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Programmatic hyperparameter optimization (HPO) methods, such as Bayesian optimization and evolutionary
algorithms, are known for their sample efficiency in identifying optimal configurations for machine learning
(ML) models. However, practitioners often use less efficient methods, such as grid search, potentially resulting
in under-optimized models. This discrepancy suggests that HPO method selection may be influenced by
practitioner-specific motives, which remain insufficiently understood hindering user-centered advancement
of HPO tools. To uncover these motives, we conducted 20 semi-structured interviews and an online survey
with 49 ML practitioners. We revealed six primary goals (e.g., increasing ML model understanding) and
14 contextual factors (e.g., available computational resources) that influence practitioners’ choices of HPO

. Funded by This work was supported by KASTEL Security Research Labs. F. Hutter and M.
the European Union Lindauer acknowledge funding by the European Union (via ERC Consolidator

Grant DeepLearning 2.0, grant no. 101045765, and ERC Starting Grant “ixAutoML,”
grant no. 101041029, respectively). The views and opinions expressed are those of
the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither
the European Union nor the granting authority can be held responsible for them.

Authors’ Contact Information: Niclas Kannengieler (corresponding author), Institute of Applied Informatics and Formal
Description Methods, Karlsruhe Institute of Technology, Karlsruhe, Germany; e-mail: niclas.kannengiesser@kit.edu;
Niklas Hasebrook, Zeb Consulting, Berlin, Germany; e-mail: niklas.hasebrook@gmail.com; Felix Morsbach, Chair of
Privacy and Security, Karlsruhe Institute of Technology, Karlsruhe, Germany; e-mail: felix.morsbach@kit.edu; Marc-André
Zoller, Institute of Industrial Manufacturing and Management, University of Stuttgart, Stuttgart, Germany; e-mail:
mazoeller@gmail.com; Jérg K. H. Franke, Machine Learning Lab, University of Freiburg, Freiburg im Breisgau, Germany;
e-mail: frankej@cs.uni-freiburg.de; Marius Lindauer, Institute of Artificial Intelligence, Leibniz University Hannover,
Hannover, Germany; e-mail: m.lindauer@ai.uni-hannover.de; Frank Hutter, Machine Learning Lab, University of Freiburg,
Freiburg im Breisgau, Germany; e-mail: fh@cs.uni-freiburg.de; Ali Sunyaev, TUM School of Computation, Information and
Technology, Technical University of Munich, Heilbronn, Germany; e-mail: sunyaev@tum.de.

This work is licensed under Creative Commons Attribution International 4.0.

© 2025 Copyright held by the owner/author(s).
ACM 1557-7325/2025/12-ART59
https://doi.org/10.1145/3745771

ACM Transactions on Computer-Human Interaction, Vol. 32, No. 6, Article 59. Publication date: December 2025.


https://orcid.org/0000-0002-2880-3361
https://orcid.org/0009-0006-5092-924X
https://orcid.org/0000-0001-5455-4488
https://orcid.org/0000-0001-8705-9862
https://orcid.org/0000-0002-4390-4582
https://orcid.org/0000-0002-9675-3175
https://orcid.org/0000-0002-2037-3694
https://orcid.org/0000-0002-4353-8519
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3745771

59:2 N. Kannengiefier et al.

methods. This study provides a conceptual foundation for understanding real-world HPO practices and informs
the development of more user-centered and context-adaptive HPO tools in automated ML (AutoML).

CCS Concepts: « Human-centered computing — Empirical studies in HCI; HCI theory, concepts and
models; User models;

Additional Key Words and Phrases: Artificial Intelligence (AI), Automated Machine Learning (AutoML),
Human-AlI Collaboration, Hyperparameter Optimization (HPO), User-centered HPO
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1 Introduction

The performance of machine learning (ML) models is highly sensitive to their hyperparameter
configurations (3, 13, 38, 47, 60, 89]. Identifying optimal hyperparameter configurations for training
ML models is, however, a complex and often daunting task—even for seasoned ML experts—because
of large search spaces of hyperparameter values and commonly unknown relationships between
ML model performance, hyperparameter configuration, and dataset. Consequently, practitioners—
individuals regularly involved in the development of viable ML models that are meant for productive
use in research or industry—experiment with various hyperparameter configurations to identify
optimal ones, often relying on trial and error. This iterative process of exploring, testing, and
adjusting hyperparameter configurations related to ML models is known as hyperparameter
optimization (HPO).

HPO by manual tuning is often cumbersome, tedious, and error prone. To help practitioners with
HPO, research with a technical focus (e.g., [8, 22]) developed several programmatic HPO methods,
including grid search, random search, Bayesian optimization, and evolutionary algorithms, and
implemented such methods as software tools (e.g., Hyperopt and Hyperband [4, 54]). Existing
HPO methods, programmatic and non-programmatic ones, differ considerably in the way they
optimize hyperparameter configurations. Such differences lead some HPO methods to superiority
over others. That superiority is usually demonstrated using conventional performance metrics
from computer science, including minimization of generalization errors and increase of sample
efficiency [30, 55, 90]. However, practitioners often use HPO methods that are inferior according
to conventional performance metrics [9]. For example, practitioners often prefer to perform grid
search over the more sample-efficient Bayesian optimization [74].

The dominant use of seemingly inferior HPO methods suggests that practitioners have motives
beyond the fulfillment of conventional goals pursued in HPO, such as increasing ML model perfor-
mance. However, the motives behind practitioners’ choices of HPO methods—shaped by contextual
factors—remain unclear. This unclarity about why practitioners use which HPO methods inhibits
more user-centered development of HPO methods and tools that support practitioners in attaining
their goals, especially those beyond conventional performance metrics. To support development
of more user-centered HPO methods and tools for automated ML (AutoML) [81], practitioner
motives for HPO need to be better understood. We approach the following research question: Why
do practitioners choose different HPO methods?

We applied a two-step research approach consisting of an interview study and a survey study
based on an online questionnaire. First, we conducted semi-structured interviews with 20 ML
experts to unveil HPO methods that practitioners commonly use, the goals pursued by practitioners
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when applying HPO methods, and the contextual factors that influence practitioners’ choices of
HPO methods to attain goals. Second, we performed an online survey with 49 participants to collect
evidence for the external validity of the relevance of the HPO methods, goals, and contextual factors
identified in the interviews.

Our main ambition is to support more user-centric development of AutoML methods and tools
for HPO by bridging the gap between technical advancements and human factors. By integrating
practitioner motives into HPO research, we aim to ensure that future tools are not only technically
sound but also aligned with real-world needs and decision-making processes. In particular, this
work has three main contributions. First, this work presents a conceptual foundation constituted
of principal goals (e.g., improving ML model performance and target audience compliance) and
contextual factors (e.g., compute resources and method traceability) influencing selections of
HPO methods. This is useful to enhance human-in-the-loop ML by clarifying information needs
and improving practitioner engagement. Moreover, the conceptual foundation supports goal-
driven development of HPO methods and tools and new benchmarks with a focus on human
factors. Second, we present a mapping of HPO methods, goals, and contextual factors to explain
practitioners’ decision-making. This mapping informs user-centered HPO design and adaptive
automation features. Moreover, it highlights key input parameters for developing context-sensitive
HPO tools. Third, we analyzed practitioners’ perceived success with different HPO methods,
revealing strengths and areas for improvement. These findings contribute to the development of
more effective decision-support systems for HPO method selection. Moreover, the reported success
rates help identify limitations of HPO methods, guiding development of better-tailored and more
effective HPO methods and tools.

The remainder of this work is structured into five sections. First, we describe the state of research
on HPO in Section 2. Section 3 reports the approach we applied to answer the research question.
Then, we present the results of this study, including four HPO methods, six goals, and 14 contextual
factors in Section 4. In Section 5, we discuss the principal findings of this work, explain the
contributions of this study, describe possible threats to the validity of the results, and outline future
research directions. We conclude with our main takeaways in Section 6.

2 Background and Related Work

Driven largely by technical advancements, HPO is a key research area with significant potential to
shape ML model development [43]. To support a better understanding of the results of this study,
we briefly describe the technical foundations of principal HPO methods. Moreover, we elucidate
related research on involving human beings in automated HPO, a prominent field within AutoML
research.

2.1 HPO Methods

There are five principal, model-agnostic HPO methods: manual tuning, grid search, random search,
evolutionary algorithms, and Bayesian optimization.! These HPO methods are briefly described
below.

Manual tuning refers to a set of HPO methods where practitioners choose hyperparameter
configurations based on explicit and implicit knowledge and influences of contextual factors. The
dependency of manual tuning on practitioners’ experiences and even unconscious heuristics in
decisions [28] makes manual tuning very individual to practitioners, rendering the explication
of manual tuning difficult. Thus, manual tuning is usually hardly replicable [63, 73]. Commonly,

!There are also gradient-based methods, but because these methods are often perceived as being brittle and are often
model-specific, they are out of the scope of this study.
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only intermediate information (e.g., tuned hyperparameters) is available, while reasons for se-
lecting hyperparameter configurations often remain unclear. This complicates the formalization
of specific HPO methods in manual tuning, making it unclear how practitioners actually pro-
ceed. Common strategies include starting optimization from well-performing hyperparameter
values [87], using a sound experimental design for incremental improvement [32], and remov-
ing irrelevant hyperparameters from the search space [66]. In addition, difficulty in explication
makes it hard to evaluate the sample efficiency of strategies in manual tuning. While evidence
that manual tuning outperforms advanced HPO methods is lacking, prior publications offer ini-
tial evidence that advanced HPO methods can outperform manual tuning in several use cases
[13, 23, 47, 60, 89, 91].

To tackle shortcomings of manual tuning, AutoML [22] is envisioned to automate all aspects
related to the development of ML models in a problem-agnostic manner, for example, by pro-
grammatic HPO methods. Research on AutoML has primarily approached HPO from a technical
perspective (e.g., [8, 22]). Typical works (e.g., [2, 21, 34, 37, 45, 54, 82]) focus on performance
optimization of ML models in terms of smaller generalization errors, smaller ML model size, or
lower latency. Often, such works investigate HPO from a mathematical perspective and treat HPO
as a black-box optimization problem: given a problem instance in the form of a dataset and a
loss function, a black-box optimizer (e.g., Bayesian optimization) searches for hyperparameter
configurations in a predefined search space to enhance an ML model in terms of a given metric
(e.g., accuracy on a validation set). Multi-objective optimization methods can be used to specify
additional properties of the resulting ML model, such as algorithmic fairness, fast inference, and
low model complexity [7, 16, 26, 49].

Grid search is one of the earliest HPO methods that can be executed programmatically to
solve the black-box optimization problem. Grid search refers to the process of evaluating the
Cartesian product of a finite set of hyperparameter configurations. Every possible combination
of hyperparameter values included in the defined subset of the search space is evaluated [61].
Thus, grid search does not scale well with the number of hyperparameters. Grid search relies on a
deterministic procedure to select hyperparameter configurations to be evaluated. The deterministic
procedure allows reproducing experiments. For reproduction, the originally applied search space
and discretization strategy must be known.

Although easy to implement, parallelize, and reproduce, grid search has become increasingly
unsuited for modern HPO problems due to the curse of dimensionality [3]. In practice, not all
hyperparameters have a similar impact on the final performance of ML models [3, 68]. Due to its
rigid search strategy, grid search often allocates much of the optimization budget to less relevant
regions of the search space [3]. Put differently, sample efficiency of grid search tends to be lower
compared to later HPO methods (e.g., random search, Bayesian optimization, and evolutionary
algorithms [19, 74, 80]), in particular, because grid search cannot make use of the low effective
dimensionality of HPO problems [2].

Random search refers to the process of sampling random hyperparameter configurations from a
defined search space until a budget is exhausted [3]. Random search handles hyperparameters of
varying importance more effectively than grid search and achieves greater sample efficiency in
high-dimensional search spaces, especially when hyperparameters have differing influence on ML
model performance [3]. Random search can be reproduced if the used search space, the randomness
generator, and the corresponding seed are known.

To address large search spaces, grid search and random search have been supplemented by meth-
ods that exploit knowledge of well-performing regions within the set of possible hyperparameter
configurations [74]. A well-established approach for balancing exploration and exploitation is evo-
lutionary optimization. Inspired by biological evolution, evolutionary algorithms iteratively mutate
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a population of candidate solutions to obtain solutions with better performance. Evolutionary
algorithms often perform well in optimizing black-box functions [65] but are rather inefficient in
terms of samples [8]. HPO based on evolutionary algorithms can be reproduced with fixed random
seeds if the search space and randomness generator are known.

Bayesian optimization can be an alternative to evolutionary algorithms. Bayesian optimization
refers to the process of using a sequential approach based on a surrogate model to find appropriate
hyperparameter configurations for ML models in defined search spaces (e.g., [12, 22, 27, 72]). In
Bayesian optimization, an optimizer constructs an internal probabilistic model, mapping hyperpa-
rameter configurations to expected ML model performance, to achieve an optimal balance between
exploration and exploitation [24, 27, 72]. Bayesian optimization can be extended to deal with
high-dimensional search spaces, for example, using additive surrogate models [48] or local trust
regions [20]. HPO based on Bayesian optimization can be reproduced with fixed random seeds if
the search space, the acquisition function, and the surrogate model, including its hyperparameters,
are known.

2.2 Research on HPO

Extant research on HPO methods is mainly driven by technological advancements that aim at
increasing sample efficiency of HPO methods [2, 42, 74], reducing time for evaluating objective
functions [15, 54, 79], and transferring knowledge from prior optimization runs to similar problem
instances [18, 81]. Such technological advancements are valuable but designed to reach better
results in terms of conventional performance metrics. Practitioner motives to use HPO methods
beyond conventional performance metrics are largely neglected.

Studies exploring practitioners’ experiences with programmatic HPO methods provide valuable
insights into the perceived advantages and disadvantages of these methods [31, 84, 85]. Practitioners
acknowledge advantages of programmatic HPO methods, which are commonly related to faster
turn-around time for building ML models and, thus, higher productivity in developing ML models
[83, 85]. Automatically tuned ML models are often used by practitioners to create initial baseline
ML models for subsequent manual tuning or to gain data insights [14, 83, 85]. However, AutoML
practitioners often bemoan insufficient confidence in the results of programmatic HPO methods
and, therefore, refuse to blindly use ML models optimized with programmatic HPO methods [17, 50,
51, 85]. Even though acknowledging that programmatic HPO is useful to develop well-performing
ML models [83], practitioners often refuse to use those HPO methods to not be accountable for ML
models they do not understand [17]. A lack of confidence is often linked to the perceived black-box
nature of programmatic HPO methods, such as Bayesian optimization and evolutionary algorithms,
limiting transparency of optimizer internals. Practitioners prefer support that augments their daily
data science work (e.g., through guidance), rather than fully automating it [14].

Research on human-guided HPO focuses on involving humans in programmatic HPO methods
to improve HPO with dormant domain expertise [40, 85, 86]. This requires identifying how and
when to involve humans in HPO to achieve the best combination of automation and human
knowledge [14]. Especially involvement of practitioners in ML model development, including HPO,
seems promising for a higher level of automation. For other tasks, including data acquisition and
requirement analysis, practitioners prefer strong human involvement with a low level of automation
[84]. Interactions of practitioners with software tools for programmatic HPO were structured into
different modes of cooperation between practitioners and software tools, ranging from manual
tuning to full automation, in the literature [14, 51, 84].

Extant research describes valuable concepts of how practitioners could interact with software
tools for programmatic HPO [78, 87] and how to design visual analytics tools for HPO to support
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Table 1. Overview of the Demographic Data of the 20 Interviewees

Field Highest Degree of ~ Years of Experience Skill Level ML Field
Education
Academia (14) Bachelor (2) <2 (4) ML Innovator (10)  CV (8)
Industry (6) Master (16) 2-4 (6) ML Engineer (10) NLP (6)
PhD (2) 5-7(7) RL (5)
>7(3) TSF (3)

The numbers in parentheses show the number of interviewees with the respective characteristics. The
interviewees could name multiple ML fields. CV, Computer vision; NLP, Natural language processing;
RL, Reinforcement learning; TSF, Time series forecasting.

practitioners [40, 86, 92]. Yet, the different programmatic HPO methods are not further differenti-
ated, and practitioner motives to select different HPO methods remain unclear. Supporting better
understanding of practitioner motives for selecting HPO methods is the main goal of this study.

3 Methods

We applied a mixed-methods research approach consisting of two main steps. First, we conducted
semi-structured interviews with ML experts to develop a set of commonly used HPO methods,
goals pursued by using HPO methods, and contextual factors that influence the choice for HPO
methods. Second, we conducted a survey using an online questionnaire to collect evidence of the
external validity of the interviews. The following details the two steps.

3.1 Semi-Structured Interviews with ML Experts

To identify practitioners’ goals pursued in HPO and understand decisions for specific HPO methods
to achieve these goals, we chose an exploratory, qualitative research approach and conducted
semi-structured expert interviews.

Data Collection. To find interviewees for the study, we reached out to personal contacts from
ongoing research projects, authors of scientific studies, and companies that develop ML models.
The contacted persons had heterogeneous experiences with HPO and ML, ranging from novices to
experts and different ML fields, including computer vision (CV), natural language processing
(NLP), and reinforcement learning (RL). Among the contacted potential interviewees, 20 agreed
to participate in the interview study.

The interviewed experts were all ML practitioners—individuals who regularly develop ML models
for practical use in research or industry. All interviewees had actively contributed to at least one
successfully deployed ML model in research or industry. The experts were associated with 13
different organizations and had an average work experience in ML of about 5 years (see Table 1).
Among the interviewees, two held a PhD and 12 were PhD students from academia with Master’s
degrees—most nearing completion of their doctorates. All industry participants held at least a
Master’s degree and had, on average, more than 5 years of experience developing ML models for
production. The 12 PhD students worked at universities in the field of applied ML. One PhD worked
in the industry as an ML engineer, and another worked at a university in the field of applied ML.
Two interviewees with Bachelor’s degrees were pursuing Master’s degrees while working as ML
developers in the industry as student trainees.

Ten participants had a skill level of ML innovators—practitioners engaged in ML research, in-
cluding studies on core algorithms and the application of ML in scientific discoveries [87]—while
the other 10 were ML engineers—experienced ML practitioners with formal training in applied ML
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[87]. The study participants used HPO in the context of CV, NLP, RL, and time series forecast-
ing (TSF). Interviewees from the industry also mentioned to have used these ML techniques in
bioinformatics (2), robotics (2), e-commerce (1), and finance (1). Because AutoML, including HPO
based on programmatic methods, aims to be domain agnostic [22], usage of AutoML tools should
be independent of the different domains.

We developed an interview guide (see Appendix A) for the semi-structured interviews [35, 64].
The interview guide structured the interviews into four sections: briefing, HPO in ML, participant
background and personal experiences, and debriefing. Each section outlined its purpose and the
corresponding interview questions. We sent the interview guide to participants in advance to help
them prepare for the interview. Since the interviews focused on a past ML project, we asked each
participant to select one project to discuss during the interview. To mitigate social desirability
bias—especially since some participants were recruited via personal contacts—we ensured that
interviewers were not personally acquainted with the interviewees. Moreover, we phrased the
questions as neutral and open-ended to encourage unbiased and detailed responses. For each
interview, we created a non-judgmental atmosphere and clarified that there were only valid answers
to our questions with insights valuable to our research. We also explained to the interviewees that
their responses would be anonymized and no links to their identity would be possible.

We started each interview with a briefing of the participants by explaining the background and
goals of the study. Second, in line with the section HPO in ML in the interview guide, we asked
the ML experts to name HPO methods they used in ML projects. Moreover, we gathered insights
into why they selected HPO methods for optimization and asked about contextual factors that
influenced their selection of HPO methods. Third, we wanted to learn more about the interviewees’
participant background and personal experiences, including years of experience in ML development,
main areas of using ML, and highest degree of education. Fourth, in debriefing, we asked the
interviewees for their final thoughts and remarks on the study and topic, and informed them
about the further proceeding in the context of the study. We conducted interviews with ML
experts following methodological guidelines, ensuring an open-minded approach without pressure
on the interviewee and avoiding any influence on their responses through neutral questions
[35, 57, 59]. The 20 interviews took between 18 and 61 minutes, with an average time of 31 minutes.
We transcribed the interviews in preparation for the analysis.

Data Analysis. We analyzed each interview transcript using thematic analysis [10, 11] in groups
of three authors. Thematic analysis comprises six steps: (1) familiarize yourself with the data,
(2) generate initial codes, (3) search for themes, (4) review themes, (5) define and name themes, and
(6) produce the report.

Three of the authors coded each interview together. After familiarizing themselves with the
transcripts (Step 1), the authors independently coded them (Step 2) to identify HPO methods
applied by practitioners, to extract practitioners’ goals in HPO and to reveal contextual factors
that influence the interviewees’ decisions for HPO methods. We incorporated contextual factors to
better understand influences on practitioners’ decisions for using HPO methods. The three authors
independently read the transcripts, identified quotes relevant to this study, and labeled the quote
with a name (i.e., a code) that expresses a potentially relevant HPO method, goal, or contextual
factor. Each of the three authors coded the transcripts independently without a predefined coding
scheme. After coding each interview independently, the authors presented their coding results to
each other and discussed and harmonized their results in multiple iterations per interview and
across interviews. In each iteration, the analysts aimed for mutually exclusive codes while ensuring
comprehensive coverage. Through this explorative approach involving three analysts per interview,
we aimed to reduce biases arising from the opinions of single analysts. The first coding iteration
revealed 241 preliminary codes.
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The authors harmonized their codes into 21 mutually exclusive codes to ensure that different
codes did not share the same semantics. For example, the coders merged the contextual factors
knowledge about Bayesian optimization and knowledge about grid search into the contextual factor
HPO method comprehension. During the harmonization process, the authors aimed for unambiguous
agreements regarding the codes and their intended meaning. To achieve this goal, the authors
resolved conflicts in their coding results through intensive discussion and refinement.

Three of the authors developed candidate themes (Step 3) to group the harmonized codes based
on semantic relationships. If a code did not suit an existing theme, we created a new theme.
For example, we assigned the contextual factor available compute resources to the theme tech-
nical environment, while we created a new theme own knowledge for the contextual factor HPO
method comprehension. The set of candidate themes was comprised of four themes associated with
HPO methods, six themes associated with goals, and three themes associated with contextual
factors.

In Step 4, we reviewed and refined the candidate themes within the author team in multiple
iterations. We again aimed to reach mutual exclusiveness of the themes and assigned codes and
maintain exhaustiveness of the results. Subsequently, we developed an intuitive name for each
theme and a definition (Step 5). Finally, we assigned the set of 13 themes to three categories:
HPO methods, principal goals, and contextual factors and wrote up a summary of the results
(Step 6).

After coding the transcripts of all 20 interviews, the analysis of the last seven transcripts did
not reveal additional HPO methods, goals, and contextual factors. We assume to have reached
theoretical saturation [25, 36] after the first 13 interviews with seven interviews confirming this
assumption. These last seven interviews analyzed were from three practitioners from industry and
four from academia who hold a master’s degree and are pursuing a PhD in the field of applied ML.
Given the diverse backgrounds of the interviewees and the substantial number of confirmatory
interviews, we deemed the results to be sufficiently robust and moved on with an online survey to
collect evidence for the external validity of the coding results.

3.2 Online Survey

We conducted a survey study using an online questionnaire to collect evidence for the external va-
lidity of the interview study results and to learn whether practitioners perceive that they succeeded
in achieving their goals through their decisions to use specific HPO methods.

Questionnaire Structure. The online questionnaire was structured into four sections: Introduction,
HPO Methods and Goals, Contextual Factor Integration, and Demographics. In the Introduction section,
we described the motivation for and the structure of the questionnaire. In Methods and Goals, we
showed participants a matrix that listed all goals and HPO methods identified in the interview
study. Participants were asked to select all pairs of HPO methods and goals to achieve specific goals.
Because the main purpose of the survey was to collect evidence for the validity of the results from
the interview study, study participants were restricted to selecting only HPO methods (i.e., manual
tuning, grid search, random search, Bayesian optimization, and evolutionary algorithms) and goals
(e.g., increase ML model understanding, decrease necessary computations, and decrease practitioner
effort) identified in the previous interview study. In a second question, we asked participants to
indicate, for each selected pair of HPO method and goal, whether they feel to have successfully
achieved each goal.

In the Contextual Factor Integration section, we wanted to better understand how practitioners
perceived the influence of contextual factors identified in the interview study on their selections
of HPO methods. For each pair of HPO methods and goals previously selected, we asked the
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Table 2. Overview of the Demographic Data of the 49 Participants That Completed
the Online Questionnaire

Field Highest Degree of Years of Experience Skill Level ML Field
Education

Academia (27) High school (1) <2(8) ML Innovator (22) CV (12)

Industry (22) Bachelor (2) 2-4 (20) ML Engineer (19) TD (19)
Master (27) 5-7 (14) Novice (8) NLP (15)
Diploma (2) 8-10 (4) TSF (8)
PhD (17) >10 (3) RL (5)

TD, tabular data.
The numbers in parentheses show the number of interviewees with the respective characteristics. The participants
could choose multiple ML fields.

participants to express their perceived influence of each contextual factor on the selection of
an HPO method to achieve a particular goal on a five-point Likert scale—0 represents very low
perceived influence, 2 corresponds to a neutral response (i.e., the contextual factor was not perceived
as influential), and 4 represents very high perceived influence.

Finally, in the Demographics section, we collected information about the participants to provide
context to the data collected.

Data Gathering. To solicit participants for the online questionnaire, we contacted practitioners
via e-mail and promoted the study via social media platforms. We did not invite participants from
the interview study.

A total of 166 participants responded to the initial question in the HPO Methods and Goals section.
Among them, 85 completed the entire section, and 57 completed the Contextual Factor Integration
section. Of these, 49 provided demographic data and completed the full questionnaire. Most of these
49 participants worked in large organizations with more than 500 employees, including automotive
companies, companies specializing in IT support and services, and universities. Table 2 shows more
demographic details about the participants who completed the questionnaire.

Data Analysis. By analyzing the responses to the online questionnaire, we sought to learn how
frequently practitioners tend to choose which HPO methods to pursue specific goals, given which
contextual factors. To prepare the analysis, we discarded all responses from participants who did
not complete the questionnaire. We only analyzed completed survey responses. We extracted the
number of identical responses and related them to each other.

4 Results

The study participants (i.e., the interviewees and the survey participants) applied five principal HPO
methods to pursue six goals, influenced by fourteen contextual factors (see Sections 4.1.1-4.1.3).
Participants reported varying success rates in pursuing their goals (see Section 4.2).

4.1 HPO Practices

The following first briefly describes what HPO methods the study participants used. Second, we
report the goals pursued by the study participants and which of the four HPO methods practitioners
used to attain what goals. Third, we introduce fourteen contextual factors and how they can influence
practitioners in their decisions for HPO methods to achieve specific goals.

4.1.1  HPO Methods Used by Practitioners. The study participants applied five HPO methods:
manual tuning, grid search, random search, Bayesian optimization, and evolutionary algorithms.
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Fig. 1. Overview of HPO methods used by the 49 survey participants.

Each HPO method was discussed by between two and eight interviewees. Most interviewees
discussed one or two HPO methods in detail.? Most survey participants primarily used man-
ual tuning, followed by grid search, Bayesian optimization, random search, and evolutionary
algorithms (see Figure 1(a)). Academic participants tended to rely more on manual tuning and
grid search compared to those from industry. Most survey participants stated to have used at
least three HPO methods in their past ML projects; about 2% have even used at least five HPO
methods. Approximately 15% of the survey participants have used only a single HPO method
(see Figure 1(b)).

Even though literature indicates that Bayesian optimization yields better results in a shorter time
than evolutionary algorithms, grid search, and random search (e.g., [74, 80]), practitioners tend to
use seemingly inferior HPO methods. Practitioners seem to not only aim at finding hyperparameter
configurations for optimal ML model performance but also pursue different goals.

4.1.2  Goals of Practitioners Pursued with Different HPO Methods. We identified six goals that
the participants pursued in HPO (see Table 3). In the following, we first introduce each goal based
on the interview results. Then, we describe the results of the survey study.

Comply with Target Audience. The goal comply with target audience refers to aligning practitioners’
choices with the expectations of their target audience. Three interviewees from academia stated they
had decided on HPO methods to comply with the expectations of their target audiences regarding
applied HPO methods and the resulting ML model. For example, two of the three interviewees
described Bayesian optimization as uncommon in their research communities and felt obliged to
explain it in their scientific publications. They would have needed to explain Bayesian optimization
in detail, even though they believed the method itself was not central to their research. Therefore,
they decided to use grid search as they assumed this HPO method to be well-known in their
research communities.

Decrease Necessary Computations. Extensive searches for optimal hyperparameter configurations
in large search spaces typically require substantial computational resources. Necessary computa-
tions for HPO can be decreased by using an HPO method that requires fewer compute resources
than other methods but is still sufficiently useful.

“This whole method was already super, super expensive [...] and if you would perform hyperpa-
rameter optimization again, then it becomes even more expensive.”

—Interviewee #8, ML Innovator in Academia

2We asked the interviewees to discuss a prominent recent example of how they used HPO methods, not to discuss all HPO
methods they ever used.
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Table 3. Principal Goals Practitioners Pursue in HPO

Goal Description

Comply with Target Audience The state where the applied HPO method and the resulting ML model
fulfill the expectations of addressees

Decrease Necessary Computations  The state where an ML model is trained with an HPO method that
requires less compute resources than other methods but still is suffi-
ciently useful for a given purpose

Decrease Practitioner Effort The state in which a practitioner applies an HPO method for training
an ML model that requires less resources compared to other HPO
methods (e.g., time for learning a new HPO method or implementing
corresponding software tools)

Increase ML Model Performance The state where a refined version of an ML model outperforms its
original version in terms of a specified metric

Increase ML Model Understanding  The state where a practitioner is able to predict changes in an ML
model’s behavior caused by altering hyperparameter configurations
based on an understanding of the ML model’s inner workings

Satisfy Requirements The state where the development and training of an ML model satisfies
social and technical demands imposed by stakeholders

Unlike the previous goal (comply with target audience), decreasing necessary computations is not
self-contained. Instead, it functions as a supplementary objective, generally addressed in conjunction
with at least one goal and in response to contextual constraints. For example, practitioners may
seek to decrease necessary computations to optimize the use of limited resources, enabling adequate
improvements in ML model performance.

Decrease Practitioner Effort. Practitioners choose HPO methods to reduce overhead, for example,
in terms of the additional time required to understand the HPO method or to integrate the HPO
method into workflows. One industry interviewee reported that the sheer number of advanced HPO
methods made it challenging to select the most suitable method for their use case. Experiencing the
paradox of choice [70], practitioners felt uncomfortable committing to a particular HPO method
and tool and therefore opted for manual tuning instead.

To decrease their efforts in HPO, the interviewees applied grid search and manual tuning. In
particular, practitioners stated to have applied manual tuning to avoid efforts related to setting up
HPO tools in cluster infrastructures.

“HPO is time-consuming sometimes because it requires some extra lines of code to wrap all your
models with this HPO method and then set up the scripts to run them on a cluster.”
—Interviewee #5, ML Innovator in Industry

Like decrease necessary computations, the goal decrease practitioner effort is not self-contained
and commonly used in combination with other goals. For example, study participants used HPO
tools to enhance ML model understanding by iteratively refining manually defined sets of hyperpa-
rameter values. Those practitioners leveraged HPO tools to automate the reconfiguration of defined
hyperparameter sets to accelerate manual tuning.

Increase ML Model Understanding. Increasing ML model understanding refers to reaching the
state where a practitioner can predict changes in an ML model’s behavior due to tuning hy-
perparameter values based on an understanding of the ML model’s inner workings. To increase
their understanding of ML models, the interviewees reported having applied manual tuning. The
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Fig. 2. Relative frequencies of goals pursued by the 49 survey participants.

interviewees claimed that manual tuning can improve their understanding of hyperparameter
influences on ML models as they formulate hypotheses about hyperparameter influences on ML
models and evaluate them immediately. The interviewees explained that they iteratively improved
their ML model understanding by tuning hyperparameter values and testing their hypotheses. This
dynamic between ML practitioners and ML models is researched as interactive ML. Interactive
ML supports practitioners in actively exploring the model space and testing hypotheses about
hyperparameter effects [46]. In addition, visual analytics tools help practitioners by providing
graphical representations of model behavior and parameter interactions (e.g., [39, 77]).

Increase ML Model Performance. ML model performance is increased when a refined version of
the ML model outperforms its original version in terms of a specified metric. The interviewees
chose manual tuning, grid search, random search, and Bayesian optimization HPO methods to
achieve this goal for example, to prototype novel ML models.

“If the only concern is to find the best model possible and no one asks how I got there, and I do not

have a lot of time, I probably would use a random search.”
—Interviewee #6, ML Engineer in Academia

Satisfy Requirements. The goal to satisfy requirements refers to reaching the state in which
the development and training of an ML model fulfill social and technical constraints imposed by
stakeholders (e.g., business clients, ethics commissions) and the environment (e.g., available compute
resources). Ten interviewees described that their decisions for HPO methods were influenced by
the goal of fulfilling such requirements. For example, one interviewee reported preferring manual
tuning to meet hard-to-formalize requirements, such as a smooth behavior of the model output.

The survey results indicate that all goals extracted from the interview study are also pursued
by the survey participants (see Figure 2). More than 95% of the survey participants pursued the
goal increase ML model performance and 75% aimed to achieve decrease necessary computations;
75% sought to decrease practitioner effort; 67% of the practitioners aimed to increase ML model
understanding. The least pursued goals are satisfy requirements (63%) and comply with target
audience (53%).

Figure 3 shows how often the survey participants used HPO methods to reach the goals identified
in the interview study; 67% of the survey participants tried to decrease necessary computations by
using Bayesian optimization and 59% using evolutionary algorithms. About 50% of the participants
tried to decrease the necessary computations by applying manual tuning. Random search and grid
search were least often used, with 43% and 29%, respectively. Decreasing practitioner effort was
of interest for less than 50% of the participants, with very similar responses for all HPO methods
(yet a notable exception of manual tuning with only 31%). The survey participants primarily used
manual tuning to enhance their comprehension of ML models. Interestingly, participants also tried
to use Bayesian optimization twice as often as grid search and random search to achieve this goal
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Fig. 3. Frequency of goal and HPO method combinations. Per cell, all presented values are normalized to the
number of participants having applied the corresponding HPO method.

despite its black-box nature. Participants from academia have only tried to satisfy requirements or
be compliant with the target audience half as often as participants from industry.

Increasing ML model performance is the most common goal in HPO that is pursued across all HPO
methods taken into account in this study. Most often, practitioners used Bayesian optimization to
achieve this goals.

The participants mostly aimed to satisfy requirements using evolutionary algorithms (45%),
Bayesian optimization (35%), and manual tuning (37%). They less often used grid search (24%) and
random search (20%) to achieve this goal.

Comply with target audience was the least pursued goal for the participants. About 45% of the
participants used evolutionary algorithms for this goal. We could not uncover differences between
manual tuning and Bayesian optimization, with 30% of the participants using the respective method.
Only random search and manual tuning were very seldom used to achieve this goal (about 15%).

In contrast to their academic counterparts, industry participants rarely used Bayesian opti-
mization or evolutionary algorithms to increase model understanding. Participants from academia
preferred to use grid search to reduce their effort. Additionally, industry practitioners more fre-
quently relied on manual tuning to meet specific requirements.

It is evident that participants employed different HPO methods to pursue similar goals, making it
difficult to establish a clear mapping between individual methods and goals. For example, while one
interviewee selected manual tuning to increase ML model understanding, another favored Bayesian
optimization to pursue the same goal.

“Because especially when entering new areas, we would like to understand step by step what is
working and what is not.”
—Interviewee #9, ML Innovator in Academia

“I almost always select Bayesian optimization to get an idea in which region I find the [hyper-]
parameter [values].”
—Interviewee #15, ML Innovator in Industry

The ambiguous responses suggest that practitioners’ choices of HPO methods cannot be ex-
plained solely by their goals. For example, practitioners used different HPO methods to reach
identical goals. This underscores the complexity of understanding why practitioners choose specific

ACM Transactions on Computer-Human Interaction, Vol. 32, No. 6, Article 59. Publication date: December 2025.



59:14

N. Kannengiefier et al.

Table 4. Principal Contextual Factors Related to Own Knowledge That Can Influence Practitioner
Decisions for HPO Methods

Theme Contextual Factor

Description

Own Knowledge HPO Method Comprehension

ML Model Comprehension

Personal Experience

The self-perceived level of knowledge a practitioner has
about the inner workings of an HPO method

The self-perceived degree of understanding of the inner
workings of an ML model with which a practitioner ex-
plains changes in the behavior of the ML model caused by
altering hyperparameter values

The available internal knowledge of a practitioner that has
been generated by past activities (e.g., personal best practices
to solve a specific problem type)

Social Environment Acceptance of Advanced HPO

Methods
Literature

Shared Opinions

Tension for Resources

The extent to which advanced HPO methods (e.g., Bayesian
optimization) are valued by a target group

The knowledge acquired on the basis of published text doc-
uments (e.g., articles, blog entries, and papers)

The knowledge acquired on the basis of advice from peers
(e.g., colleagues)

The degree to which constrained compute resources cause
conflicts between practitioners regarding the allocation of
those resources

Technical Environment  Available Compute Resources

Cost of Objective Function

HPO Method Traceability

HPO Setup Readiness

Parallelization Possibilities

Search Space Size

Usability of HPO Tools

The amount of compute resources available for HPO

The amount of compute resources required to evaluate a
single point within a hyperparameter value space

The extent to which a sequence of sample points can be
backtraced or predicted

The degree to which an HPO tool and associated test envi-
ronments are ready to use (e.g., preinstalled HPO tools on a
cluster)

The degree to which multiple independent ML models can
be simultaneously evaluated

The number of possible hyperparameter configurations

The perceived ease with which practitioners achieve their
goals by using an HPO method and corresponding tools

HPO methods. To better understand practitioners’ reasons for selecting HPO methods, contex-
tual factors that influence practitioners in their decisions for HPO methods to reach goals seem
important. By also illuminating contextual factors in combination with the use of HPO meth-
ods and goals to be achieved, the motives of practitioners to use HPO methods should be better

understood.

4.1.3  Contextual Factors That Influence HPO Method Selections. We identified 14 contextual
factors that can influence practitioner decisions for using HPO methods to achieve specific goals.
The contextual factors can be grouped into three themes (see Table 4): own knowledge, social

environment, and technical environment.
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Own Knowledge. Practitioner decisions for HPO methods are influenced by practitioners’ internal
knowledge of HPO and ML models. We identified three contextual factors related to own knowledge:
HPO method comprehension, ML model understanding, and personal experiences.

HPO method comprehension refers to the degree to which practitioners understand how HPO
methods work and how to apply them. Practitioners tend to neglect HPO methods they do not
sufficiently understand. For example, two interviewees stated they had disregarded Bayesian opti-
mization because they felt they did not sufficiently understand its inner workings. One interviewee
from the industry perceived grid search to be faster to implement and easier to use compared
to Bayesian optimization because using the latter would have required the interviewee to learn
an HPO method they were not experienced in. Another interviewee perceived random search as
uncontrolled, which caused them to decide against it. Two interviewees decided to use grid search
because they perceived it as easy to understand and implement.

ML model comprehension refers to a practitioner’s ability to explain changes in an ML model’s
behavior caused by altering hyperparameter values based on an understanding of the inner workings
of the ML model. The perceived degree of ML model understanding plays an important role.
Interviewees who perceived their ML model understanding as high stated to have chosen manual
tuning. Due to their thorough ML model understanding, those interviewees claimed that they could
find appropriate hyperparameter configurations without extensive HPO. The interviewees perceived
programmatic HPO methods as not taking advantage of known effects of hyperparameters on ML
model development and performance. Examples of such known effects include a high learning
rate, which can accelerate learning but may lead to instability; a low learning rate, which slows
convergence; strong regularization, which can cause underfitting; and weak regularization, which
can lead to overfitting [88].

“Effects of hyperparameters are often deducible, but optimizers [here: HPO methods] usually do
not support functionalities for this.”
—Interviewee #1, ML Innovator in Academia

Interviewees who deemed their ML model understanding as low tended to use random search
or Bayesian optimization. Low ML model understanding made it difficult for interviewees to
predict the challenges they would encounter in HPO. To better react to unforeseen challenges,
interviewees stated to choose manual tuning instead. For example, manual tuning can facilitate
spotting and correcting mistakes when errors occur during the development of novel ML models
because feedback loops are faster compared to those of programmatic HPO methods:

“Because we altered the standard architecture as a whole, we were not really sure what problems
we would face. So that was one of the reasons to stick with manual tuning.”
—Interviewee #3, ML Engineer in Academia

Personal experiences refers to the available internal knowledge that a practitioner generated
through past activities (e.g., personal best practices for solving a specific type of problem). The
interviewees stated that they tend to use HPO methods with which they had positive experiences:

“I have also had good experiences with it [here: Bayesian optimization] in a previous paper.”
—Interviewee #2, ML Innovator in Academia

Social Environment. Choices for HPO methods are influenced by the social environment of
practitioners, especially by four contextual factors: acceptance of advanced HPO methods, literature,
shared opinions, and tension for resources.

Acceptance of advanced HPO methods refers to the extent to which advanced HPO methods, such
as Bayesian optimization, are valued by a target group. Low acceptance of advanced HPO methods
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in a community targeted by a practitioner can make them avoid extensive HPO entirely and choose
manual tuning. For example, an academic stated that they perceived the use of advanced HPO
methods and extensive HPO as not being valued by their community. According to the interviewee,
their community encourages the use of pre-trained ML models in combination with manual fine-
tuning to avoid extensive HPO. Although the interviewee perceived Bayesian optimization as
more suitable for increasing ML model performance, they felt discouraged by the attitude of their
community and applied manual tuning instead.

Shared opinions covers external knowledge acquired on the basis of advice from peers (e.g.,
colleagues). The interviewees explained to have chosen HPO methods that are considered as
commonly used in their labs or by their peers. In various communities, different HPO methods are
applied so frequently that their use becomes habitual. For example, manual tuning was commonly
used in one research group, while Bayesian optimization was considered the primarily applied
HPO method in another one. The interviewees associated with those communities applied the,
respectively, manifested HPO methods. This indicates that immediate social environment has a
noticeable influence on practitioners’ HPO method choices.

Literature refers to external knowledge acquired on the basis of published text documents (e.g.,
articles, blog entries, papers). Practitioners, from academia and industry alike, are guided in their
choices of HPO methods by recommendations from literature on ML models similar to their own.
All practitioners, who primarily based their decisions on literature, chose Bayesian optimization
that attests high sample efficiency (e.g., [80]).

Tension for shared resources refers to the degree to which constrained compute resources cause
conflicts between practitioners. Availability of only shared resources can cause tensions among
colleagues, for example, when practitioners must compete for compute resources to perform HPO.
Such tensions led one academic scientist to choose manual tuning to avoid arguing with colleagues
over compute resources.

Technical Environment. Contextual factors associated with the technical environment refer to
technical constraints (e.g., caused by insufficient compute resources) that influence practitioners’
selections of HPO methods. The interviewees stated seven contextual factors associated with
the technical environment: available compute resources, cost of objective function, HPO method
traceability, HPO setup readiness, parallelization possibilities, search space size, and usability of HPO
tools.

Available compute resources refers to the amount of compute resources available for HPO. Prac-
titioners choose manual tuning when faced with constrained available compute resources. They
perceive that in combination with a high degree of ML model understanding, they can outperform
programmatic HPO methods. If the available compute resources are too scarce, exploration of
large search spaces is hard. Practitioners need to reduce search spaces, decrease the number of
necessary function evaluations, or decrease computational cost per function evaluation (e.g., by
low-fidelity approximations) to be able to perform HPO. To decrease the number of necessary
function evaluations, three scientists stated to have used manual tuning because they were able
to predict the influence of hyperparameter values on ML model performance. Given constrained
available compute resources and a sufficient degree of ML model understanding, scientists in this
study perceived manual tuning as superior to Bayesian optimization and random search.

Two interviewees chose HPO methods depending on the cost of the objective function they sought
to optimize (i.e., training of an ML model). The cost of the objective function refers to the amount
of compute resources required to evaluate a single point within the hyperparameter value space.
Similar to constrained compute resources, the interviewees chose manual tuning when faced with
too expensive objective functions. When the interviewees perceived their degree of ML model
understanding as high, they deemed manual tuning more efficient.
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HPO method traceability refers to the extent to which a sequence of sample points can be
backtracked or predicted by the practitioner, which requires that the selection of samples by the
HPO method is comprehensible for and reproducible by practitioners.

HPO setup readiness refers to the degree to which HPO tools and test environments are ready
to use (e.g., preinstalled HPO tools on the cluster). Some study participants stated that they were
unwilling to set up new HPO tools but preferred to use already set up tooling, regardless of the
quality produced by the corresponding HPO method.

Parallelization possibilities of HPO methods refers to the degree to which independent ML models
can be simultaneously evaluated. Parallelization possibilities can be constrained by, for example, too
few software licenses. Two interviewees chose Bayesian optimization if parallelization of HPO was
not possible due to a misconception of the sequential process in Bayesian optimization. Another
interviewee stated that they chose Bayesian optimization if their objective function is expensive
and HPO parallelization is not possible.

Search space size refers to the number of possible hyperparameter combinations. The interviewees
stated that the number of hyperparameters included in the HPO impacted their decisions for
HPO methods. For example, they stated to opt for random search over grid search and Bayesian
optimization if the number of hyperparameters is large.

Usability of HPO tools refers to the perceived ease with which practitioners can achieve their goal
by using an HPO method and corresponding implementations. Interviewees from industry remarked
that many advanced HPO tools may be useful for academic purposes but lack the necessary level
of maturity to be viable in practice. Within the scope of usability, practitioners demanded more
automation of cumbersome tasks in HPO such as infrastructure orchestration:

“What beats everything for me is that I have a dashboard that’s somewhere in the cloud that
orchestrates my various agents, where I can sort of say online, ‘Start another agent on this
machine,’ or that on the machine I just have to say, ‘Start another agent on this sweep here, and I
don’t have to worry about the agents talking to each other or having a shared database running
on some cluster. This functionality, it overrides everything. If I had some mega highly optimized
Bayesian optimization tool that didn’t have that functionality, I wouldn’t use it.”

—Interviewee #14, ML Innovator in Industry

The results of the survey study show that each contextual factor influenced at least 70% of the
participants in selecting HPO methods (see Figure 4). More than 85% of the survey participants
considered the decision factors personal experience, search space size, and available compute resources
when selecting HPO methods. The contextual factors least considered are acceptance of advanced
methods, tension for resources, and parallelization possibilities. They were only relevant for less than
75% of survey participants in their past ML projects. The remaining contextual factors from all
three themes, including shared opinions, model comprehension, and HPO method traceability, have
been considered by 75-85% of the survey participants.

The identified contextual factors are of different self-perceived relevance for the selection of
HPO methods (see Figure 5). The self-perceived relevance of contextual factors is interdependent
with the consideration of contextual factors. Usability of HPO tools and search space size are the
most relevant contextual factors, closely followed by available compute resources and HPO setup
readiness. Other relevant contextual factors are personal experience, cost of the objective function,
and the HPO method and ML model comprehension. All contextual factors associated with the social
environment are less relevant to survey participants, with tension for resources being considered
the least.

Figure 6 illustrates the self-perceived relevance of contextual factors for each of the HPO meth-
ods in the scope of this study. The survey participants considered available compute resources,
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Fig. 5. Overview of the average self-perceived relevance of contextual factors. Results are reported on a scale
from 0 (very low) to 5 (very high). Blue lines indicate error bars of one standard deviation (SD).

search space size, acceptance of advanced methods, and cost of the objective function mainly when
selecting Bayesian optimization. This aligns with commonly cited reasons in the literature for using
Bayesian optimization [27, 43, 76]. The selection of grid search was mostly influenced by usability
of HPO tools, HPO setup readiness, and search space size with similar results for random search. A
potential explanation could be the availability of these HPO methods in established and publicly
available ML libraries like scikit-learn. Moreover, survey participants considered their personal
experience, ML model comprehension, and HPO setup readiness most relevant when selecting manual
tuning, making own knowledge more important than technical environment. This indicates that the
relative importance of contextual factors in a specific instance leads to different selections of HPO
methods.

4.2 Perceived Success of Using HPO Methods to Achieve Specific Goals

Practitioners seem to have diverse and individual motivations for using specific HPO methods.
However, these choices do not always lead to the desired outcomes. To distinguish between
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Fig. 6. Overview of the average self-perceived relevance of contextual factors per HPO method. Results are
reported on a scale from 0 (very low) to 5 (very high). Blue lines indicate error bars of one SD.
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Fig. 7. Self-reported success rate per goal by the 49 survey participants.

successful and unsuccessful experiences of practitioners in using HPO to reach their goals, we
asked the study participants to what extent they perceive they have reached which goals using
what HPO methods.

Figure 7 shows the success rate per goal perceived by the survey participants. Roughly 75% of the
participants responded to have successfully increased ML model performance, complied with target
audience, increased ML model understanding, or satisfied requirements. Industry participants were
successful in trying to satisfy requirements or comply with target audience; 67% of the participants
stated that they were able to achieve the goal decrease practitioners effort. Only 62% of participants
considered themselves successful at reducing computational requirements.

The self-perceived success rates strongly vary between combinations of goals and HPO meth-
ods (see Figure 8). Survey participants reported lower success rates in reducing computational
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Fig. 8. Self-reported success rates per goal-method combination by the 49 survey participants.

requirements when using manual tuning, grid search, or random search. They perceived them-
selves as rather successful in reaching this goal when using Bayesian optimization or evolutionary
algorithms. Decreasing practitioner effort was best achieved using grid search or random search
according to the survey participants. Bayesian optimization and evolutionary algorithms were
perceived as less effective in decreasing effort. A potential explanation could be that those HPO
methods often require more effort to be set up compared to others [50]. Moreover, participants also
perceived manual tuning as ineffective in decreasing their efforts. Participants perceived manual
tuning as very helpful to increase ML model understanding. Even though Bayesian optimization is
considered a black-box optimization technique [24], it was also perceived as suitable to increase
ML model understanding. Random search, grid search, and evolutionary algorithms were per-
ceived as unsuitable for increasing ML model understanding. Most participants did not perceive
noteworthy differences between the effectiveness of HPO methods to successfully increase ML
model performance and to satisfy requirements. Only evolutionary algorithms were perceived as
significantly more successful in trying to satisfy requirements. Survey participants successfully
used grid search, random search, evolutionary algorithms, and Bayesian optimization to meet
the expectations of their target audience. Manual tuning was applied with lower success rates for
this goal.

5 Discussion

The results presented in the previous section offer novel insights into how practitioners use HPO
methods. In this section, we highlight and discuss the principal findings from those insights. We
describe how the results of this study contribute to more user-centric development of HPO methods
and tools, explicate the limitations of this study, and outline future research directions.

5.1 Principal Findings

Besides improving ML model performance, practitioners are most interested in reducing the number
of necessary computations and their personal effort required for HPO, which reflects the basic
motivation for development of HPO tools [84]. To decrease necessary computations, the study
participants predominantly used Bayesian optimization. The frequent use of Bayesian optimization
to decrease necessary computations suggests that practitioner perceptions of the benefits of Bayesian
optimization are coherent with its benefits empirically shown in prior research [80].
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Notwithstanding the high sample efficiency of Bayesian optimization, some practitioners prefer
to use manual tuning to decrease the number of necessary computations. In particular, if practi-
tioners assume that their ML model understanding is high, they expect to outperform Bayesian
optimization. Yet, it is difficult to compare manual tuning to programmatic HPO methods due to its
reliance on a mixture of explicit and implicit knowledge that often cannot be fully extracted from
observations of practitioner actions. One way to leverage ML model understanding could be to
integrate practitioner priors on the location of well-performing hyperparameter configurations
into Bayesian Optimization effectively warm-starting optimizations [44, 58, 76].

In addition to well-established goals pursued in HPO, this study presents a multitude of goals
pursued by practitioners that are less emphasized in research on AutoML. Practitioners have
strong motives for HPO beyond improving ML model performance. For example, the results of
this study show that various practitioners are interested in better understanding their subject
of work, including HPO methods and ML models, prior to using them. To better understand
ML models, most practitioners chose HPO methods they understood over methods they would
have to study first. This led practitioners to opt for manual tuning instead of programmatic HPO
methods. Many participants perceived programmatic HPO tools as unsuited to increase ML model
understanding. Although numerous software packages for advanced HPO methods are available
for out-of-the-box use without requiring an understanding of their internal workings (e.g., Optuna
[1] and SMAC3 [55]), practitioners appear reluctant to adopt HPO methods they do not fully
understand. Practitioners tend to rely on their own knowledge rather than giving up control to
insufficiently understood ML models and HPO tools.

Various software tools have been designed to help practitioners increase ML model understanding.
Such tools, predominantly HPO tools in AutoML, mainly focus on supporting measurements of
influences of hyperparameter configurations on ML model performance (e.g., [5, 41, 62, 71]). With
a focus on HPO methods, especially tools for visual analytics are envisioned to support a better
understanding of internal behaviors of HPO methods by visualizations (e.g., [6, 34, 69, 92]). Despite
the existence of such tools, practitioners tend to prefer to use manual tuning, which may have
different reasons. The first reason may be that practitioners are unaware of HPO tools that can
help increase ML model understanding. Another reason may be that HPO tools do not fulfill the
information needs of practitioners to increase ML model understanding because HPO tools mainly
focus on performance of ML models, which, as shown in this study, is only one practitioner motive
in HPO. A third reason may be that the functioning of HPO tools themselves is hard to comprehend
for practitioners (e.g., because such HPO tools implement unfamiliar and complex HPO methods),
which leads practitioners to prefer HPO methods they are familiar with.

The results presented in this study provide an aggregated view of practitioner motives in using
HPO methods. Although our analysis did not reveal distinct personas with significantly different
usage patterns, our results highlight nuanced variations in how practitioners engage with HPO
methods. Specifically, we observed that the importance of goals and the use of HPO methods
remained relatively consistent among practitioners, regardless of their experience, age, or education
level. However, our findings indicate that contextual factors play a more prominent role in shaping
the approaches of practitioners from academia versus those from industry (see Figure 9). Contrary
to practitioners from industry, for example, academics tend to avoid using HPO methods that are
difficult to integrate into workflows or require prior training. This especially applies when using
complex HPO methods, according to the study participants.

To make the achievements of techno-centric HPO research more actionable in practice and
to support development of novel and more user-centered HPO tools, it is essential to integrate
practitioners’ motivations for HPO into the tool development process. In response to calls for more
human-centered AutoML [51, 56, 78, 87], we propose improvements to programmatic HPO methods
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Fig. 9. Relevance of the identified contextual factors in academia and industry.

based on our findings to complement technological advances in AutoML, which primarily focus on
conventional performance metrics, by incorporating social aspects.

Increase ML Model Understanding. The inspection of frequent HPO method and goal combinations
revealed that increasing ML model comprehension is the only goal with a strongly higher association
with manual tuning than programmatic HPO methods (see Figure 3). A potential explanation could
be that established HPO tools usually focus on finding the best-performing hyperparameters and
do not provide details of other interesting hyperparameter values tested [87, 92]. To overcome this
limitation, HPO tools should generate reports on the behavior of different ML models, for example,
the importance of individual hyperparameters. For the generation of such reports, many methods
are already available, such as functional ANOVA [41], ablation [5], importance of local parameters
[6], partial dependence plots [62], and symbolic regressions [71]. Alternatively, HPO tools could
provide additional insights about ML model behavior. Especially for more complex search spaces
used for building complete ML pipelines, information about the transformation of input data can
additionally help increase ML model understanding [92]. Including such reports in HPO tools can
facilitate leveraging the benefits of advanced HPO methods (e.g., high sample efficiency) while still
helping practitioners to increase ML model understanding.

Explain HPO Method Internals. The results of this study show that a key barrier to the adop-
tion of advanced HPO methods is the perceived lack of transparency (in terms of HPO method
traceability) and interpretability (in terms of HPO method comprehension), which affects the use
of programmatic HPO tools (see Figure 6(a)). HPO tools should provide more support explaining
their internal behavior to make them better comprehensible to practitioners. An easy approach
would be simple visualizations of the hyperparameter values that were evaluated using parallel
coordinates plots [34]. More sophisticated approaches could present information about the internals
of their optimizers, for example, the surrogate model in Bayesian optimization [6]. Such measures
could help educate practitioners about HPO methods and increase practitioners’ confidence in the
functioning and merits of programmatic HPO tools.

Integrate ML Model Understanding of Practitioners in HPO. Figure 6(c) shows that ML model
comprehension is an important contextual factor for preferring manual tuning instead of a pro-
grammatic HPO method. Similarly, multiple interviewees mentioned that they prefer manual tuning
when they are confident in predicting the impact of hyperparameters on the ML model behavior.
To harness this knowledge, HPO tools should enable practitioners to incorporate their relevant
knowledge of the behaviors of ML models into HPO tools prior to HPO on a case-by-case basis,
tailored to goals like improve ML model performance. For example, practitioners could specify
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their perceived hyperparameter importance and influence between hyperparameters. Furthermore,
ML models comprehension of practitioner could be directly incorporated into the search strategy
of HPO methods, for example, to reduce search spaces [87] and better use available computing
resources (the most important contextual factor for Bayesian optimization in Figure 6(a)). Promising
work in this direction includes methods for integrating prior knowledge into Bayesian optimization.
This can be achieved by directly specifying priors about the location of the optimum [44, 52, 67, 76],
or structural priors, for example, in the form of log-transformations of hyperparameters [42],
monotonicity constraints [53], or hyperparameter warping [75].

5.2 Contributions

The primary goal of this research is to inform the AutoML community and the human-computer
interaction (HCI) community about practitioners’ motives for using HPO methods. By bridging
human-centered perspectives from the HCI community with technical advancements from the ML
community, this work makes three key contributions to the development of more effective AutoML
tools.

First, we offer a conceptual foundation that outlines why practitioners use HPO methods. This
foundation comprises six core goals (e.g., improving ML model performance, aligning with a target
audience) and 14 contextual factors (e.g., compute resource availability, traceability of HPO methods)
that influence choices of practitioners. From the perspective of HCI, the conceptual foundation
enables more user-centered HPO research by supporting better understanding of practitioner
motives. It supports research on human-in-the-loop ML by helping define information needs (e.g.,
related to improving transparency in HPO tools) and designing better practitioner engagement
strategies for different HPO methods. From a technical perspective, researchers focusing on HPO
tool development can leverage these insights to build HPO methods and HPO tools that extend
beyond performance optimization. Future HPO tools could be designed to be more context-sensitive,
improving their adaptability and utility. Additionally, the identified goals can inform design of
benchmarks for evaluating HPO tools in terms of compute resource efficiency and automation
levels, rather than focusing ML model performance.

Second, we present a mapping between goals, HPO methods, and contextual factors, offering
insights into why practitioners choose specific HPO methods. This mapping helps align HPO tool
development with real-world practitioner needs. From the perspective of HCI, this work supports
better understanding of the decision-making process for HPO methods, enabling the design of more
intuitive, goal-driven HPO tools. This is useful to develop tailored automation features that cater to
specific goals and contextual factors. From a technical perspective, the mapping presents key input
parameters (e.g., priority of goals and contextual factors) that can be leveraged in development of
HPO tools. For instance, specialized HPO tools could be designed to optimize specific contextual
factors rather than using one-size-fits-all approaches.

Third, we present an overview of how practitioners perceive the success of different HPO
methods in different contexts. The overview highlights areas where existing tools meet expectations
and where improvements are needed. From the perspective of HCI, understanding practitioners’
perceived success helps inform the design of better decision-support systems for HPO. It also
enables development of novel interaction concepts that improve how practitioners select and use
HPO tools. From a technical perspective, by analyzing self-reported success across different goals
and contextual factors, we support a better understanding of the strengths and weaknesses of HPO
methods. This can guide the development of new HPO methods tailored to specific workflows,
practitioner goals, and technical constraints.
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5.3 Limitations and Future Work

We performed semi-structured interviews in a qualitative and explorative research approach.
Interview results strongly rely on interviewees’ knowledge, perceptions, and capabilities to verbalize
responses to questions—common sources for biases. We aimed to decrease biases in data gathering
and data analysis by reaching out to a variety of practitioners with different levels of experience
and work fields. Moreover, we aimed to decrease bias in the analysis of gathered data as multiple
analysts independently coded the interview transcripts and discussed their results to agree on a
shared understanding. However, despite these efforts, we cannot fully guarantee exhaustiveness
and elimination of biases. Additional goals and contextual factors may be relevant to practitioners.
Future research could extend this work to uncover additional goals and contextual factors that
were not mentioned by the participants of this study (e.g., size of training datasets).

The results presented in this work hint at possible conflicts between goals and contextual factors.
Practitioners must resolve such conflicts to succeed in HPO, which entails prioritizing goals and
assessing the relevance of contextual factors. A possible conflict can arise when practitioners aim
to “decrease necessary computations” and “increase ML model performance.” Practitioners may
attempt to find a Pareto-optimal achievement of both goals based on a clear prioritization. This
work offers a foundation of goals and contextual factors that can lead to tradeoffs and call for
prioritization of goals. Future work should investigate relationships between goals and contextual
factors to uncover such tradeoffs and investigate how practitioners resolve them (e.g., in terms of
prioritization).

Future investigations into human decision-making in HPO represent a promising research direc-
tion that could improve AutoML by incorporating human knowledge [40, 78, 86]. The practitioners
we interviewed described actions they took during HPO that were independent of the specific
HPO methods used—such as selecting a promising subset of hyperparameters to tune and defining
appropriate search ranges.

Most interviewees followed similar procedures when choosing HPO methods, selecting hyperpa-
rameters, and configuring tuning strategies. Given that they reported successfully achieving their
goals, this consistency suggests the existence of best practices for HPO-related tasks. Since many
participants reported making these decisions largely unconsciously yet still achieved satisfactory
outcomes, identifying the cognitive heuristics used in practitioners’ decision-making [28, 29] holds
great promise for advancing the automation of HPO within AutoML.

Understanding the functional heuristics practitioners use in HPO could lead to deeper insights
into their decision-making processes. This, in turn, could inform the development of AutoML
systems that are capable of automating complex tasks by emulating human reasoning in a resource-
efficient way. Furthermore, such heuristics could contribute to the design of more effective and
efficient HPO tools.

6 Conclusion

While programmatic HPO methods, such as Bayesian optimization and evolutionary algorithms,
achieve high efficiency of the HPO process, practitioners sometimes opt for efficiency-wise inferior
HPO methods, such as grid search and manual tuning. To understand practitioner motives for
using HPO methods, we performed a two-step research approach consisting of semi-structured
interviews and a survey based on an online questionnaire. We identified six principal goals pursued
by practitioners in HPO, such as decrease practitioner effort, decrease necessary computations, and
increase ML model understanding. Moreover, we extracted fourteen contextual factors that influence
practitioners’ decisions for using HPO methods, such as available compute resources, HPO method
traceability, and parallelization possibilities.
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By bridging the gap between technological advancements and practitioner motives to use HPO
methods, this work contributes to enhancing HPO practices and tools in the context of AutoML. In
particular, the results of this study can guide development of more user-centered HPO methods
and HPO tools that cater to practitioner motives.

This work calls for more user-centered research on HPO, particularly on exploring purposeful
ways to involve practitioners in programmatic HPO methods, decision-support systems for HPO,
and enhancing transparency and comprehensibility of programmatic HPO methods. We will build
on the findings presented in this work and seek to identify functional human heuristics [28]
applied in HPO. After identifying human heuristics (e.g., [33]), we aim to implement them in
algorithms for AutoML and evaluate those algorithms in comparison to the performance of human
decision-making and less human-centered HPO tools.
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Appendix
A Interview Guide

The following presents the interview guide that we used in the semi-structured interviews.

A.1 Briefing

Dear study participant,

Thank you for supporting our research on HPO in ML with your time and expertise. The interview
will take about 30 minutes of your time. All data collected will be treated confidentially and
reported only in aggregated form. Your responses will not be linked to your identity in any future
publications.

HPO is an increasingly important topic in ML research, as it helps enhance model performance
and enables objective comparisons of ML methods. In this study, we define HPO as the process of
iteratively improving hyperparameter configurations during ML model training. A hyperparameter
is a parameter whose value controls the learning process.

Various tools and ML libraries (e.g., Keras Tuner) support automated hyperparameter optimiza-
tion. However, it remains unclear why practitioners often do not use advanced automated HPO,?
and in which contexts manual HPO may even outperform automated optimization and vice versa.
Our goal in this study is to understand the motives of practitioners for choosing different HPO
methods.

$Xavier Bouthillier and Gaél Varoquaux. Survey of machine learning experimental methods at NeurIPS2019 and ICLR2020.
[Research Report] Inria Saclay Ile de France. 2020. https://hal.science/hal-02447823/document.
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All questions in this interview relate to your personal experience in ML, including the HPO
methods you have used for hyperparameter optimization. To obtain detailed information on your
work and its context, we ask you to refer to one ML model you developed for productive use in
academia or industry. If possible, please provide a link to the publication or associated repository
(e.g., GitHub).

The remainder of the interview is structured into three sections:

(1) Hyperparameter Optimization in Machine Learning. We will discuss the ML project you will
reference in your responses and seek to understand your choice of HPO methods.

(2) Participant Background and Personal Experiences. We will ask about your demographics,
background, and expertise in HPO and ML.

(3) Debriefing. We will summarize the key findings from the interview and outline the next
steps.

While we have prepared several questions, we welcome any additional insights you wish to
share.

We appreciate your participation and encourage you to share your experiences and perspectives
on HPO approaches. There are no wrong answers.

Thank you again for your time and participation!

A.2 Hyperparameter Optimization in Machine Learning

This section is divided into two subsections. First, we will ask you to select one of your previous
ML projects to focus on during the interview and to describe the HPO methods you used. Second,
we will ask about your reasons for choosing these methods.

A.2.1  Hyperparameter Optimization in a Selected ML Project.

Details on Machine Learning Model. In the interview, we would like to refer to one of your
previous ML projects. Please select an ML project that was meant for productive use in academia
or industry and where you optimized hyperparameters.

(1) Optional: To which repository refer your following answers? Please provide the link to the
repository of your model.
URI:

(2) In case your repository includes multiple models: please provide information to which exact
ML model your following answers will refer.

(3) Was you ML model empirically evaluated (e.g., in the form of a benchmark)?
OYes 0ONo

Optimization Approach. Next, we want to learn more about how you tuned hyperparameters of
the selected ML model.

Interviewer Instruction: Question 4 must be answered “Yes” Otherwise, the interviewee must
not participate in the study.

(4) Did you optimize the hyperparameters of the model selected for this interview?
OYes 0ONo
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(5) How did you tune your hyperparameters? If you have used a combination of different HPO
methods, name all methods used.
Exemplary answers are Bayesian optimization, grid search, manual tuning, and random search.

A.2.2  Motives to Use the Selected Hyperparameter Optimization Methods.

Interviewer Instruction: This section builds on the responses from the previous section. The
used HPO methods determine whether the questions need to be inverted by using “(not),” as
indicated in the following questions.

In the previous section, you indicated the HPO methods you used for your ML model: [LIST
OF USED HPO METHODS]. We are now interested in your reasons for choosing these methods, as
well as the advantages and disadvantages you experienced. We value your personal experiences
and will not judge your responses—there are no wrong answers.

(6) Which goals (e.g., increase ML model comprehension) did you try to reach through HPO by
the chosen methods? A goal is an idea of the future or desired results where the achievement
of the idea is decidable. If multiple HPO methods have been used, please explain in which
order you used them and explain the individual goals you tried to achieve.

(7) What potential advantages and disadvantages regarding the achievement of the described
goals are you aware of with respect to the (combination of) HPO methods you have chosen?
What potential advantages and disadvantages did you encounter in achieving these goals
with the selected HPO methods? If you used multiple HPO methods, please specify which
method each advantage and disadvantage refers to.

(8) Why did you (not) choose random search? Please consider contextual factors (e.g., limited
compute) and goals (e.g., improve model comprehension).

(9) Why did you (not) manual tuning for HPO? Please consider contextual factors (e.g., limited
compute) and goals (e.g., improve model comprehension).

(10) Why did you (not) grid search for HPO? Please consider contextual factors (e.g., limited
compute) and goals (e.g., improve model comprehension).

ACM Transactions on Computer-Human Interaction, Vol. 32, No. 6, Article 59. Publication date: December 2025.



59:32 N. Kannengiefier et al.

(11) Why did you (not) choose Bayesian optimization for HPO? Please consider contextual factors
(e.g., limited compute) and goals (e.g., improve model comprehension).

(12) Which tools did you use for HPO? Exemplary tools are HPBandster, Hyperopt, Ray, spearmint,
and Ax.

(13) How could future research support you in optimizing hyperparameters?

(14) After you have helped us with your expertise, we would be grateful if you would share your
thoughts on the contexts in which automated HPO may outperform manual HPO and vice
versa.

A.3 Participant Background and Personal Experiences

In this section, we will ask you questions about your experience in Al to better understand the
context of your previous answers. Your personal information will not be disclosed in any way that
could identify you.

(15) What area(s) of Al do you focus on?
Exemplary answers are automatic speech recognition, computer vision, and NLP.

(16) What is your main activity in AI?
Exemplary answers are consulting, development of statistical methods, library development, soft-
ware solution development (i.e., using existing libraries and methods), and use case
development.

(17) What is/are your area(s) of expertise?
Exemplary answers are AutoML, parallel computing, or (un-)supervised learning.

(18) In which field do you work?
Exemplary answers are academia, automotive, finance, IT support and services, and pharma.

(19) How many years of experience do you have in ML?
O0<2 0O2-4 0O5-7 0810 0O11-15 0O>15
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(20) What is your highest educational level?

Exemplary answers are Bachelor of Engineering, Bachelor of Science, Master of Science, and
PhD.

(21) What is your profession?
Exemplary answers are big data engineer, developer, data scientist, and ML engineer.

(22) What is your position in your organization?
Exemplary answers are professor, PhD student, or lead software architect.

(23) What is your age?
O<20 0O20-25 0O26-30 0O31-35 0O36-40 0O41-45 0O46-50 0O51-55 O56-60
O61-65 0O >65

(24) In which country are you primarily working or employed?

(25) How many people are employed at your organization?
O0<10 ©O10-50 0O51-150 0©O150-500 ©O501-1,000 O 1,000
A.4 Debriefing

This is the final section of the interview. Thank you again for supporting our research with your
valuable time and expertise.

Interviewer Instruction: Please summarize the key findings from the interview.

(26) Would you like to receive a summary of the study results?

27) Do you know colleagues who might be interested in participating in this study? If yes, could
y g g p pating yilty
you please connect us with them?

Interviewer Instruction: Outline the next steps.

We have now reached the end of the interview. Thank you very much for your participation
and support!
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