efficient Learning of Deep Networks from Decentralized Data. arXiv: https://arxiv.org/abs/1602.05629

[4] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, & Virginia Smith. (2018). Federated Optimization in Heterogeneous Networks. arXiv: https://arxiv.org/abs/1812.06127

[5] Sashank Reddi, Zachary Charles, et al.. (2020). Adaptive Federated Optimization. arXiv.

https://arxiv.org/abs/2003.00295

the European Union 04 | 06 | 2025 L. Duda

Energy Efficiency Analysis of Federated Learning: Insights from UAV-Based Thermal

[6] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, & Ananda Theertha Suresh. (2021). SCAFFOLD: Stochastic Controlled Averaging for Federated Learning. arXiv: https://arxiv.org/abs/1910.06378

[7] Chang, K., et al. (2018). Distributed deep learning networks among institutions for medical imaging. Journal of the American Medical Informatics Association: JAMIA, 25(8), 945–954. https://doi.org/10.1093/jamia/ocy017

[8] Stefanie Warnat-Herresthal, et al. (2021). Swarm Learning for decentralized and confidential clinical machine learning. https://doi.org/10.1038/s41586-021-03583-3

[9] Automated Thermography: https://ai4eosc.eu/use-cases/automated-thermography/

[10] Vollmer, E. (2023). UAV-based thermography: Using AI with multispectral data. Vortrag gehalten auf ANERIS Workshops on AI Basics for Image Processing (2023), Online, 28. November – 7. Dezember 2023. DOI: 10.5445/IR/1000166038

Funded by the European Union 04 | 06 | 2025 L. Duda

Energy Efficiency Analysis of Federated Learning: Insights from UAV-Based Thermal

[11] Olaf Ronneberger, Philipp Fischer, & Thomas Brox. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv: https://arxiv.org/abs/1505.04597

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. (2015). Deep Residual Learning for Image Recognition. arXiv: https://arxiv.org/abs/1512.03385

[13] NVFlare: https://github.com/NVIDIA

[14] MLflow: https://mlflow.org/

Funded by

[15] Gutiérrez Hermosillo Muriedas, J. P., Flügel, K., Debus, C., Obermaier, H., Streit, A., & Götz, M. (2023). perun: Benchmarking Energy Consumption of High-Performance Computing Applications. In J. Cano, M. D. Dikaiakos, G. A. Papadopoulos, M. Pericàs, & R. Sakellariou (Eds.), Euro-Par 2023: Parallel Processing (pp. 17–31). Cham: Springer Nature Switzerland.

[16] Savazzi, S., Rampa, V., Kianoush, S., & Bennis, M. (2022). An energy and carbon footprint analysis of distributed and federated learning. IEEE Transactions on Green Communications and Networking, 7(1), 248–264.

Funded by

ai4eosc-po@listas.csic.es

ai4eosc.eu

Thank you for your attention!

Leonhard Duda - <u>leonhard.duda@kit.edu</u>

Fahimeh Alibabaei - khadijeh.alibabaei@kit.edu

Valentin Kozlov - valentin.kozlov@kit.edu

Lisana Berberi - <u>lisana.berberi@kit.edu</u>