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1 Introduction

Driven by the desire to understand its surroundings, humankind has developed a great
many of theories on various aspects of nature. Over time, these theories have evolved
through rigorous experiments and continual refinement. As the theoretical predictions
become more and more precise, probing them tends to require increasingly sophisticated
experiments.

In the descriptions of processes at smallest scales, this progress has lead to today’s
standard model (SM) of particle physics, which describes the elementary particles and
their interactions with remarkable accuracy. The Large Hadron Collider (LHC) in Geneva,
Switzerland provides an experimental environment to probe the SM, thereby helping to
advance our understanding of nature at the smallest scales. It does so by accelerating
protons in two counter-rotating beams and colliding them at four major experiments, one
of which—the Compact Muon Solenoid (CMS) detector—is used throughout this thesis.
With each proton reaching ultra-relativistic energies of 6.8 TeV, these collisions can produce
high-mass, short-lived particles, such as the W* and Z bosons. These three bosons mediate
the weak interaction within the SM; the W* bosons are, for instance, responsible for 3
decays in atomic nuclei. As the name suggests, the weak interaction is characterized by a
relatively low occurrence rate compared to the other fundamental forces. To enable precise
studies of such rare processes, the LHC is optimized not only for high beam energies but
also for high collision rates.

A large share of the studies conducted with the CMS experiment focuses on unstable
particles, whose defining characteristic is their decay into lighter particles. To reconstruct
the properties of these short-lived particles, it is essential to measure their decay products
with high precision. One such product that frequently appears in decays of massive unstable
particles is the muon. Although the muon is unstable itself, it typically lives long enough
to be detected by the CMS experiment with high efficiency.

Probing the SM or theories beyond usually involves statistical hypothesis testing, where
theoretical models are translated into expected signatures using detailed simulations of
both the physics processes and the detector response. Despite the high accuracy of
these simulations, residual differences between the simulation and the real measurement
often remain. Given the high precisions reached in modern measurements, even subtle
mismodeling in the detector description can affect the outcome of hypothesis tests by
introducing systematic effects. To mitigate this, residual differences in the description
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of simulated and measured muons need to be addressed. One major contribution of this
thesis is the precise calibration of muon transverse momenta to mitigate such residual
discrepancies.

The motivation for the muon calibration sparked in the context of the analysis of a dataset
corresponding to an integrated luminosity of 5.01fb~! [1]. This dataset was collected
early in Run 3 of the LHC, which began delivering proton-proton (pp) collisions at the
unprecedented center-of-mass energy of 13.6 TeV—just four days after the start of this
thesis in July 2022. Following the second long shutdown (2018-2022), it was essential to
start analyzing the new data early on in order to identify and correct potential issues in the
detector response before recording the bulk of the data. To this end, and to probe the SM
at high precision, the inclusive cross sections of W* and Z boson production are measured
in this thesis. Furthermore, their ratios are studied, offering high sensitivity towards the
description of the proton’s substructure. These measurements focus on the muonic decay
channels of the bosons, further motivating the need for a precise calibration of the muon
momenta.

This thesis starts by placing the work in the broader context of the CMS Collaboration
and outlining my specific contributions in Chapter 2. Then, Chapter 3 introduces the SM,
which is later probed through the cross section (ratio) measurements. The experimental
environment provided by the LHC and the CMS detector is described in Chapter 4. In
addition, Chapter 5 introduces statistical methods that are central to many aspects of this
thesis.

Building on this foundation, the main contributions of this thesis are presented. The first
major contribution is the precise calibration of muon momenta in LHC Run 3, discussed in
Chapter 6. This chapter provides a robust understanding of muons in the CMS experiment,
setting the stage for the cross section measurements of W* and Z boson production with
muons in the final state, as detailed in Chapter 7. Finally, Chapter 8 provides a summary
and an outlook on future developments.
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Data analyses in high-energy physics, such as those conducted in this doctoral thesis, are
a massive collaborative effort. The LHC, which provides the particle collisions essential
for studies with the CMS experiment, was built, and is operated and maintained by the
Conseil européen pour la recherche nucléaire (CERN) accelerator departments. The CMS
experiment itself was built, and is operated and maintained by the CMS Collaboration.
Furthermore, the collaboration produces the simulated and recorded datasets, which are
processed using the infrastructure provided by the Worldwide LHC Computing Grid. The
software environment necessary for the studies with CMS data also plays an important role
and is created and maintained largely by the collaboration. Thus, numerous individuals are
involved in any data analysis, which is reflected by the number of close to 2000 scientific
authors in the CMS Collaboration [2].

This effort relies on the dedication of every member of the CMS Collaboration. To support
the continuous data taking and processing of the CMS experiment, I contributed as a
technical shifter in the CMS control room for multiple shift-blocks in 2023 and 2024, and
as a GridKa shifter in 2022 and 2023.

Moreover, I was involved in the CMS MUO group, which focuses on understanding the
behavior of muons in the CMS detector and improving their description in simulation. Based
on the expertise developed during the W* and Z boson cross section measurement, I led the
effort toward muon pr scale and resolution corrections in Run 3. As the persons responsible
for the correction in previous runs did not continue their effort—and as the existing
corrections had been derived in a private analysis framework that was not provided to the
collaboration—we restarted the calibration procedure mainly based on the information
provided in Reference [3]. During this period, the code base was developed from scratch
by a master’s student, Dorian Guthmann, whom I co-supervised, and myself, and we
ultimately made it available to the collaboration. In particular, I constructed the software
architecture, participated in code development, and optimized the code with respect to
performance. I also proposed a simplification of the uncertainty calculations, developed
the relevant code, and co-supervised a bachelor’s student to evaluate the performance of
the simplified method.

Furthermore, as a muon L3 convener responsible for muon calibration and commissioning, I
co-maintained the code of the tag-and-probe (TnP) tool, which enables the analysis-specific
estimation of muon efficiency scale factors in the CMS Collaboration.
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When I joined the cross section measurement effort, a significant part of the preparation had
already been done by Dr. Minseok Oh, especially the general workflow of event selection,
correction, and fit setup. My first major contribution to the analysis was the precise
calibration of the muon momenta, which became essential with the new data and sparked
the interest in the muon service work. After Minseok left the analysis group, I took over
responsibility for the analysis. Together with the analysis contact, Dr. Nils Faltermann,
we worked closely to understand every detail of the analysis and quickly pushed an already
well-understood part of the measurement (the cross section of Z boson production) to
a preliminary publication [4]. Dr. Xunwu Zuo provided the theoretical cross section
calculations, which served as both input to the measurement and a benchmark for the
results.

The majority of the work, however, was focused on the other part of the measurement,
where the undetectable neutrino poses greater challenges to the precision measurement.
On the way to the publication of the full work [5], we placed even more emphasis on
understanding the details of the measurement. In this phase, I made the main contributions
in optimizing the corrections, which included, in particular:

o detailed studies of different pileup correction techniques, ultimately implementing
the pileup corrections, which are centrally provided by the collaboration,

e extracting and incorporating the boson momentum corrections,

e calculating the muon efficiency corrections and implementing the muon trigger
inefficiency correction, which was provided by the collaboration,

¢ deriving the azimuthal corrections of the missing transverse momentum and providing
both the corrections and the derivation code to the collaboration,

e re-performing and improving the recoil calibration procedure, e.g., by implementing
the correlation with the pileup correction,

e improving the quantum chromodynamics (QQCD) estimation procedure, including both
idea and implementation to derive separate efficiency scale factors in the non-isolated
region.

Lastly, while a basic fit implementation was already available, I invested significant effort
in optimizing the selection process, implementing additional nuisance parameters, and
generally understanding its behavior.

In recent years, artificial intelligence tools have become integrated into various day-to-day
activities. This thesis also incorporates the use of such tools, particularly for specific coding
tasks and for grammatical or stylistic improvements of the text. More specifically, I used
ChatGPT! and Gemini? for both text and programming improvement. Additionally, Le
Chat? and Github Copilot* were used to assist with programming.

These tools provide substantial benefits, especially in efficient programming, improved
communication, and summarizing specific topics. However, I am aware of their potential
risks for research quality, particularly hallucination, bias, and research privacy, as outlined
in Reference [6]. T have therefore used these tools responsibly, including cross-checking
code suggestions and ensuring that text improvements do not introduce new information
beyond the original input—thereby maintaining highest research standards.

'OpenAl. ChatGPT. https://chat.openai.com/

2Google. Gemini. https://gemini.google.com/

3Mistral AL Le Chat. https://mistral.ai/

4GitHub. GitHub Copilot. https://github.com/features/copilot/
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The standard model (SM) of particle physics is a fundamental theory that provides the
mathematical framework for describing elementary particles and their interactions. It
accounts for all known fundamental particles and describes three of the four fundamental
interactions with remarkable accuracy. Section 3.1 provides an overview of the fundamental
particles and interactions as well as their mathematical description. In order to validate
the SM, it is essential to obtain predictions, such as cross sections, which can be tested
with experiments. For this reason, a conceptual introduction to such calculations is given
in Section 3.2. Even though the SM performs exceptionally well in the description of
interactions, there are some long-standing observations hinting at physics beyond the
SM. Such limitations of the SM are discussed briefly in Section 3.3. Explanations and
motivations provided in this chapter are inspired by References [7—11].

3.1 Particles and Interactions

In contrast to classical theories, the fundamental building blocks of the SM are quantum
fields. Rather than being clearly localized objects, particles are described as quantized
excitations of these fields, with a probability distribution determining their presence in
a given region of space-time. Interactions, in turn, arise from the coupling of matter
fields to gauge fields, which mediate the fundamental forces. These interactions occur
probabilistically and are dictated by the symmetries of the underlying gauge theory.

All fields in the SM transform under certain representations of the Lorentz group, following
from specific spin properties of the corresponding particle. Integer-spin particles are
called bosons and can be further classified as vector bosons (spin-1) or scalar bosons
(spin-0). Vector bosons mediate the fundamental interactions: the gluon mediates the
strong interaction, while the electroweak interaction is carried by the photon, as well as
the W* and Z bosons.

Fermions, on the other hand, are half-integer spin particles. They can generally be divided
into two groups—quarks and leptons—each consisting of three generations. Each generation
can then be divided into two subgroups, respectively. Quarks can be of either up- or down-
type, while leptons are neutral or charged with respect to the electromagnetic interaction.
An overview of all known fundamental particles, as well as their intrinsic properties, is
provided in Figure 3.1.
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q =+2/3
T,=+1/2

C

1.27 0% GeV

u

2.16 1242 MeV 4.67 2% MeV

125.25 317 GeV

80.4 GeV 91.2 GeV
q= 0 q
T,=+1/2 T,

Figure 3.1: Summary chart of the fundamental particles in the SM. Adapted from Refer-
ence [12] with masses from Reference [7]. Particles without a given mass are considered
massless in the SM. Masses without a given uncertainty value have an uncertainty smaller
than the given precision.

3.1.1 Mathematical Foundations

The fundamental framework for the mathematical description of the SM consists of the
Lagrangian density as well as assumed continuous symmetries. The Lagrangian density is
the generalization of the Lagrangian from classical mechanics to quantized fields, encoding
both their dynamical properties and their interactions. Symmetries of the Lagrangian
density are enforced by requiring its invariance under certain transformations, ensuring
that the physical behavior of the system remains unchanged. According to Noether’s
theorem [13], every continuous symmetry corresponds to a conserved quantity, and vice
versa. A prime example is translational invariance: if the system’s dynamics remain
unchanged under spatial translation, then momentum is conserved. Symmetries connected
to such transformations, which are independent of the space-time position, are called global
symmetries. In contrast, local symmetries depend on the space-time coordinates and are
therefore generalizations of global symmetries.

Such continuous symmetries can be described by the more abstract concept of Lie groups,
which are deeply connected to their corresponding Lie algebras. The elements of the Lie
algebra can be expressed as a linear combination of the basis elements 7%, which are called
generators and satisfy the commutation relation:

[T%, T = T°T" — T°T* = i f**°T°, (3.1)

where [ . , . | denotes the Lie bracket, and f®¢ are the structure constants of the algebra.
Elements of the corresponding Lie group can be obtained by exponentiating the Lie algebra
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elements. For the Lie groups U(n), which the SM relies on, this takes the simple form:
A(0) = exp (z Z 0“T“> , (3.2)

with real valued parameters 8. On the other hand, the generators of the Lie algebra can
be derived by taking the directional derivatives at the neutral element A(0) of the group:

o= -4y

o (3.3)

0=0

Consequently, the dimensions of the Lie group and the associated Lie algebra are identical
and reflect the number of generators. Moreover, following Noether’s theorem, the dimension
of the symmetry group is also equal to the number of conserved currents. Integrating a
conserved current over space-time yields a conserved charge, which defines a quantum
number associated with the symmetry group.

The connection between Lie algebras and Lie groups implies, that if and only if the structure
constants of the algebra are zero, the Lie group is abelian. This means that all generators
commute, and consequently, the order of applying different symmetry operations becomes
irrelevant.

For illustration of the impact of these mathematical concepts, consider a Lagrangian density
for a massless spin-1/2 field:

L = ipy" b, (3.4)

where 1 = T4, with 1 denoting the Hermitian conjugate (the combination of a complex
conjugation and transposition), d,, is the space-time derivative, and 7* are the gamma
matrices. The Lagrangian density in Equation 3.4 is constructed such that its Euler-
Lagrange equations reproduce the Dirac equation for a massless field. The application of
a global symmetry operation ¢ — U, where U is an element from a unitary Lie group,
leaves the Lagrangian density unchanged, as UTU = 1.

In contrast, consider now a local unitary transformation ¢ — U (x)1), where the transfor-
mation matrix U(x) = exp(iu(x)) is an element of a Lie group. Following the relation in
Equation 3.2, u(x) is a linear combination of the basis elements of the corresponding Lie
algebra, where the parameters depend on the space-time position x. Such a transformation
introduces a term that does not cancel:

£ = § (7B — 1 (). (3.5)

To avoid this behavior, the usual space-time derivative is replaced with the covariant
derivative D,, = 0, + iA,, where A, is called gauge field. If the gauge field transforms
like A, — A, — d,u(x), then the additional term in Equation 3.5 cancels. This example
shows the connection between the imposed local symmetry and the introduction of new
fields via the Lie group and its corresponding Lie algebra.

Assuming the gauge field itself is a linear combination of the generators A, (z) = Af(x)T*, a
gauge invariant quantity can be constructed by considering the commutator of the covariant
derivatives:

Fyw =i[Dy, D]
=0, A, — 0, A, —i[A,, A, (3.6)
a a a abc oAb gc
Fo, = 0,A% — 9,A% + foe AL AC,
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where in the last line a single component of the algebra is picked to illustrate the connection
with the structure constants. A Lagrangian density proportional to tr(F*”F),,) is invariant
under gauge transformations and yields the equations of motion for a massless spin-1 (vector)
field. If the dimension of the Lie group is n, then there are n independent contributions
to the gauge field, which are identified with one massless gauge boson each. The vector
field needs to be massless because additional mass terms proportional to mQAMA“ would
violate gauge invariance.

To summarize, imposing a local symmetry on the Lagrangian density leads to the intro-
duction of new massless gauge fields. The resulting terms, where different fields appear
together, can be interpreted as interaction terms, as they describe the coupling between the
fields. Specifically, for non-abelian groups, where the structure constants are non-vanishing,
the gauge fields can also interact with themselves.

3.1.2 Fundamental Interactions

In its symmetric state, the SM is assumed to be invariant under independent transformations
from three Lie groups—SU(3)¢, SU(2)r, and U(1)y—where the first is used for the
description of the strong interaction, while the latter two are the symmetry groups describing
the electroweak interaction.

3.1.2.1 Strong Interaction

The strong interaction is described by quantum chromodynamics (QCD) [14-16], a theory
based on the symmetry group SU(3)c. This symmetry corresponds to the exchange of
three color charges—red, green and blue—between quarks. The group has a dimension
of eight, meaning there are eight generators and independent contributions to the total
gauge field, which are called gluons. A commonly chosen set of generators are the eight
Gell-Mann matrices A*. With these matrices, and the corresponding gluon fields G¢, the

o
Lagrangian density of the strong interaction reads:
- - 1
EQCD = Z’lﬁi’yuau(gij’lﬁj + v 47Taswi’YM()\a)ijijZ — ZF“’“VFEV, (3.7)

where 6;; is the Kronecker delta with color-indices ¢ and j running from 1 to 3. Furthermore,
a is the strong coupling constant, and the field strength tensor of the strong interaction is
given by:

Ff, = 0,G% — 0,G% + ViAma f*° GG, (3.8)

with the structure constants fo¢ of the Lie algebra su(3).

Since the symmetry group of QCD is not abelian, gluons can interact with each other,
altering the effective behavior of the strong interaction at different energy scales. These
self-interactions can be absorbed into the coupling constant, which becomes energy scale
dependent. At small distances (high energy scales), the coupling constant is small, a behavior
known as asymptotic freedom, and allowing the use of perturbation theory [17-19]. At
large distances (low energy scales), the coupling constant increases, leading to confinement.
For these energy scales, perturbation theory is no longer applicable, and methods like
lattice QCD are used.

A practical consequence of this behavior is the formation of jets in hadronic events. When
a pair of color-charged particles is produced and moves apart, the strong coupling constant
increases with distance. As a result, the energy stored in the field eventually becomes
large enough to create new particle-antiparticle pairs. In high-energy strong interaction
processes, this leads to the production of multiple collimated particles, which cluster into
collimated structures known as jets.
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3.1.2.2 Electroweak Interaction

The electroweak (EWK) interaction is introduced by postulating local gauge invariance
under transformations of the SU(2); x U(1)y group [20-22]. The U(1)y symmetry is
generated by the conserved quantum number hypercharge Y and has dimension one. The
associated gauge field is denoted with B,,, and the coupling constant with ¢’. Using these
definitions, the corresponding terms in the Lagrangian density read:

qY

Ly =iy 0ptp + =5

_ 1 y
@07“1/13# - ZFM Fuw (3'9)

where the field strength tensor of the hypercharge symmetry is given by F),, = 0,58, —0, B,
reflecting the abelian nature of the symmetry group.

The SU(2) group, on the other hand, encodes the weak isospin symmetry (7') and has
dimension three, corresponding to the three gauge fields W/}72’3 . A set of generators are the
Pauli matrices o123, whose structure constants are described by the totally antisymmetric
Levi-Civita symbol f®%¢ = €2¢ With the coupling constant ¢, the Lagrangian density can

be written as:

_ _ 1
L1 = iy ) + %mﬂawwg — 1F" Fu, (3.10)

with field strength tensor
Fl, = 0,W — Wi + gf " WiWe. (3.11)

Similar to spin, creation and annihilation operators can be constructed, by convention
changing the third component of the weak isospin by +1:

ot = i( L¥io?). (3.12)

V2

The third generator o2 is diagonal and therefore does not change the isospin.

The SU(2) group is conventionally labeled with an index L, indicating that only left-handed
fermions couple to the weak-isospin gauge fields in the SM. In this context, “handed” refers
to chirality, an intrinsic quantum property of particles that is Lorentz-invariant but not
conserved for massive Dirac particles.

This parity-violating behavior is implemented by assigning left-handed fermions to weak
isospin doublets, while right-handed fermions are treated as isospin singlets. Consequently,
terms with isospin-singlets in Equation 3.9 remain present (except for right-handed neu-
trinos, as they do not carry hypercharge), whereas those in Equation 3.10 vanish. Mixed
contributions, corresponding to the coupling of a left-handed and a right-handed particle,
vanish in both equations—correctly reflecting that the gauge interactions preserve chirality.

According to the CPT theorem [23-25], the couplings of left-handed fermions and right-
handed antifermions (and vice versa) must be identical under the combined symmetry
operations of charge conjugation (C), parity transformation (P), and time reversal (T).
This symmetry is reflected in the fact that the CPT conjugates of fermions (i.e., anti-
fermions with opposite chirality) appear in the theory with the same weak interaction
structure. Thus, right-handed antifermions transform as isospin doublets, while left-handed
antifermions transform as isospin singlets.
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3.1.3 Higgs Mechanism

The SM as constructed up to this point is fully symmetric with respect to the assumed
symmetry groups. However, this symmetry requires all vector bosons to be massless fields,
which is in strong contradiction to the observed massive W+ and Z bosons. The Higgs
mechanism [26-29] can solve this contradiction by introducing additional fields and breaking
the electroweak SU(2); x U(1)y symmetry down to an effective U(1)ey, symmetry.

3.1.3.1 Electroweak Symmetry Breaking

The Higgs field is introduced as a complex scalar doublet of the weak isospin:

¢ = \}i (“j;) ; (3.13)

where ¢+ corresponds to an electrically charged complex Higgs field component, whereas
#° describes an electrically neutral complex Higgs field component.

The Higgs field enters the Lagrangian density via the term:
Litiggs = (Dud) | (D*¢) + 12016 — M9 9)?, (3.14)
EHiggs,kin *V((b)

where D, describes the covariant derivative of the electroweak interaction, yu and A are
real positive parameters, Lyiggs kin is the kinetic term of the Higgs Lagrangian density, and
V(¢) is the Higgs potential.

Due to the specific shape of the Higgs potential, which is illustrated in a simplified form
in Figure 3.2, the symmetry point of the potential does not coincide with its ground
state. Consequently, it is energetically beneficial to break the symmetry of the system.
As the gradient vanishes at the symmetry point, there is no preferred direction, making
the symmetry point a meta-stable state rather than a true ground state. However, in
a spontaneous process, the symmetry can be broken, lowering the potential energy and
leaving behind a stable state. The system’s ground state no longer occurs as the symmetry
point, but at one of the points along the circular symmetry of the potential, characterized
by a non-zero vacuum expectation value (VEV). After the symmetry breaking, the Higgs
field can be described in terms of a single radial degree of freedom and is often brought to
the following form using SU(2) gauge transformations:

1 0
¢ = 7 (U N h) ; (3.15)

where v = @ is the VEV of the Higgs field, corresponding to the point, where the potential
is minimized, and h reflects the remaining radial degree of freedom that corresponds to the
Higgs particle. The choice of an electrically uncharged VEV, where v is a real non-zero
value, reflects the fact that the universe is electrically neutral in its vacuum state. This
condition is consistent with the observation that the electromagnetic interaction remains
unbroken, as it is necessary for the mass of the photon to vanish.

In this broken state, the kinetic term of the Lagrangian density reads:

LvEv, kin = (Dud) ' (D"9)
i i N1 (0
(ot 55) 5 )

= 2l v - g7

2

1

(3.16)

10
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V(g)

Re(¢)

Figure 3.2: Higgs potential simplified to one dimension. The symmetry point is in the
center of the image at ¢ = 0. The symmetry can be broken spontaneously, when the state
moves to the energetically favored minimum at ¢g = v/v/2, called VEV. From here, the
Higgs field can oscillate around the VEV, as indicated by the small red arrows.

where terms related to the Higgs field h are not considered as they are not important for
the construction of the masses of the vector bosons. As the VEV does not depend on the
space-time position, the derivatives vanish. The result can be interpreted as mass terms
for the fields of the physically observed W+ bosons and the Z boson:

+ 1 2
WM = 72(WM q:ZWM),
. (3.17)
Z,= ———(gW>?—¢B,).
1 92+g,2 (g 7 g M)

By comparison with the general mass term for a spin-1 field B,,, which reads m2B£B”, the

mass of the W+ bosons is mﬁ, = 2, while the mass of the Z boson is mz = §+/g% + ¢2.

The massless photon field is finally given by the linear combination of W? and B which is
orthogonal to the Z boson field:

'W3+ gB,), (3.18)

NeErl

which is still massless as there is no mass term in the Lagrangian density and thus represents
the fully conserved U(1)em symmetry.

Finally, the remaining terms from the Higgs field in the Lagrangian density are considered.
The Higgs potential gives rise to the mass of the Higgs boson; for this only terms of order h?
are taken into account:
L 5 2, 1 4
V(h) = —gH (v+h)*+ Z)\(U +h)
= M?h? + O(# h?),

(3.19)

corresponding to a Higgs field with mass m;, = v2Av. Remaining terms give rise to
interactions between the Higgs field, the VEV and the gauge fields, which will be further
explained in Section 3.2.

11
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3.1.3.2 Yukawa Coupling

As mentioned before, left-handed fermion fields transform as an isospin doublet under
SU(2)r, whereas right-handed fermion fields transform as a singlet. In general, the Dirac
spinor consists of both left- and right-handed parts:

Y =L+ Yg, (3.20)

where the individual contributions can be extracted using the projection operator, con-
structed with the gamma matrix °:

vi =51 = ),
2 (3.21)
(S 5(1 +7°)0.

Consequently, the naive mass term in the Lagrangian density, which would reconstruct the
Dirac equation for a massive fermion, can be manipulated as follows:

ﬁmass = _quw

= —%Z((l =)+ (LN =)+ (1 +77)9
3.22
:_%[, (1=7")+ (147" 522

= —m[YrYr + Yrr),

since 7°~® corresponds to the identity matrix. Here, it is important to note that g
transforms as an isospin singlet, whereas vy, transforms as an isospin doublet. As a result,
the corresponding cross terms are not invariant under local SU(2);, gauge transformation
and thus violate gauge symmetry. To restore gauge invariance and allow for consistent
fermion mass generation, the naive mass term is typically replaced by the Yukawa interaction
term [30]. This mechanism couples the fermion field ¢ to the Higgs field ¢, and the resulting
Yukawa mass term takes the following form:

['Yukawa = *yfiLﬁzwa + h'C'7 (323)

where y; represents the Yukawa coupling constant associated with the fermion type in
question, and ‘h.c’ denotes the Hermitian conjugate terms. In contrast to the naive
mass terms, this Yukawa interaction preserves gauge invariance, because the Higgs field
transforms as an isospin doublet and therefore provides the necessary counterpart for the
fermion doublet. After symmetry breaking, the Higgs field acquires its non-zero VEV.
Inserting this into the Yukawa interaction term results in a simplified expression:

v —
Lvukawa = —%@ﬁ%w}g + h.c., (3.24)

where 1&% describes the second element of the left-handed fermion doublet doublet ¢, that
couples to the right-handed singlet 1 g. By comparison with the standard mass terms, this
leads to the generation of fermion masses of the size:

my =22 (3.25)

V2
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3.1.3.3 Quark Generation Mixing

A generalization from one quark generation to the observed number of three generations
can be implemented by absorbing the Yukawa coupling and the Higgs VEV into a mass
matrix M. Then, the Yukawa term for down-type quarks can be written as:

Lyukawa = —qrMaqr, (3.26)

where qr,/p = (dL /R SL/R bL/R)T. As there is no underlying principle prohibiting
interactions with the Higgs field between different generations, the mass matrix is, in
general, not diagonal. Introducing two well-chosen unitary matrices V; and Uy, the Yukawa
term can be expanded to

Lyukawa = — GrVa Vi MaUy Ut g, (3.27)
M~ ——,—
qr’ Mgiag R

where M;ﬁag is the diagonalized mass matrix, and ¢}, the corresponding mass eigenstates.
An analogous calculation can be performed for the mass terms of up-type quarks. If the
unitary matrices are different from identity, then this means that the mass eigenstates—the
physically observed quarks—are different from the eigenstates of the Lagrangian before the
electroweak symmetry breaking.

To assess the implication of this observation, the interaction terms of the Lagrangian can be
investigated. Due to the unitary property of the matrices, they cancel in interactions that
contain the same particle twice if the interaction is independent from the quark generation.
This is the case for the strong interaction, as well as for the part of the electroweak
interaction mediated by Z boson and photon.
However, interactions mediated by W+ bosons contain mixed terms of an up-type and
a down-type quark. While the W* coupling does not depend on the generation, the
mixed terms lead to a new contribution, the Cabibbo-Kobayashi-Maskawa (CKM) matrix
Vekw [31,32]:

quXqa = @V XVaql = @' X VIVaqy, (3.28)

——

VoM

where ¢, /q denote three-vectors containing the left-handed up- /down-type quark fields,
respectively. Note that the CKM matrix itself is unitary again and therefore allows for
rigorous consistency tests by measuring its parameters.

To summarize, the introduction of the fermion masses leads to generation mixing in the
charged currents of the weak interaction. This means that for interactions mediated by W+
bosons, there is a certain probability for interactions between quark mass eigenstates from
different generations. The size of the CKM matrix elements dictates this probability and is
generally small for transitions to and from the third generation, and larger for transitions
between the first and second generation. However, diagonal elements are overall dominant,
indicating that transitions between different quark generations are generally suppressed.

13
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3.2 Theoretical Predictions in the Standard Model

To probe the SM, it is crucial to derive experimentally accessible predictions. While some
of the parameters in the SM can be tested for consistency, e.g., the parameters of the CKM
matrix, a main connection between theory and experiments is the probability of certain
interactions.

3.2.1 Cross Section and Decay Width

Cross sections and decay widths both describe transitions between different states. While
the cross section quantifies interactions between two (or more) particles in the initial state,
the decay width is a property of unstable states. A common feature of both quantities is
their dependence on the probability amplitude M; for the transition from an initial state
7 to a final state f, which will be explained in greater detail in the next section.

A cross section is the rate of a defined set of scattering processes in relation to the effective
flux. A differential element of the cross section can be expressed in terms of the flux @, a
transition amplitude M, and the differential phase space volume dII:

da@-+13::éjA4ﬁFdH. (3.29)

Notably, four-momentum conservation leads to a restriction of the phase space which is
available to the final-state particles. By performing the integration over the phase space,
all allowed combinations of energy and momentum in the final state are considered.

If the scattering process proceeds via an intermediate, unstable particle, the cross section
shows a resonant behavior. The width I' of this resonance is inversely proportional to the
particle’s lifetime. If this width is much smaller than the mass of the intermediate particle,
the resonance can be approximated by a delta distribution. Under this ‘narrow width
approximation’ [33] the cross section factorizes into the production of the intermediate
particle X and its subsequent decay:

o(i— X = f)roli = X)BX = f), (3.30)

where o(i — X) denotes the production cross section, and B(X — f) is the branching
fraction describing the relative probability for the decay of X to the final state f.

Branching fractions can be determined by comparing the decay width I'y of a specific final
state to the total decay width:

(3.31)

Decay widths are intrinsic properties of particles and quantify the decay probability per
time interval. The partial width for a specific decay mode f is defined by:

1
I'y= %/‘MfXFdH? (3.32)

where m is the mass of the intermediate particle, and M yx and dII are defined as before.

The transition amplitude M plays a crucial role in both scattering and decay processes.
However, due to the complexity involved in its full calculation, approximations are usually
necessary. In high-energy physics, the most widely adopted approximation framework is
perturbation theory, which treats interactions as small corrections to a simpler system.

14
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3.2.2 Perturbation Theory

Since the Lagrangian density provides a comprehensive description of the dynamics of
states in the SM, the time evolution of any state can, in principle, be derived from it.
When examining transitions, the kinetic and mass terms of the Lagrangian density play a
relatively minor role, as they describe the propagation of a free particle between interactions.
The remaining terms in the Lagrangian density are collectively referred to as interaction
Lagrangian L. The time evolution of any quantum state [¢(t)) is given by the time
dependent Schrédinger equation:

10 |[0(t)) = H[9(t)), (3.33)

where H is the Hamilton operator and natural units (h = 1) are used. Assuming the
Hamilton operator is generally time-dependent and the time dependence of the state can
be extracted into a function U(t,tg), the simplified Schrodinger equation reads:

iU (t,tg) = H)U(t, to). (3.34)

Integrating over the time interval [to,t] gives:

t A
Ult,to) — Ulto, to) = | HEU(,to)dt. (3.35)
to
Since the initial condition is U (tp,t9) = 1, substituting this equation into itself iteratively
reveals a time-ordered exponential series, which can be compactly written as:

¢
Ut o) = ’7'exp<—i / ﬁ(t’)dt’). (3.36)
to

In this discussion, certain computational details—such as the time ordering of integrals
and calculations in the interaction picture—are neglected for clarity. However, since the
Hamilton operator can be expressed in terms of the Lagrangian density, the key conceptual
point remains: the time evolution of a quantum state is expressed as an infinite series,
fundamentally governed by the interactions defined in the Lagrangian density.

Finally, the transition amplitude for the transition from an initial state |¢) to a final state
(f| is given by:
M = (flU(t, o) |i) - (3.37)

The complexity in the calculation of this transition is determined by how often the
interaction terms from the Lagrangian density appear in the series expansion: The leading
non-trivial contribution, is referred to as leading order (LO). Subsequent corrections are
called next-to-leading order (NLO), next-to-next-to-leading order (NNLO), and so on,
based on the order of the term in the expansion. Since higher-order terms refine the result,
the precision of a calculation generally improves as more terms are included. However, each
additional term introduces more occurrences of the interaction terms from the Lagrangian,
making computations increasingly complex and resource-intensive.

Each term in the series can be graphically illustrated as a Feynman diagram by identifying
its constituents with a certain symbol. In such a diagram, each straight line corresponds
to a fermion, where an arrow indicates whether it is a particle or an antiparticle. Vector
bosons of the electroweak interaction are depicted as curvy lines, while gluons are shown
as curls, and the Higgs boson as a straight dashed line. Couplings between the different
fields are depicted as points.
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3.2.3 Details of Proton-Proton Collisions

Protons are compositions of quarks and gluons. Since the description of the proton is not
deterministic, the collisions of protons cannot be described deterministically either.

3.2.3.1 Parton Distribution Functions

A parton distribution function (PDF) f(x,Q?) provides the probability density to find a
specific parton within the proton carrying a momentum fraction x of the proton’s total
momentum, where the squared four-momentum transfer is given by Q2. Figure 3.3 shows
the different contributions at momentum transfers typical for collisions at the Large Hadron
Collider (LHC). At large values of x, the valence quarks dominate. However, due to vacuum
fluctuations, pairs of quarks and antiquarks can be created. The smaller the momentum
share, the larger the probability to find such quark pairs. Similarly, the probability to find
a gluon that is being radiated off rises with decreasing momentum share. At a typical
LHC center of mass energy of 13.6 TeV the creation of heavy particles such as the W*,
Z or Higgs boson with roughly 100 GeV mass requires a momentum share of less than
1%. At such momentum shares, gluons are the dominating partons. Consequently, at the
typical energy scales of the LHC, whenever allowed in terms of conserved quantities, the
production in the gluon channel usually dominates.

This is, for example, the case in Higgs boson production, where the dominant channel
is gluon fusion via a top-quark loop. In contrast, gluon-fusion production of W+ and
7 bosons requires more complicated diagrams to conserve both angular momentum and
the electroweak charges. As a result, this contribution to W* and Z boson production is
suppressed. Furthermore, W+ and Z boson production is not suppressed by small fermion
masses, allowing significant contributions from valence quarks. This leads to a preference
for Wt over W~ production at the LHC, since up quarks are more abundant in the proton
than down quarks.

In general, the dependence of the PDFs on the scale Q2 is predicted by perturbative QCD,
but there is no theory describing the behavior with respect to the momentum share x.
Consequently, the currently best way to find this behavior is by measurement. Because
of the known dependency on Q?, measurements at different energies can be combined to
put further constraints on the unpredicted part. The uncertainties connected to these
measurements, as well as the uncertainties in the theoretical descriptions have to be
considered when calculating the total cross section.

Ultimately, the total cross section for the production of a state f in proton-proton (pp)
collisions can be expressed as:

1 1
Opp—sf = ZZ/O df'«“i/o dxjfi(xiaMF)fj(xijF)/daij%f(HRa/lF)- (3.38)
i

Here, up and pr denote the factorization and renormalization scales, respectively. The
factorization theorem provides a framework to separate short-distance (perturbative) from
long-distance (non-perturbative) QCD effects, where the artificial boundary between both
domains is introduced via by pp. In the perturbative regime, QCD loop corrections can
lead to divergences, which are handled through renormalization at the scale ug.

Both pp and ur are unphysical scales introduced as part of the corresponding mathematical
procedures. Physical observables should, in principle, not depend on their specific values.
However, since the calculations are typically performed at finite order in perturbation
theory, a residual dependence remains.
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Figure 3.3: Proton PDF's evaluated with the NNPDF3.1 package at NNLO, taken from
Reference [34]. On the left, the squared momentum transfer is relatively small with 10 GeV?,
while it is close to the mass scale of the heavy SM bosons on the right with 10* GeV?2.
At smaller momentum fractions x, gluons are the dominant contribution (note that they
are scaled down by a factor of ten). At larger momentum fractions, the valence quark’s
contribution is dominant and reflects the presence of two up and one down quark.

3.2.3.2 Shower and Hadronization

Similarly to the challenges in the description of the partons before the collisions, describing
the behavior of partons after the interaction poses a challenge as well. The reason for that
is the running coupling constant of the strong interaction, which does not allow single
color charges to exist. Instead, the energy in the field between the color-charged particles
increases as their distance grows, ultimately leading to the creation of new color-charged
particles.

The theoretical description of this process contains two steps: parton shower modeling
and hadronization. In the first step, the parton shower is evolved from the energy scale
of the process down to the energy scale of hadronization (infrared cut-off), typically
chosen at 1 GeV. This is done by introducing initial-state radiation (ISR) and final-state
radiation (FSR), where ISR describes the radiation of partons before, and FSR after the
hard process. Then the shower is evolved by describing the splitting into two partons, with
a certain probability following the Sudakov form factor that represents the probability of a
parton not emitting radiation during the evolution between two energy scales.

When the hard process is generated at higher orders in perturbative QCD, partons may be
accidentally double-counted. As an example, consider the production of a W boson with
one jet in the final state, as illustrated in Figure 3.4. In the simulation, there are three
different contributions to this process:

e as LO term in an event with 0 hard partons and 1 parton shower
e as NLO term in an event with 0 hard partons and 0 parton showers

e as LO term in an event with 1 hard parton and 0 parton showers
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59|
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Figure 3.4: Example Feynman diagram for the production of a W boson with emission of
a gluon in the initial state.

Overlaps in the descriptions need to be accounted for, which is usually done by a applying
matching and merging algorithms. While matching algorithms addresses double-counting
through parton shower modeling (corresponding to the first two bullet points), merging
algorithms reduce the impact of double-counting from different generated processes and is
typically applied after the parton matching.

At the energy scale of 1GeV and below, the parton behavior starts to be dominated
by non-perturbative effects, eventually leading to the formation of color-neutral hadrons.
Modeling of these non-perturbative effects requires a certain level of simplification. There
are different approaches to deal with this analytically (so far) unsolvable problem. Two
commonly used approaches are string models, such as the Lund model [35,36], and clusters
models [37-39].

All simulated samples used in this thesis rely on string models, which focus on the linear
behavior of the strong coupling constant for large distances. Similar to the lines of an
electromagnetic field between two charges, the QCD field is built between two color-charged
particles, and simplified to a one-dimensional representation (string). With increasing
distance, the energy in the field is increased and at a certain point, a new pair of color-
charges is created, similar to a rubber band, which tears when pulled apart sufficiently.
Cluster models, on the other hand start by splitting all gluons at the hadronic energy scale
into quarks and then cluster the different quarks to color-neutral objects. The clusters
then decay into hadrons, where the available phase space dictates the behavior.

Since the final state particles studied in this thesis are muons and neutrinos, the dominant
FSR effects are quantum electrodynamics (QED) radiation processes connected to the
muons. These are analogously to QCD emissions, but are conceptually simpler as the
photons do not self-interact. Consequently, neither cut-off scales nor hadronization models
are required for FSR in this context, and the propagation can be described entirely with
perturbative methods. The corresponding radiation behavior is modeled using Sudakov
form factors, similar to the treatment of QCD radiation.

3.2.3.3 Underlying Event and Pileup

In the theoretical description of pp collisions, proton remnants must also be considered.
Their behavior, along with soft interactions at low momentum transfers (such as multi-
parton interactions), is collectively referred to as underlying event. Due to the non-
perturbative nature of QCD at low energy scales, these processes cannot be fully described
using first-principle calculations. Instead, phenomenological models are used, whose
parameters are tuned to match experimental data and theoretical calculations in the
perturbative regime at higher momentum scales.
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Additional low-momentum pp interactions, which arise in the high-luminosity regime of
modern particle accelerators, are called pileup. In simulations, these additional events,
which are totally independent from the hard process, are considered by adding so-called
minimum bias events.

3.2.4 Uncertainties

To assess possible influences of the theoretical modeling on the result, different approaches
are followed. The dependence on the choice of ur and pur on the cross section is evaluated
by varying both values independently by a factor of two, where the extreme case of opposite
variations is omitted. Then, the envelope is taken as an estimate of the impact of the
choice of scale on the theoretical prediction. A similar approach is followed to estimate the
uncertainty in the parton shower scales.

As the PDF parameters are obtained by fitting models to data, there is an inherent
uncertainty from this measurement. Such uncertainties can be considered using different
approaches. The most common among these are the Monte Carlo (MC) approach and the
Hessian approach. In the MC approach, a large number (typically at least 100) of PDF
replicas is provided, each corresponding to a random fluctuation. The prediction of an
observable then corresponds to the mean value over all results using the different replicas,
and the uncertainty is given by the standard deviation. In the Hessian approach, one
central value is provided, along with a (typically smaller) number of disentangled members,
where correlations between the different variations are removed by orthogonalizing the
variation matrix. Consequently, the total uncertainty is evaluated by summing the squared
differences between the central value and the evaluation with the different member.

Additionally, the PDFs are subject to variations depending on the treatment of arg in the
fit to the data. The corresponding uncertainties are incorporated by evaluating the PDF
with a central value of ag(mz) = 0.118 &+ 0.002.
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3.3 Limitations of the Standard Model

Despite its huge success, the SM is not consistent with all theoretical observations. A
well-known phenomenon is the oscillation of neutrinos, which was observed for solar and
atmospheric neutrinos. The most practical solution to this problem is to assume that the
neutrinos have non-negligible masses. Thus, the eigenstates in which the neutrinos are
created, which are the eigenstates of the electroweak interaction, could be shifted with
respect to the mass eigenstates, in which the neutrinos propagate as long as they do not
interact weakly. Since the neutrinos are considered massless in the SM, their oscillations
showcase one of its limitations. However, measurements of the neutrino mass have found
an upper limit of 0.45eV at 90 % confidence level [40], which is more than five orders of
magnitude smaller than the mass of the next heavier elementary particle, the electron.
Thus, the impact of this mass in measurements done within the scope of this thesis is
negligible.

Furthermore, there is strong evidence for the presence of additional matter in the universe,
which is not part of the SM. Such evidence can be found on different orders of magnitude,
from the rotation velocity of galaxies [41,42] to gravitational observations in galaxy
clusters [43,44] up to the structure formation of the whole universe [45,46]. However, there
has been no observation of this dark matter yet, indicating cross sections in the order of or
smaller than those of the weak interaction. Due to the small interaction probabilities, this
potential limitation of the SM does not affect the precision of the analyses presented in
this thesis.

Finally, there could exist other effects that are incompatible with the SM. One option to
figure out effects despite their likely small size is to perform highly precise measurements.
If there is a deviation from the expected behavior, a new theory might be needed. This
is the approach followed in this thesis, which measures processes in the SM at very high
precision in order to possibly find deviations from the expectations based thereon.
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For millennia, investigating the building blocks of matter has sparked human interest
both in a scientific and philosophical sense. But with smaller structures, the creation
of additional knowledge became increasingly challenging. The main reason for that is
the resolution limit, which is mainly driven by the effective length of the waves used for
measuring a structure in comparison to the size of the structure. For objects with a size in
the order of micrometers, such as human cells, visible light can be used as the wavelength is
below the size of the structure. While it is possible to investigate smaller objects with light
by decreasing the wavelength even further, it is less technically challenging to utilize the
wave properties of matter. Any particle with momentum p can be assigned a wavelength A
given by the de-Broglie formula [47]:

A P (4.1)
For electrons at 50 % of the speed of light, the corresponding wavelength is already in the
nanometer domain. In order to study even smaller scales, the momenta of the particles need
to be increased. This ultimately led to the rise of particle colliders, which make use of the
kinematic benefit in the collision energy, introduced by the moving target. Such colliders
allowed for the observation of all the fundamental particles required to experimentally
confirm the full particle content of the SM.

The era of accelerators culminated (for now) with the construction of the LHC at the
Conseil européen pour la recherche nucléaire (CERN) in Geneva, and the observation of
the Higgs boson in 2012 [48,49] with the Compact Muon Solenoid (CMS) and ATLAS
experiments. Section 4.1 explains the experimental environment provided by the LHC.
The CMS detector is one of the experiments used to investigate collisions produced by the
LHC, and is discussed in greater detail in Section 4.2. This chapter is mainly based on the
original technical design reports [50,51], and the corresponding updates with respect to
the high-luminosity era [52-55].
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4.1 The Large Hadron Collider

The LHC at CERN accelerates protons in two opposing directions up to energies of 6.8 TeV.
Equally distributed around the accelerator ring are eight interaction points, four of which
are dedicated to collisions. Here, the two beam lines intersect each other, and the products
of the /s = 13.6 TeV-collisions are measured with detectors. The other four interaction
points are dedicated to acceleration, beam cleaning, and beam dump.

These high proton energies pose multiple challenges to the design of the LHC. In order
to guide the protons around the circular-shaped accelerator, powerful dipole magnets are
required. Furthermore, bremsstrahlung is emitted during the deflection process, leading
to significant radiation emission. To limit both the energy loss due to radiation and the
power requirements for the dipole magnets, the LHC was built with a large circumference
of 26.7 km.

The effective size of the proton, with a radius of roughly 1fm, is very small compared to
the beam pipe with a diameter of roughly 5cm. To put this into perspective, the size ratio
corresponds to that of a marble in comparison with Earth’s trajectory around the Sun. In
order to collect a sizable amount of data, not single protons but bunches of about 10!
protons each are brought to collision at high rates.

The number of bunches per beam is limited by three aspects: first, the 400 MHz frequency
of the radiofrequency cavities, which are used to accelerate the protons. As each oscillation
of the electric field can accelerate one bunch, the minimal spacing between two bunches is
limited by this criterion to 75 cm.

Second, the detector readout rate is limited since a certain minimal amount of time is
required for the collision products to produce a signal and for its subsequent processing.
The detectors were built with the requirement to analyze events at a rate of 40 MHz.
Consequently, only every tenth oscillation of the radiofrequency cavities is occupied with a
bunch and the effective minimum distance between two bunches corresponds to 7.5 m.
Third, for technical reasons, additional empty bunch positions are required, leading to the
formation of bunch trains (consecutive lines of bunches). The distance between trains is
mostly governed by the rise-time of injection kickers—magnets leading the trains from
the pre-accelerator into the LHC—as well as their limited operation time. Bunches that
are positioned in the rise-time of the injection kicker, would not be optimally guided into
the LHC and could potentially destroy the technical equipment. One of the gaps between
trains needs to be even larger in order to match the rise-time of the dump kicker, which is
aimed at quickly emptying the beam by guiding the protons out of the accelerator. These
limitations lead to a reduction of the maximum potential filling number by about a third,
depending on the actual filling scheme [56]. Most notably for this thesis, however, the
train structure of the bunches in the LHC can be used for studying dead-time effects of the
detectors; for the first bunch in a train there are no immediate preceding bunches, ensuring
that the activity in the detector is decreased to a minimum.

Different protons within a bunch repel each other as a consequence of their positive electric
charge. The resulting elongation and broadening of bunches needs to be addressed to run
the experiment at full efficiency for hours. To reduce the spread transverse to the beam
axis, quadrupole magnets re-focus the beam.

Elongation, on the other hand, is avoided by a special setup in the radiofrequency cavities:
The LHC cavities generate a voltage of 8 MeV oscillating at the aforementioned 400 MHz
frequency. Each proton bunch experiences acceleration over half of an oscillation cycle,
ensuring that it passes through the cavity only when the electric field is oriented in the
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correct direction to provide acceleration. By shifting the phase of the oscillating electric
field in the cavity so that it aligns with the back of the bunches rather than their center,
the slower protons receive greater acceleration than the faster ones. This differential energy
gain compresses the bunch in the longitudinal direction, reducing its spread and improving
beam stability.

The central quantity describing the rate of collisions in particle colliders is the instantaneous
luminosity L. More specifically, it describes how often particles are brought together in
a certain area. Large luminosity values can be achieved at the LHC by increasing the
number of protons per bunch, the frequency of bunch intersections, or by focusing the
beam. However, through the collisions, the number of protons per bunch declines gradually
over time, leading to a decreasing instantaneous luminosity. If the instantaneous luminosity
falls below a certain threshold, it becomes beneficial to dump the beam and start a new
filling procedure.

The integrated luminosity Lins = [ Ldt is a measure of the total amount of data collected
in a period of time. The number of events of a certain process can be calculated as the
product of its cross section o and the integrated luminosity:

N =oL. (4.2)

While the accelerator provides the collisions, the experiments record the collision data. If
an experiment is for some reason not running or taking faulty data, then the luminosity
recorded by that experiment may be smaller than the luminosity provided by the LHC. To
maximize the scientific output of the collisions provided, the LHC has to be run in close
cooperation with the experiments.
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Figure 4.1: Sketch of the CMS experiment with colored muon system, taken from Ref. [57].
The sketch shows a quadrant of the cross section along the beam axis. The red GE2/1 has
only been installed partially for demonstration purposes [58,59].
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4.2 The Compact Muon Solenoid Experiment

The CMS detector is a multi-purpose experiment aimed at an optimized measurement of
the collisions provided by the LHC. Its name refers to three remarkable properties. Despite
its large cylindrical shape with a length and diameter of roughly 21 m and 15 m, respectively,
it is comparably compact with a mass of 14000t. The remaining two components of the
name refer to muons, which it can measure exceptionally well, and the large solenoid
magnet.

4.2.1 Detector Setup

The detector consists of several layers that are dedicated towards different tasks. At the
center of the detector, localized directly around the intersection point is the tracker. The
next detection layers are electromagnetic calorimeter (ECAL) and hadron calorimeter
(HCAL), followed by the solenoid. The outermost detection layer consists of the muon
chambers. These chambers are embedded in the iron yoke, which is designed to return the
magnetic field lines. An overview over the layers if provided in Figure 4.1.

4.2.1.1 Solenoid

A large superconducting solenoid magnet generates a magnetic field of 3.8 T in the central
part of the detector. In the outer region, beyond the solenoid, the field strength is about 2T,
enhanced by iron return yokes that are installed to guide and amplify the field lines. The
magnetic field lines are generally aligned parallel to the beam axis, which forces charged
particles to bend in the plane perpendicular to the beam direction, also referred to as
transverse plane. This results in helix-shaped trajectories for charged particles, where
the circular component of their motion is provided by the Lorentz force Fy, acting as the
centripetal force:

F.=F, < pr=gqBr, (4.3)

with the transverse momentum pr, particle charge ¢, a constant magnetic field strength B,
and the radius of the circular movement r. This relationship allows the transverse mo-
mentum to be estimated based on the curvature of the particle’s path, as the curvature is
inversely proportional to the radius. Furthermore, the sign of the particle’s electric charge
determines the direction of the curvature, allowing to distinguish positively and negatively
charged particles based on the measurement of the particle’s trajectory.

The strength of the magnetic field has to be chosen carefully. If the magnetic field is
too weak, high-momentum charged particles will have a small curvature, making it more
difficult to distinguish between different momenta and reducing the overall measurement
precision. On the other hand, a strong magnetic field could trap charged particles in the
central region of the detector. More importantly, extremely strong magnetic fields are
challenging to reach and expensive in terms of both material and operating costs. The
magnetic field strength of 3.8 T generated by the CMS solenoid provides a reasonable
compromise. Interestingly, the minimum transverse momentum for charged particles to
escape the 6 m-diameter solenoid is approximately pp > 1.7 GeV. As most events that are
relevant to analyses usually contain large transverse momenta, this is not limiting the
performance significantly. For particles with transverse momenta much larger than 100 GeV,
however, the limitations due to the finite magnetic field strength become significant. This
will be further discussed in the tracker description.
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4.2.1.2 Tracker System

The tracker system consists of silicon detector modules and aims to measure the trajectory
of charged particles from hits in individual tracker layers. As discussed in the previous
section, both particle charge and transverse momentum can be obtained from the knowledge
of a charged particle’s path in the magnetic field. Furthermore, knowing the trajectories
of several particles from the same bunch crossing, common vertices can be determined.
Subsequently, each trajectory can be assigned to one vertex, improving the discrimination
between an interesting collision and uninteresting ones (pileup) within the same bunch
crossing. In addition, the vertex information is also useful to identify metastable particles,
which exist for a measurable distance and then decay still within the tracker.

The tracker system consists of two subsystems: the pixel and the strip tracker. Both have
the same fundamental working principle: a p-n junction under high voltage applied such
that the depleted zone at the junction is increased to span over the main part of the detector
material. In this zone a passing charged particle may interact with the material creating
electron-hole pairs, which are—due to the high voltage—pulled towards the electrodes,
where they are read out.

The main difference between pixel and strip detectors consists in the shape of the sensing el-
ements. While the pixel detector consists of small pixels, enabling a precise two-dimensional
measurement of the transit point, a strip detector only has a decent resolution in one
direction. Consequently, the pixel detector generally has a precision advantage over the strip
detector. In return, the strip detector is cheaper to build and has fewer read-out channels,
which limits the demand for information throughput and computing power. Therefore, pixel
detectors are used in the vicinity of the interaction point, where the improved resolution is
crucial for the discrimination of different interaction vertices. Outside of the pixel detector,
the cheaper strips are located, primarily aiming at a precise measurement of the curvature
in the transverse direction.

The relative resolution of the tracker-based transverse momentum measurement is approxi-
mated by the Gluckstern formula [60]:

Opr . Og[m]-pr[GeV] | 720
pr 0.3-B[T] L2m? | N +4°

(4.4)

Here, 0, = % denotes the spatial resolution of a single hit measurement, governed by
the width d of the detector element. The smaller the width of a single pixel or strip, the
more precise the position can be determined and therefore also the curvature of the track.
For larger pr, it becomes increasingly difficult to differentiate between small variations
of the curvature as the bending of the tracks decreases. On the other hand, an increased
magnetic field strength increases the curvature and therefore makes it easier to distinguish
different curvatures. A measurement over an extended length of the tracker L increases
the precision as well, as a larger share of the circular path can be measured. Finally, the
statistical benefit of more hit measurements is reflected by the number of layers in the
tracker N.

While larger tracker dimensions would generally improve the momentum resolution (as
more layers can fit inside and the length is increased), this comes at a cost. Increased
tracker size reduces the available space for other detector components and adds to the
material budget. Both may affect the precision of subsequent measurements outside of the
tracker and therefore require careful optimization.

Since the tracker upgrade in 2017, the CMS tracker system consists of four pixel layers and
ten strip layers, six of which are double-sided to enhance the resolution of the reconstructed
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tracks [61]. Depending on the location within the detector, the material budget of the
tracker corresponds to between 0.3 and 2 electromagnetic interaction lengths, and between
0.1 and 0.6 hadronic interactions lengths [62]. This contributes an additional uncertainty
to the momentum resolution described in Equation 4.4. As an example, the CMS tracker is
designed to achieve relative momentum resolutions for muons in the barrel region (|n| < 0.9)
on the order of 1-2% for pr below 100 GeV [63,64].

4.2.1.3 Calorimeter System

The ECAL and the HCAL are located in subsequent layers outside of the tracker and aim
to measure the energy of particles. Conceptually, this measurement is done by converting
the energy of the incoming particles to low-energy photons, whose number gives rise to
the initial energy. The precision of this measurement therefore highly depends on the
conversion efficiency, i.e., if a particle does not convert all its energy to photons, the
measurement is not as precise as possible. Some particles, such as muons at typical energies
in collisions at the LHC, or neutrinos, cannot be stopped within the calorimeter, leading
to an imprecise energy measurement (neutrino basically cannot be measured at all, as
motivated in Appendix A.2).

The ECAL is aimed specifically at a precise measurement of electron and photon energies [65].
High-energy electrons (and positrons) lose energy primarily through bremsstrahlung inter-
actions. The energy loss dF in a material with respect to the mass path length X = px,
with mass density p and path length x is given by:

dE E

Tax X’ (4.5)

with the particle’s current energy FE, and the material-specific radiation length Xg. Solving
the differential Equation 4.5 yields the energy of the particle with respect to the mass path
length:

X
E = EO exp (—X> y (46)
0

with initial energy Ey. The ECAL has a depth of about 25 X, corresponding to a remaining
energy fraction of 1.39 x 107! after traversal. In order to minimize the space requirement
of the ECAL, it is made of the highly dense but transparent lead tungstate (PbWOy).
High-energy photons primarily undergo pair-creation procedures, where in the vicinity of
a recoil partner, such as a nucleus, a photon is converted into an electron-positron pair.
The kinetic threshold for this process is slightly larger than two times the electron mass,
because the recoil partner needs to take a certain share of the four-momentum as well. As
opposed to electrons, photons are converted in the interaction. Consequently, the general
behavior in material is not described by the energy loss, but by a conversion probability.
The latter depends on the mean free path (), which is closely related to the radiation
length via () ~ %Xo. The probability that a photon has converted after having passed a
length z in a material with mean free path (I) is given by:

Pron(2) =1 - exp(—@). (4.7)

Consequently, both high-energy electrons and photons initiate the production of large
numbers of secondary photons and electrons. When the energy of the secondary photons
drops below the threshold of electron pair production, the probability for further interactions
decreases drastically, effectively limiting the shower evolution. The resulting low-energy

26



4.2 The Compact Muon Solenoid Experiment

shower particles are finally captured by the material and their energy is converted to
photons through scintillation. As the intensity of the resulting light signal is proportional to
the energy of the initial electron or photon, the photons need to be collected and measured.
However, the photon intensity is typically small, which requires the usage of fast signal
amplifiers in the measurement, such as the avalanche photodiodes and vacuum phototriodes
used to measure the photon rate in the ECAL.

The HCAL aims at measuring the energy content of hadrons. Unlike the ECAL, which
consists of single-block crystals, the HCAL is a sampling calorimeter, where dense layers of
absorber material (brass) alternate with less dense layers of scintillator material. Hadronic
showers are initiated mainly in the absorber material and lead to electromagnetic sub-
showers, which behave similar to those in the ECAL and are ultimately measured with
photo sensors.

The thickness relative to the interaction probability is comparably small for the HCAL; in
the direction perpendicular to the beam axis about 6 hadronic interaction lengths. While
tracker and ECAL effectively increase the total stopping power by roughly one hadronic
interaction length, the combined interaction length corresponds to a final energy of hadronic
particles after having passed the HCAL of about 1 %o. As a result of the limited stopping
power, remnants of the hadronic shower can lead to signatures in the muon chambers,
called hadronic punch-through.

4.2.1.4 Muon Chambers

The outermost layer of the CMS detector is aimed at measuring muons, which are minimally
ionizing particles at typical energies in interesting collisions. This behavior can be explained
through their mass, which is roughly 200 times larger than that of the electrons, effectively
suppressing the energy loss via bremsstrahlung by several orders of magnitude in comparison.
Consequently, muons with moderate pr in the order of 10 GeV and higher consistently
reach the muon chambers (see Appendix A.1).

Since other detectable particles are efficiently stopped in the calorimeter system, the
minimally ionizing behavior enables muon identification at high efficiencies. Furthermore,
the muon chambers contribute to the track measurement of muons, increasing the effective
length of the combined muon tracking system, albeit with substantially smaller spatial
resolution than in the tracker. This allows for a more precise measurement, in particular of
high-pt muons, whose curvature is easier to measure over a longer path.

Four different gas-based detectors are used to determine such muon tracks outside of the
solenoid: resistive plate chambers (RPCs), drift tubes (DTs), cathode strip chambers
(CSCs), and gas electron multipliers (GEMs). All these gas detectors share the common
principle of detecting ionization in the gas volume caused by traversing charged particles—
primarily, but not exclusively, muons. Through an applied high voltage, the ions and
electrons are pulled to the electrodes causing avalanches of charged particles on their way,
which are ultimately detected by the readout electronics. Signals from different chambers
can then be further processed to construct segments and tracks. In comparison with the
tracker, the resolution of the muon system is considerably worse. This is mostly due to the
typically larger spacing between the single units. In addition, the energy content of muons
is reduced on their path to the muon chambers and through the iron return yokes, limiting
the achievable resolution further. However, the gas detector technology is cheaper than the
silicon tracking technology, making it a reasonable solution for the muon system.

Differences between the gas detectors are mostly given by the design of the electrodes, and
the technical implementation of the readout [51,57]:
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e RPCs consist of two resistive plates that form the electrodes and create an electric
field. Electrons from the ionized atoms are accelerated in this field, cause avalanches
that can pass through the resistive plate and are read by detection strips located
outside the gas volume. Although this architecture introduces a delay between the
impact and the measurement, the bias can be corrected due to the precise knowledge
of the delay. As a result, RPCs can reach time resolutions at the order of 1ns.

e DTs consist of single tubes, each 4 cm wide and separated by cathodes. In each tube,
a central wire acts as the anode. The electric field between the negative cathodes and
the positive anodes causes electrons created from a passing muon to drift towards
the cathode. This drift can be evaluated, where especially the information on the
time of the electron drift is essential as it hints at the exact position within the tube.

e GEMs are used in the forward region of the detector, where radiation hardness is
required. Their central feature is a system of foils with tiny holes, in which a strong
electric field leads to a multiplication of the electrons from the ionization process. The
large electric field in the holes can intuitively be understood by comparison with a flow
of air that is forced through a small hole, which leads to a high pressure. The GEMs
of the CMS detector are made of three such layers ensuring a large multiplication of
the signal before the measurement.

e (CSCs have cathodes in the form of strips, which are orthogonally crossed by anode
wires. The detection principle being similar to those of the other gas detectors, the
orthogonally crossed anode wires of this detector type allow a good 2d-resolution.

While CSCs provide the main contribution to the track measurement in the endcaps, this
part is done by the DTs in the central detector region. The main purpose of RPCs and
GEMs is the fast evaluation of muon information, which is particularly important for
triggering.

4.2.2 Data Acquisition and Trigger System

The vast number of individual detecting units in combination with the high rate of collisions
poses a great challenge to the data acquisition. During data taking, the CMS detector
material is generally active and measures signals, which are collected and read out in fixed
time intervals. A large share of the collected data is not meaningful, i.e., noise, and can
be suppressed in a first processing step without major loss of information. The remaining
signals can be further processed and structured, to gain a first level of information, e.g., by
combining the size of a signal with the position of the corresponding detector piece in the
detector. This first data structure is called raw data, with a corresponding storage space of
roughly 1 — 2MB per detector readout.

However, since the effective collision rate is at about 30 MHz, the corresponding data stream
would amount to more than 30 TB/s. This is infeasible both in terms of bandwidth and
total storage space available (for comparison, the total CERN storage space of roughly 1 EB
would be filled in just under ten hours). Consequently, a large share of the data acquired
by the CMS detector needs to be neglected to fit the computing infrastructure. However,
the reason why the data rates are chosen so high is that interesting events are rare, the
production of a Higgs boson, e.g., occurs in about one of a billion pp collisions. Thus, the
vast majority of events are not worth saving, e.g. collisions with low momentum transfers,
which have already been studied extensively in the past.

The corresponding filter process is implemented by applying a two-level trigger system. The
first trigger (L1) is implemented on specialized hardware processors, which are necessary to
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compute a pre-defined set of information and automatically signalize in case the information
fulfills certain criteria. For this first trigger level, quickly accessible information is used,
which distinguishes interesting from uninteresting events. Interesting events typically
contain heavy unstable particles, decaying to lighter particles with high energies. Due to
the multiplicity of entries in the tracker, finding tracks requires computationally intensive
clustering or track reconstruction algorithms. However, the deployment of such algorithms
with the required latency of about 4 ps is not yet feasible. Instead, information from the
calorimeters and muon detectors is used in this first trigger level. While the calorimeter
information is already relatively coarse by construction and therefore well-suited for quick
evaluation, the muon system is suited mostly due to the lower level of activity. This first
trigger level reduces the data rate to about 100 kHz.

If an event is classified as interesting by the L1 trigger, the total detector information
is obtained from a buffer, and forwarded to the high-level trigger (HLT) computer farm.
Here, a quick analysis of the whole detector information is performed, with algorithms
primarily optimized for computation speed and robustness, but at the cost of precision.
The resulting stack of information is called HLT objects and contains a list of high-level
variables, mostly reconstructed objects and their properties. Only if the HLT objects fulfill
certain criteria, both raw data and HLT objects are stored finally.

Some types of events are generally interesting, e.g., for calibration purposes, but occur too
often to store them. In that case, corresponding triggers may be pre-scaled, thereby only
saving a certain share of the events fulfilling the corresponding trigger criteria.

Overall, this second-level decision reduces the rate to about 5kHz, corresponding to a raw
data stream in the order of 5 — 10 GB/s.

After successful storage, the raw data can be reconstructed with fewer constraints on the
time and resources, ultimately obtaining the form that is analyzed in this thesis. The
objects in this final data set are reconstructed with higher precision than the HLT objects.
This sometimes leads to mismatches, which needs to be studied and corrected in any
analysis, as it would introduce biases otherwise.

The trigger definitions constitute a potential blind fold in the search for new physics beyond
the SM. To reduce this self-bias, two further data streams use the possibility of higher
data rates under certain conditions: scouting and parking data.

In the scouting data set, the coarse information from the HLT is stored for future analyses,
with smaller biases, namely that of the L1 trigger. However, only the coarse HLT objects
but not the raw data are stored in this data stream, allowing for higher rates. Consequently,
this scouting data approach generally benefits the statistical precision of analyses, but
comes at the cost of larger systematic uncertainties.

In parking data, the raw event information is written out, but not reconstructed offline
immediately. Instead, the reconstruction is performed in times of lower computing demand,
in particular when no data is taken and the computing resources are not blocked by the
reconstruction of the main data stream. One major purpose of this data stream is to store
data from pre-scaled triggers, which are not immediately important but could turn out
useful in the long run. The parking data is, for example, used to save events in the domain
of well known low-mass resonances, such as the J/1¢ resonance. Such processes have a
relatively large cross section (compare for instance [66]) and therefore occur too often to
be saved and reconstructed all at once. Nevertheless, they are interesting enough to be
saved and reconstructed later, as they are useful for calibration purposes, such as those
conducted in Chapter 6. In the current Run 3, typically half of the HLT output rate of
roughly 5kHz is parked, while the other part is reconstructed promptly [67].
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4.2.3 Event Reconstruction

The aforementioned full offline reconstruction follows a recipe called particle-flow (PF)
algorithm. Abstractly, it is a transformation procedure that forms the raw, relatively
unstructured data into objects with a clear physical meaning. For this, the PF algorithm
combines the unstructured data from all detector components in an optimized form, taking
into consideration external information about particle’s physical behavior.

First, an iterative track reconstruction is performed, combining single hits in the tracker
layers with the Kalman filter technique [68-71]. This approach is chosen to obtain both
high purity and high efficiency in the large solution space spanned by the vast number of
hits in an event. It starts by reconstructing tracks that fulfill tight quality criteria. The
hits associated with the reconstructed tracks are then masked from the use in subsequent
iterations to reduce the combinatorial multiplicity. Subsequent iterations are then performed
with relaxed quality criteria. The resulting objects are called tracker tracks.

The track reconstruction in the muon chambers is conducted independently from that in
the tracker and relies on the formation of so-called segments. These segments are formed
from individual hits in the corresponding system through the fit of a straight line. Starting
from such segments, tracks are formed using a Kalman-filter approach that takes into
account the different hits from all muon subsystems. The resulting objects are called
standalone-muon tracks.

As muons from collisions usually leave a track in the tracker as well, the information from
the two detector systems can be combined. Tracker tracks that can be matched with at
least one muon segment are called tracker muons. If a standalone muon can be matched to
a tracker track, a new fit is performed combining information from both tracker and muon
systems, and the resulting object is called global muon.

The calorimeter systems are required to measure the energy of neutral particles, as these
leave no track in the tracker. However, the calorimeter systems do not exclusively measure
the energy content of neutral particles because the charged particles typically lose only a
part of their energy on their path through the tracker. Consequently, it is crucial to not only
measure the energy in the calorimeters but also separate and identify the different energy
deposits. The separation is achieved through the application of clustering algorithms. The
resulting energy clusters are then matched to tracker tracks for identification. Depending
on the resulting combination, different particle types can be identified subsequently.

e An electron produces a track in the tracker and an ECAL cluster, but no HCAL
cluster.

e A photon corresponds to an ECAL entry without a matched track and no associated
HCAL signal.

e Charged hadrons and neutral hadrons can be distinguished based on the presence
of a track. A charged hadron will have a track, an ECAL cluster, and an HCAL
cluster, while a neutral hadron is identified by an HCAL cluster without a matched
track.

Once the individual PF candidates are classified, jet clustering algorithms can be applied,
such as the anti-k; algorithm [72].

The next step consists of the final object selection. Based on the different tracks, common
vertices are constructed. The vertex with the largest value of the summed squared transverse
momenta of associated tracks is defined to be the primary vertex. Particles connected to
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this primary vertex are kept in a special collection, constituting the basic objects used in
most analyses. For neutral particles, such an assignment is not possible, as they lack tracker
information. These neutral contributions can have substantial effects on jet reconstruction,
as all kinds of information within a cone around the jet are in principle added to the jet to
reflect its collimated structure. However, contributions from uninteresting collisions can
be mitigated through dedicated techniques, e.g., using profiles from neutral event content
based on the distribution of the charged particles.

After the event reconstruction, an additional quantity can be constructed, the missing
transverse momentum p%iss. This quantity makes use of the fact that the collision partners
have almost no momentum in the direction transverse to the beam axis before the interaction.
Due to the conservation of momentum, the vectorial sum of the transverse momenta of
all particles from a common vertex must be zero after the collision as well. If a particle
cannot be measured, such as a neutrino or possible dark matter candidates, then the
detectable vectorial transverse momentum sum can only vanish by chance, e.g., if two
undetected particles leave in exact opposite directions with the same momentum. Thus,

the measurement of the negative vectorial sum of all transverse momenta
—miss __ —
P =~ ZPT,Z' (4.8)
i
gives rise to undetectable particles. However, mismeasurements of transverse momenta,

additional interactions in the event, as well as their modeling are possible sources of bias
limiting the resolution of this quantity.
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In the SM, all fundamental interactions are inherently stochastic. As a result, the study of
such processes relies on the statistical analysis of their occurrence in nature. As introduced
in Chapter 3, each process is characterized by a probability amplitude. Measurements
of such amplitudes can be performed implicitly by investigating cross sections and decay
widths.

These physical observables have well-defined values in nature—limited only by the quantum
mechanical uncertainty principle [73]. On the theoretical side, uncertainties arise from
the limited precision in perturbation theory, or from the limited knowledge about the SM
parameters. From a statistical point of view, a theoretical prediction is a hypothesis that
can be tested with experiments.

Section 5.1 introduces fundamental concepts of probability theory and outlines the statistical
framework of likelihoods used in particular for the cross section measurement in this thesis.
The following Section 5.2 covers different application cases of MC methods.

5.1 General Concepts of Probability Theory

In probability theory, two widely used interpretations exist: the Bayesian and the frequentist
approach. Agreeing on a specific interpretation is crucial when discussing probabilities,
as it influences both the conceptual understanding and the mathematical modeling of a
problem.

5.1.1 Probability Interpretation

In the Bayesian interpretation, the probability associated with a hypothesis A is denoted as
P(A) and represents the degree of belief in that hypothesis. A common example is weather
forecasting, where a certain hypothesis—such as “it will rain tomorrow”—is assigned a
probability that reflects the confidence in that prediction, given the current meteorological
data and models.

The probability is not fixed but can depend on various parameters and prior information,
as is the case for the weather prediction. Importantly, the exact same set of conditions
may never occur again. When new experimental data becomes available, the probability
can be updated, refining the degree of belief from a prior to a posterior probability.
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An alternative approach is the frequentist interpretation, where probability is defined
differently. In this framework, the probability of an event is determined by the relative
frequency of its occurrence in an infinite number of identical, independent trials. For
instance, the probability of a fair coin landing on heads is interpreted as the relative
frequency of heads in an infinite sequence of coin flips. For the frequentist interpretation to
be meaningful, all trials must be conducted under identical or sufficiently similar conditions;
otherwise, this interpretation is not well-defined. The environment provided by the LHC
satisfies this requirement, as high rates of pp collisions occur under repeatable and controlled
conditions. Therefore, the frequentist approach offers a robust and meaningful statistical
interpretation for the analyses presented in this thesis and is adopted throughout.

5.1.2 Hypothesis Tests

In the field of natural science, any theory is intrinsically either right or wrong, but this
information is generally unknown. Hypothesis tests provide the mathematical framework
to deal with this challenge. Their aim is to reject a certain (null) hypothesis Hy based
on pre-defined criteria in the form of error probabilities. By construction, there are four
possible cases when comparing the result of a hypothesis test with the (unknowable) true
situation. In case the theory is actually true, it can be correctly accepted or falsely rejected.
If the theory is wrong, the test can correctly reject it or falsely accept it.

The decision to reject or accept the hypothesis is usually done based on a pre-defined
significance level «, which correspond to the probability of falsely rejecting the null
hypothesis despite its truth. In particle physics, processes are usually excluded at a 5%
significance level, while new physical processes are accepted (corresponding to a rejection
of the model without the corresponding process) at the 50 level. The probability for an no
deviation is generally given by the area under a normalized Gaussian function N further
than n standard deviations ¢ away from the mean u:
pu+no
a=1- N(x;p,o)dx. (5.1)
n—no
For 50, the corresponding probability of falsely claiming the existence of a new process is
about 2.87 x 1077,

However, this thesis aims neither at an exclusion of a process nor at an observation, but
at precision measurements of already known processes. In terms of hypothesis tests, the
measurements conducted in this thesis look for deviations from a known, non-zero value,
whereas observations search for deviations from zero, and searches exclude variations from
zero. While this conceptual difference could be implemented into hypothesis tests, it is
more straightforward to instead conduct the measurement and compare the resulting values
and associated uncertainties to different theoretical predictions. The hypothesis test is
then implicitly shifted towards the direct comparison between the measurement and the
theoretical predictions.

5.1.3 Conditional Probabilities and Likelihood

In many cases, probabilities are evaluated conditionally, meaning they depend on the
occurrence of another event. Given two events A and B, the probability of event A
occurring, given that event B has occurred, is defined as:

P(ANB)

P(A|B) = PE)

(5.2)
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Figure 5.1: Poissonian distributions as functions of different dependent variables. On the
left, the Poissonian is shown as a function of the observation x for three different hypotheses
v, while the right shows the dependence on the hypothesis v for a specific observation of x.

In the frequentist interpretation, the conditional probability is estimated by counting the
number of times both A and B occur together and dividing this count by the number of
occurrences of event B.

An important application of conditional probability is Bayes’ Theorem:

P(BNA)P(B) P(ANB)P(B)  P(A|B)P(B)

PBIA) = =5 BB~ PB) P@A) P4

(5.3)

Despite its name, this theorem not only holds in Bayesian statistics but is a general
mathematical result that is also true in the frequentist interpretation.

In high-energy physics, conditional probabilities are often used to compare a measured
dataset x with a model, represented by its parameter vector §. The probability of obtaining
a result like the observed data, given the current model P(z|0) is called likelihood. In the
frequentist interpretation, it corresponds to the expected share of experiments reproducing
the measurement x under the assumption that the model is true. The likelihood is a
valuable tool as it allows to compare different hypotheses, or to optimize a single hypothesis
by finding the parameters that maximize the likelihood.

5.1.4 Parameter Estimation with the Likelihood Method

Due to the independence of different collisions at a known rate, high-energy processes at
the LHC generally follow Poissonian statistics. For this reason, the parameter estimation
with the likelihood method is started with a simplified example of a Poissonian distribution
in a one-bin counting experiment:

vre v

fla;v) = (5.4)

x!
This function provides the probability of measuring a certain process x times, when the
expectation of the process is actually to measure it v times. While the expected value
v can be of any positive real value, x needs to be a positive integer as the process can
be either measured or not. The Poissonian distribution for a few different values of v is
provided in Figure 5.1.
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The Poissonian distribution can be interpreted as a likelihood to measure a value x > 0,
where the model expectation is given by v > 0. To identify the value of v, which maximizes
the likelihood to measure x, the first derivative is set to zero:

df av*le™V — eV

dv z!

=0 & v=uz, (5.5)

where evaluation of the second derivative shows that this solution is a maximum of the
likelihood.

Generalizing from such a one-bin counting experiment to a histogram with n bins yields
the likelihood:

sz —V;

Faw) = 12 (556)
=1 i

X

where now = and v are vectors with n entries x; and v;, where , i € {1,...,n}, respectively.
In this example, each bin is completely independent from each other, therefore maximization
of the likelihood yields x; = v;

However, in high-energy physics, the model prediction is usually not independent between
different bins. Assuming full correlation between the different bins—expressed by a common
multiplicative factor u, with otherwise fixed values of v;—the likelihood function reads:

CR |

i=1

5.7
o (5.7)
Maximization of this likelihood function becomes computationally more straighforward by
considering the logarithmic likelihood. Since the logarithm is increasing strictly monotonous
with the argument, and is well-defined as the likelihood is always positive, the position of
the maximum is identical. The log likelihood reads:

n
log f(x;v; ) = Y wilog (i) —pw; — log(z4!), (5.8)
i=1
and the maximization with respect to the single model parameter p yields:

dlog f _ _ Z?:l T
du Dt Vi

Thus, the ideal multiplication factor turns out to scale the total number of events in the
model to that in the observed dataset.

0 < pu (5.9)

The likelihood model can be further refined by incorporating additional information, such
as an additive contribution b;, which could be scaled with a separate parameter p;. Further-
more, additional information can be introduced to the likelihood by adding constraining
terms with previous knowledge to the log likelihood. There are two common options to
introduce such constraints. Parameters that only affect the rate can be constrained with a
log-normal prior, effectively introducing a penalty increasing in size as the rate parameter
moves away from an expected value.

Shape deviations, on the other hand, can be introduced as two additional templates,
where one corresponds to an up-variation of a quantity, and the other corresponds to a
down-variation of the quantity. Intermediate values are then calculated by interpolating
between the nominal template and the variations, or by extrapolating to values out of the
given range.
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Figure 5.2: Logarithmic Poissonian likelihood function with uncertainty construction. The
distribution on the left corresponds to the right plot in Figure 5.1 and shows a strong
deviation from a parabolic shape. The right plot shows a similar construction for an
observation with a larger statistical sample size, showing almost symmetric uncertainties.

In both cases, it is necessary to provide a range in which the parameter is supposed to
be with a certain probability. For the shape deviation, the given additional templates
correspond to a variation of +10. For rate parameters, the effective relative effect of a
deviation on the rate is provided by e*1?, ensuring that the rate must not become negative.

For large statistical sample sizes, the Poissonian distribution approaches a Gaussian
distribution. This behavior enables uncertainty estimation based on the logarithm of the
likelihood function, which in this limit takes on a parabolic form:

2
log NV (v;z,0) o _1(1/—1‘) , (5.10)
2 o
where z and o represent the position of the optimum and the standard deviation with
respect to this parameter. As a result, the standard deviation can be extracted by varying
the parameter v away from its optimum z until the log-likelihood decreases by 0.5 from its
maximum value. This behavior is illustrated in Figure 5.2 for a one-bin example at small
and large samples sizes. Importantly, this approach is not limited to one-bin examples
but also generalizes to multiple bins sharing a common parameter p, including cases
with additional parameters, if the corresponding term in the likelihood is approximately
Gaussian.

5.1.5 Cross Section Measurement with Likelihood Maximization

Cross sections are a measure to describe the probability of a certain interaction. If a
certain process 1 has a larger cross section than another process 2, the expected number of
processes 1 is consequently larger by the same factor than that of 2. The proportionality
constant is called instantaneous luminosity and is a measure for the size of a dataset.
As a result, theoretical cross section calculations for a certain process can be probed by
detecting a certain process and counting the number of its occurrences in a given dataset
of luminosity Lipt:

N = Lijyo. (5.11)

However, several experimental challenges require adaptations of this measurement strategy
for the application in the CMS experiment.
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First and foremost, the detector coverage is limited by construction through the beam line
and therefore cannot cover the full space. To deal with this, the theoretical cross section
can be defined and calculated in the subset of the total phase space, that matches the
detector coverage, called fiducial volume. The ratio between the resulting fiducial cross
section ogq, and the total cross section ot is called acceptance:

ofid _ Nad

A= (5.12)

Otot B Niot’
where the second step follows from Equation 5.11 and the fact that the integrated luminosity
is an accelerator-related quantity and does not depend on the detector.

Furthermore, any detector is limited in terms of efficiency €. This quantity is defined as
the ratio between the number of events that is reconstructed in the detector Nyeco and the
true number of events Ngq in the detector:

Nreco

€= : 5.13
Nog (5.13)

Combining these definitions, the initial cross section equation can be modified to:

Nreco = Lint Otot A €. (514)
~——

Ofid

Another challenge in cross section measurements comes from the presence of additional
(background) processes that mimic the (signal) process under investigation. Considering
this connection, a total model of the expected number of events Neyp, in a measurement
can be constructed as:

Nexp = UNsig + kag

(5.15)
= Lint (106d, sig€ + Tfid, bkg€),

where p ensures the flexibility of the model with respect to the signal cross section ofq, sig-
Given a measurement N, the signal strength modifier 1 can be optimized by maximizing
the likelihood with respect to that parameter as described in the previous section. The cross
section of the background process ogq, bk is not equipped with a signal strength modifier
since the fit would have no clear minimum otherwise. However, additional flexibility can
be provided in the fit through the introduction of nuisance parameters, which are allowed
to float within a certain range but introduce penalty terms to the likelihood function.
Often, using a histogram of certain physical quantities instead of a single bin improves the
overall precision in the fit. The reason for this lies in the potential discriminating power of
the different underlying kinematic behavior of the processes.

The result for the cross section measurement is then given by the product of the post-fit
signal strength parameter and the theoretical signal cross section in the fiducial region
used as input to the fit:

0fid, meas — MOfid, sig- (5.16)

It is interesting to note that this result is completely independent from the theoretical
cross section that is used as input for the signal process normalization. If, for instance,
only half the value is used in the fit, then the optimal value of p will be larger by a
factor of two (assuming the fit finds the optimal minimum in both cases). Consequently,
any normalization uncertainty in the cross section will be reflected by the signal strength
modifier. For this reason, theoretical uncertainties in the normalization of the signal model
do not need to be considered in the fit.
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5.2 Monte Carlo Methods

Some problems in high-energy physics are not analytically solvable and therefore require
numerical methods. One common approach consists in the generation of pseudo-random
numbers and the clever application of functionalities to approximate the behavior of a
system. Such MC methods are frequently used for integration tasks or estimation of key
figures of random distributions.

5.2.1 Integration

The general principle behind MC integration is illustrated in the following using a one-
dimensional function f(z). If this function is continuous on an interval [a, b], then its mean
value over this interval is defined as:

ey =5 [ faae. (5.17)
1

Applying this definition in reverse, the integral I can be approximated by estimating the
mean value (f(x)). This estimate can be obtained by drawing N values x; randomly from
a uniform distribution over the interval [a,b]. The corresponding approximation for the
integral is then given by:

N
I~ (b—a)%Zf(xi) = Iy. (5.18)
=1

By construction, the expectation value of Iy is equal to the true value I in the limit
N — oo. However, the statistical uncertainty of this estimate scales as 1/ VN, meaning
that the method converges slowly and at high computational costs. To achieve a precision of
1%, for example, approximately 10000 random numbers have to be generated. Improving
the precision by an order of magnitude requires increasing the number of samples by a
factor of 100, highlighting the computational costs of this method.

An important application case is the calculation of cross sections. According to Equa-
tion 3.29, this requires the integration of the transition amplitude M over the phase space
IT of the final state particles:

- ;/|M|2d1'[, (5.19)

where @ is the flux of incoming particles. Due to the complexity of the transition amplitude,
this integration step is usually not analytically solvable. Instead, random points in the
allowed phase space are sampled. Then, the matrix element is evaluated at those points
and the average value is taken to approximate the cross section.

5.2.2 Bootstrapping

In order to estimate key figures of a given random distribution, resampling methods can
be applied. An approach used later in this thesis is the bootstrapping method. The goal of
this approach is the approximation of the distribution of a quantity which is not directly
accessible in an analytic procedure.

For this, from a given sample, varied samples are generated (resampling) by drawing with
replacement. This procedure can be simulated by drawing a weight w; from a Poissonian
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Figure 5.3: Example for the bootstrapping procedure. On the left, a random distribution
sampled from a Gaussian distribution with 4 = 0 and ¢ = 1 is shown, with a sample size
of N =10000. The distribution mean pg and standard deviation og slightly vary from the
true values due to the limited size of the statistical sample. On the right, a bootstrapped
sample is shown. The Poissonian reweighting leads to a fluctuation in the sample size
in the order of v/N. The expected deviation of its mean p; from the original value
corresponds to the uncertainty on the mean ¢/ VN ~ 1%, while the expected fluctuation
of the standard deviation is o9/v2N — 2 ~ 0.7 %.

distribution with mean one for each element i of the sample with size N. Then, the new
sample consists of N/ = Zfil w; elements, with expectation value E(N’) = N and variance

o?(N') = iaQ(wi) = N, (5.20)
i=1

corresponding to a standard deviation of v/N. Thus, for large sample size N, the relative
difference in size between the original and the bootstrapped sample becomes negligible. In
this procedure, the random selection of the weights along with their Poissonian construction
with mean one is of great importance. These properties lead to the conservation of the
probability moments, which is shown in the following for a general k-th moment:

1 1
(X*) = N doafb = (X = v > wiaf. (5.21)
7 7

Since the weights are uncorrelated and their expectation value is one, the expectation value
of the k-th moment in a bootstrapped sample is consistent with that of the original sample.
Figure 5.3 shows a random distribution and a corresponding bootstrapped distribution.

The value of the bootstrapping method comes into play when considering a larger number
n of bootstrapped samples. Since the expectation value of any estimator is conserved
in the bootstrapping procedure, it can be approximated by calculating the average esti-
mator value of all bootstrapped samples. The standard deviation of the estimator can
be approximated correspondingly. However, the precision of these values is subject to
the number of bootstrapped samples: for the mean the uncertainty is o/y/n, for the
standard deviation o/v/2n — 2. For illustration, Figure 5.4 shows the distribution of means
and standard deviations from bootstrapped samples imitating the original sample from
Figure 5.3.
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Figure 5.4: Distribution of the mean values (left) and standard deviations (right) from a set
of n = 1000 bootstrapped samples from the original distribution in Figure 5.3 (left). The
central values of the two distributions align well with those of the original distribution. The
standard deviations correspond to the expected deviations from the mean and standard
deviation in Figure 5.3 (right), i.e., 1% for the mean (left) and 0.7 % for the standard
deviation (right), showing good agreement with the expectation. The precision of these
uncertainty estimations could be improved by increasing the number of bootstrapped
samples.

To illustrate the technical implementation with the weights, consider a sample X with a
smaller size N = 4:
X =1[2,4,7,3]. (5.22)

Then a bootstrapping weight vector with Poissonian weights could be:
w =10,1,0,2], (5.23)

which by drawing each entry of X as many times as the corresponding weight entry dictates,
results in the following bootstrapped sample:

X, = [4,3,3]. (5.24)

The new sample size in this case would be N’ = 3, as indicated by the sum of weights, and
the number of entries in Xj.

In this thesis, the bootstrapping method is applied to estimate statistical uncertainties in
the correction procedure of the muon scale and resolution corrections in Section 6.3.
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6 Muon Corrections in the CMS
Experiment

Muons are important final state particles in many high-energy analyses conducted by the
CMS Collaboration. Understanding their behavior in the detector is therefore essential.
Beyond their quantum numbers, the defining properties of muons are their mass of approx-
imately 106 MeV and the mean lifetime of about 2.2 ps [7]. This unique combination plays
a key role in the reconstruction process.

To enhance the understanding of muons, Section 6.1 explores the implications of their
kinematic behavior in the detector, as well as methods to improve reconstruction based on
these effects. To achieve the most accurate description of the data using simulated events
in analyses involving muons, two fundamental types of residual corrections are typically
applied: efficiency corrections and momentum corrections. The former is addressed by
applying scale factors to the simulation, which are derived using the tag-and-probe (TnP)
technique described in Section 6.2. Finally, a framework for deriving muon momentum
corrections is introduced in Section 6.3.

6.1 Kinematic Behavior of Muons

The kinematic behavior of muons in the detector is strongly influenced by their momentum,
which depends on the production process under study. In many cases, muons originate
from the decay of short-lived resonances.

6.1.1 Momentum Distribution of Muons from Resonances

In the rest frame of the resonance, the daughter particles are emitted isotropically and
back-to-back. The magnitude of their momentum p = |p] is determined by the mass of the
resonance Myes and the masses of the daughter particles m; /5. Applying four-momentum
conservation yields:

Myes

m?es = m% + m% + 2(E1E2 +ﬁ2) = ‘ﬁl ~ 2’

(6.1)

where the approximation holds when the mass of the resonance is significantly larger than
the masses of the daughter particles.
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Figure 6.1: Distribution of the pt values of muons from a Z boson decay in its rest frame.
The distribution shows a divergence at pp ~ m(Z)/2.

The transverse momentum pr is defined in terms of p as:
pr = psind, (6.2)

where 6 is the polar angle between the direction of the muon momentum and the z axis.
Thus, the transverse momentum can range from 0 to approximately myes/2.

Naively, one might expect that muons are produced uniformly between these two values.
However, higher pr values are preferred due to the isotropic decay of the resonance. Since
each solid angle element df2 = sin #dfd¢ has an equal probability of containing the muon,
the pp spectrum follows from the chain rule:

dN dN dQ sin o (6.3)
_— — X = 5 .
dpr dQ dpr  pcosf /p? — p2

const.

where the second step makes use of the ¢-independence of pr. This result reveals a
divergence as pt — p, which can be observed in Fig 6.1. While divergences can sometimes
indicate unphysical behavior, this particular divergence is not problematic. In experimental
measurements, muons are always counted within finite pp intervals, and integration over
such intervals eliminates the divergence naturally.

Given the kinematic muon distribution in the resonance’s rest frame, the corresponding
distribution in the detector frame is obtained via a Lorentz boost. In pp collisions, this
boost can be decomposed into two components: parton momentum imbalance and radiation
effects.

e The parton momentum imbalance arises because the colliding partons may carry
unequal momentum fractions x1 and xo of the proton’s energy. This results in a
Lorentz boost along the beam axis.

e The radation effects primarily involve ISR and FSR. ISR occurs when additional
gluons (higher-order QCD) or photons (higher-order QED) are radiated off before
the resonance is produced. As a result, the resonance recoils against the emitted
radiation, introducing an additional boost with no preferred direction. The magnitude
of this boost depends on both the resonance mass and the momentum of the recoiling
particles. In contrast, FSR can be neglected at first order for muons as their relatively
large mass—compared to electrons—suppresses bremsstrahlung.
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Figure 6.2: Distribution of the muon momenta from the decay of a Z boson (top), and
J /v meson (bottom) in momentum space. In the rest frames, which are depicted on the
left, the distributions are consistent by construction (except for the axis range). Here, the
tendency towards larger pr values is demonstrated once more by the yellow area being
considerably larger than the other two despite covering the same pr range. On the right,
the corresponding distributions are shown for the case of a 10 GeV momentum of the
mother particle in the detector frame. Here, the distribution of the Z boson decay particles
is only slightly distorted, while that of the J/1) meson is boosted significantly stronger.
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The boost factor S is given by the ratio of momentum and energy

FE 2 2 m2 ’
\/m +p \/p2+1

g (6.4)

From this expression, it follows that heavy resonances require a large recoil or parton
momentum imbalance to achieve a significant boost. Consequently, high-mass resonances
are generally less boosted than low-mass ones.

Figure 6.2 illustrates the muon momentum distribution in momentum space for a J/v
meson and a Z boson, both in their rest and a boosted frame. The boost distorts the
originally spherical pt distribution, increasing the p values in the direction of the boost and
decreasing them in the opposite direction. Effects such as the limited detector resolution
and the intrinsic width of the resonance additionally distort the pt spectrum of the daughter
muons.

To summarize, although muons are emitted with a well-defined momentum in the resonance’s
rest frame, various effects contribute to the observed pr spectrum. While pt values are
not completely governed by the resonance mass, the mass still has a decisive effect on the
spectrum as they are still strongly correlated.

Since muons from different pp regions may behave differently, it is useful to categorize
them based on their transverse momentum:

o low-pr: < 10GeV
o medium-pr: 10GeV < 100 GeV
e high-pp: 2 100 GeV

This separation is not strict but rather serves as a rule of thumb. Similarly, resonances are
often grouped into different categories:

e The J/1¢ meson can be used in particular for the investigation of low-pp muons,
due to its low mass of 3.097 GeV [7]. Since its decay to D mesons is kinematically
not allowed, it has a relatively long lifetime (on the scale of hadronic physics) and
consequently a narrow decay width of about 93 keV [7], which makes it highly suitable
for calibration tasks. Due to the low mass, the J/1 tends to be significantly boosted
even for small momenta. As a result, the decay products exhibit strong angular
correlations, a feature that can be exploited by trigger selections.

e The Z boson can be used in particular for medium-pp muons, due to its mass
of 91.2 GeV [7]. The decay width of 2.50 GeV [7] is more than four orders of magnitude
larger than that of the J/¢. In comparison with the J/¢, the Z boson is usually
less boosted in the CMS experiment. Consequently, the daughter muons are usually
emitted back-to-back, leading to large angular separations. While there is no single
resonance that can be exploited at high-pr, the spectrum of Z boson production
reaches to the high-p range as well and can therefore—with statistical limitations—be
used to calibrate high-pr muons.

An important feature of both resonances are their large production cross sections, which
allow for high statistical precision when using these resonances for calibration purposes.
Furthermore, by carefully selecting a phase space that reflects the properties of a resonance,
other contributions that do not resonate in this phase space can be relatively reduced. As
the corresponding systematic uncertainties from the background processes are suppressed
as well, this property is particularly beneficial for calibration.
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6.1.2 Optimizing Muon Reconstruction

As muons traverse the detector, they leave a trail of energy deposits in the different
subdetectors. However, to efficiently identify a true muon among thousands of tracks in a
typical event, it is crucial to combine information from both the muon chambers and the
tracker. As summarized in Section 4.2.3, there are three different types of muon objects on
reconstruction level:

e tracker muons: a tracker track that has been matched with a muon segment,
o standalone muon: a track reconstructed only in the muon system,

e global muon: a track in the muon system matched to a track in the tracker; a
global fit is performed using all corresponding hits.

The definitions have in common that they rely on the muon leaving some information in
the muon chambers. Due to the large relevance of the muons reaching the chambers, the
corresponding probability is examined briefly in Appendix A.1. Optionally, an additional
constraint on the muon can be imposed by the beam spot position to further refine the
muon reconstruction.

For prompt muons produced in the hard scattering process, the tracker muons are the most
efficiently reconstructed muon objects as they require only a single matched segment in the
muon system. This is particularly beneficial for low-pt muons, which may not reach the
outer chambers. However, tracker muons also have the highest misidentification rate due
to the abundance of tracks in an event that may accidentally match a segment.

Standalone muons are reconstructed by only using the muon system. As a result, their
efficiency is generally lower than that of tracker muons, since some true muons may not
reach the muon chambers. However, they also have a lower misidentification rate, as the
probability of reconstructing an entire track in the muon chambers by chance is relatively
small. Above the low-pr range, where muons are prone to not fully traversing the muon
chambers, the standalone reconstruction efficiency is relatively stable up to high-pr [74].
At values pr 2 200 GeV, the probability for radiative losses rises, frequently inducing
electromagnetic showers in the return yoke that complicate the standalone reconstruction.
Therefore, dedicated algorithms are applied for such muons [75].

The precision of the momentum measurement depends on both the tracker and muon
chambers, but their relative performance varies with pr. For low- and intermediate-pt
muons, the tracker provides much better momentum resolution than the muon system.
This is because muons lose energy before and while passing through the muon chambers
due to interactions with the detector material, including the iron return yoke. In addition,
the tracker has a better spatial resolution compared to the muon system. For very high-pp
muons, the muon system may provide a more accurate measurement, particularly if the
tracker cannot resolve differences in the curvature anymore.

Global muons combine the advantages of both reconstruction methods. They inherit the
standalone muon’s small misidentification rate, while also profiting from the high-precision
momentum measurement of the tracker. This makes global muons the preferred choice
for many physics analyses. There are few exceptions where other methods may be more
suitable, such as displaced muons, where the track may not be recovered by the tracker
system and the standalone muons could be the preferred choice. Furthermore, at very
low pr, where the muons may not have sufficient energy to be reliably reconstructed as
a standalone muon, the usage of tracker muons can be of advantage due to the higher
efficiency.
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6.1.2.1 Muon Identification

To optimize the balance between efficiency and misidentification rate, additional identifi-
cation criteria can be applied. These can be either based on simple selections or include
multi-variate optimization [76]. In this thesis, only cut-based identification criteria are
used, in particular the soft, loose and the tight identification criteria.

The soft identification aims to select low-pt muons and corresponds to a tracker muon,
where the track fulfills a set of quality criteria. In contrast, the tight identification
processes is aimed at providing a very pure collection of prompt energetic muons, which
comes at the cost of lower efficiency, in particular for low-pr muons. This high purity
is obtained by applying very strict criteria, e.g., requiring global muons with a good fit
quality (x2/dof < 10). Muons that are selected by the PF algorithms and are a tracker or
a global muon satisfy the loose identification criteria. This identification is more relaxed
than the tight identification and therefore has a higher efficiency but a lower purity. A
complete description of the selection criteria is provided in Reference [77].

6.1.2.2 Muon Isolation

To suppress muons originating from jets, additional selection criteria based on muon
isolation can be applied. Isolation is defined as the sum of transverse momenta from
particles within a cone of radius R < 0.4 in the 7-¢ plane around the muon:

> pT-i-maX(O, > Er+)» pr—05 Y pT>

PV-had. neutr. had. Y non-PV-had.

1

pr(p) ' (6.5)

rel —

In this equation, all transverse momentum contributions from charged hadrons associated
with the primary vertex (PV) are included directly, as the tracker provides efficient vertex
assignment for them. The neutral contributions—such as neutral hadrons and photons—are
summed separately, while a conservative estimate of pileup contamination is accounted
for by subtracting half of the summed transverse momentum of charged hadrons not
associated with the PV. To prevent negative isolation values due to over-subtraction, the
maximum function ensures that the total neutral contribution remains non-negative. The
final isolation value is then normalized by the transverse momentum of the muon itself.

A lower relative isolation value indicates a more isolated muon, meaning there are fewer
nearby particles with significant transverse momentum. Consequently, contributions from
non-prompt muons can generally be suppressed by rejecting muons that exceed a certain
isolation threshold. In general, the tighter this threshold, the fewer non-prompt muons
remain in the sample—at the cost of reduced efficiency. Commonly used thresholds are 0.25,
0.2, and 0.15, corresponding to loose, medium, and tight isolation criteria, respectively. For
a fixed threshold, the efficiency of the isolation selection typically depends on the muon pr,
as the relative isolation tends to decrease with increasing pr (except at very high pr, where
bremsstrahlung effects become significant). An example plot showing the dependence of
the isolation efficiency on the muon pt value can be found in Figure B.5 in the appendix.
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6.2 Tag and Probe Method

Muon-based event selection involves various sources of limitation in the efficiency. In
this context, the efficiency € is defined as the probability P that a real muon is correctly
identified and included in the analysis. This efficiency can be calculated using the frequentist
approach, expressed as a conditional probability:

P(selected and real)
P(real) ’

€ = P(selected|real) =

6.6
N, selected,real ( )

= €= ,

Nreal
where € denotes the estimator for € and is calculated from the number of selected real
muons Ngelected real, a1d the total number of real muons Nyeq1 (both selected and unselected).

Since analyses typically compare theoretical simulations with experimental results, it is
essential to ensure the consistency between the selection efficiency in the simulations and
the real data. To improve the consistency, the efficiency must be estimated in both cases.
In simulations, the presence of truth-level (generator) information simplifies this process,
allowing the efficiency to be directly computed using Equation 6.6. However, in real data,
the truth information is not available, indicating the need for alternative approaches to
determine the efficiency. The TnP method [78] provides a possible approach to overcome
this limitation and to estimate the efficiencies directly from the data.

6.2.1 General Concept

The central idea of this approach is to use a set of reconstructed objects that are highly
likely to be real muons—a process called tagging. By assuming these objects are indeed
real muons, Equation 6.6 can be formally applied to determine the corresponding efficiency.
Since this assumption is critical for the validity of the result, it must be carefully evaluated,
especially by assessing the impact of potential limitations.

Phase space regions with two oppositely charged muons with a dimuon mass close to a
resonance, such as the Z or J/v¢ peak, are intrinsically well-suited for this approach, due
to the high abundance of the resonance events in the corresponding region. One of the
two muons is additionally required to satisfy a set of tight identification criteria to further
suppress non-prompt muon contributions. Then, the probability for the other (probe)
muon, which is only required to satisfy basic criteria, to not be a real muon is very small:

P(real|probe) ~ 1. (6.7)

If this relation holds, then any subset of probe muons should consist mostly of real muons
as well, in particular the subset satisfying the selection criterion under study:

P(real|selected probe) ~ 1. (6.8)

Furthermore, it is assumed that the selection efficiency of real muons is well described by
the subset of real muons that is also a probe:

€ = P(selected|real) &~ P(selected|real probe). (6.9)
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Then, applying Bayes’ theorem, along with the assumptions from above, the efficiency can
be further approximated:

6.9 P(real selected probe)
< P(real|probe) P(probe)
6.7 P(real|selected probe)P(selected probe)

P(probe) (6.10)
~ P(selected|probe),

I
o0

N, selected,probe

= Eér ,
Nprobe

where Nclected,probe 15 the number of selected probe muons, and Nppope is the total number
of probe muons.

To determine the number of probe muons before and after applying the selection criterion,
several strategies can be followed. The simplest approach is the cut-and-count method, in
which all tagged events within the defined resonance phase space are used to determine the
efficiency. This approach is most useful in case of small statistical sample sizes, where more
sophisticated methods may experience stronger limitations. In case of decent statistical
coverage, the TnP method can be further improved by reducing the impact of background
events in the data. Such events could otherwise be a limitation to the validity of the
assumptions, as they do not share the same properties as the resonance events. A common
approach is to extract the number of signal processes from a fit of a model-—containing
both signal and background contributions—to the dimuon mass distribution in the data.

6.2.2 Statistical Model

Statistical models to extract the number of signal processes can be broadly divided into two
groups: simulation-based and analytical models. Simulation-based models are constructed
from MC simulated events and converted into histogram templates that represent the
expected shape of the corresponding contribution. Since the simulation might not perfectly
model all aspects of the detector behavior—such as the muon pr scale and resolution—these
models typically incorporate additional degrees of freedom. For example, the simulated
templates can be convolved with a Gaussian function to account for such discrepancies in
scale and resolution.

In contrast, analytical models are based on fundamental theoretical considerations on
the underlying physics process. A commonly used function to model resonances is the
Breit-Wigner distribution [79]. The Breit-Wigner function naturally arises from calculations
involving an unstable mediator particle, whose mass M and width I' determine the shape
of the resonance. The probability density function as a function of the energy FE of the

process is given by:
1

(E2 _ M2)2 _|_M2F2'

Analytical models are simple and efficient, relying on a few parameters and minimal
computing resources, unlike simulation-based models that are more resource intensive.
However, they may lack accuracy, as they do not fully account for detector effects and
higher-order corrections. For example, the detector’s finite resolution changes the observed
resonance shape, meaning that a pure Breit-Wigner model does not accurately describe the
experimental data. To address this, the Breit-Wigner distribution is typically convolved
with a Gaussian function, resulting in a Voigtian distribution that better represents the

f(E; M,T) (6.11)
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Figure 6.3: Example fits to extract the efficiency from data. Events include global muons
as probes with —1.6 < n < —1.2 and 40 < pr < 50 GeV, and passing (failing) the tight
identification criteria in the plot on the left (right). Upper panels show the dimuon mass
distributions in the data (black points), with the combined post-fit (red line) and the
background-only (blue dashed line) models. Lower panels show the pull distribution, defined
here as the difference between yield in data and post-fit model, scaled by the statistical
uncertainty in the data, generally indicated by black bars. The post-fit normalizations and
resulting efficiencies are shown on the left for signal (Sig) and background (Bkg).

measured spectrum. When applying such an analytical approach to estimate the number
of muons in the data, it is essential to apply the same method to the simulated events as
well. Directly comparing events at the generator and reconstruction level could otherwise
introduce biases, as detector-related systematic effects are present in the data but may be
missing from the signal model in the simulation.

The standardized approach in the CMS MUO group uses a simulation-based signal model,
and an analytical function to model background contributions. The dataset, consisting of
tagged events, is then split into two parts: one where the probe muons pass the selection
criteria, and one where the probe muons fail the selection criteria. For each category, a
fit is performed to extract the signal contribution and mitigate effects from background
contamination. The result of these fits are two quantities:

o Npass: the number of probes satisfying both baseline and selection criteria.
e Npj: the number of probes satisfying baseline but failing selection criteria.
The efficiency estimate is then given as:
_ Npass
"~ Npass + Npait

By construction, this approach ensures that the efficiency is always constrained within the
valid range [0, 1]. Figure 6.3 presents an example fit for the efficiency extraction from the
data.

M™>

(6.12)

Since the behavior of muons in the detector strongly depends on their pr, the efficiencies
generally are expected to depend on pr as well. Similarly, the detector composition and
geometry depend primarily on the pseudorapidity n. Variations in the material budget and
number of detector hits in different regions may lead to non-uniform efficiency distributions.
Therefore, efficiency measurements are typically parametrized as a function of both 1 and
pr to capture these effects accurately.
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6.2.3 Uncertainty Estimation

The standardized approach used in the CMS Collaboration evaluates several different
sources of uncertainty which fall into three categories:

o Tag selection uncertainties: to ensure the purity of the probe events, the tag muon
must satisfy a combination of tight selection criteria. In general, each of these criteria
can be correlated with the efficiency of the probe muon. For instance, events with
lower overall activity may lead to both the tag and probe muons more easily fulfilling
the isolation requirement. In this case, the tag isolation criterion implicitly influences
the probe isolation. Such effects are studied by varying the properties of the tag
muon and determining the impact on the efficiency.

e Modeling uncertainties: the choice of the model can have an influence on the result, for
instance if background contributions are systematically overestimated. To estimate
the impact, the models are varied and the difference between the variations is
considered as the associated uncertainty.

e Binning uncertainties: the impact of the choice of the bin size and bin range in the
fit of the dimuon mass distribution is estimated by varying both.

e Statistical uncertainties: the finite number of events limits the precision of the
measurement and is evaluated directly through the fit.

The different uncertainties are generally considered as uncorrelated. However, the as-
sumption of no correlation bears the risk of double-counting statistical uncertainties from
the different evaluations of the systematic uncertainty. In particular if the systematic
uncertainty is significantly smaller than the statistical uncertainty, the evaluation of the
corresponding systematic variation can on average not be smaller than the statistical
uncertainty. To avoid this double-counting, systematic contributions are only included in
the total uncertainty if their size exceeds that of the statistical uncertainty.

6.2.4 Application of the Efficiency Corrections

To ensure that simulated events accurately reflect the real data, efficiency corrections are
applied in the form of scale factors. These scale factors are used as event weights in the
simulation, adjusting for discrepancies between data and simulation. The scale factor SF,
for a given criterion x is defined as the ratio of the efficiency in the data e, gata to the
efficiency in the simulation e, gim:

SF, = Svdata (6.13)
€x,sim
For events with multiple selection criteria, the application of scale factors depends on the
logical relationship between these criteria. If the selection criteria z and y must both be
satisfied, then the total efficiency is given by the product of the individual efficiencies. As
a consequence, the total scale factor is also the product of the single scale factors:

SFa:/\y _ Exny,data _ €x,datay,data _ SFxSFy (614)

ExAy,sim Ex,sim€y,sim
If an event is selected when at least one of the criteria x and y is satisfied, then the total
efficiency must reflect that an event is only not selected if neither x nor y are fulfilled.
Thus, the total scale factor is given by:

SF __ Epvy,data 1- (1 - €w,data)(1 - Ey,data) (6 15)
vy = = . .
oy ExVy,sim 1-— (1 - 5w,sim)<1 - <E—y,sim)
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This is often the case in trigger efficiency corrections, where an event is selected if at least
one object satisfies a trigger condition.

When estimating the impact of uncertainties on the final result of an analysis, different
sources of uncertainty are usually combined for each scale factor and treated as correlated
across different n-pt bins. Different scale factors themselves are assumed to be uncorrelated.
This approach is motivated by the simplifications it provides in the fitting procedure when
determining the optimal scale factors. Since the impact of muon efficiency scale factors
on the overall results is rarely dominant, additional refinements in the treatment of their
uncertainties are usually not necessary. It is important to note that a correct treatment of
the uncertainties would mean to treat

 statistical uncertainties as independent between different bins in n-pr, and

e both statistical and individual systematic uncertainties as correlated between different
scale factors.

This distinction ensures that uncertainties are not artificially inflated due to incorrect
assumptions about their correlation structure.
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6.3 Muon Momentum Calibration

The precise measurement of muon momenta is a complex procedure that depends on
multiple factors. As a muon propagates through the detector, its trajectory is affected by
both the magnetic field and interactions with the detector material. These effects must be
properly accounted for in the reconstruction of the muon track. In addition, the spatial
resolution of detector hits is a limiting factor to the precision of momentum reconstruction.
For an accurate representation of muon momenta in simulation, all these aspects need to
be modeled with high precision. Even though the description is highly optimized, residual
discrepancies between simulation and real data naturally arise due to the finite accuracy of
these models. This section provides an approach to mitigate such discrepancies.

As opposed to efficiency corrections, which are applied via event reweighting, the muon
momentum calibration is performed by modifying the pt of reconstructed muons directly.
The overall calibration procedure can be categorized into two fundamentally different types
of corrections—scale and resolution—depending on the nature of the underlying effect that
is addressed by the correction.

6.3.1 Scale and Resolution

In this thesis, scale effects refer to the deterministic modifications of the measured momen-
tum, whereas resolution effects introduce random, non-deterministic variations. Therefore,
the main difference between these two lies in their reproducibility: for exactly the same
original muon, scale effects are reproducible, whereas resolution effects are not.

To formalize this, consider a hypothetical true value i, of an observable, which is
measured by an idealized detector. In this context, idealized refers to the detector response
being completely described by a Gaussian distribution with a mean p and standard
deviation o. Applying the definition introduced above, the scale effect is described by the
quantity g — Tirue, whereas o summarizes the resolution effect. In a perfect measurement
both scale and resolution effects would ne negligible, but this is usually not the case in
real-world experiments. Instead, in high-energy physics, where most experiments rely on
comparisons between simulations and the data, a more practical goal is to eliminate obvious
differences between both.

To correct for scale differences between simulation and data, one can either transform both
data and simulation such that their mean values match Zipye, or shift one distribution to
align with the other. The choice between these approaches is mostly philosophical, as both
achieve the goal of improved data-simulation agreement.

Resolution corrections, however, are more challenging due to their random nature. Unlike
scale effects, resolution cannot be improved through ad-hoc corrections (only by improving
the detector or reconstruction methods), but only decreased by introducing additional
smearing. This can be done by adding a random Gaussian-distributed term N (0, 04qq)
with mean 0 and standard deviation o,qq to each value z. Alternatively x can be multiplied
with a Gaussian distributed term with mean 1 and standard deviation o,qq/2 because:

2+ N(0, 0pqd) = 7|1+ %N(o, aadd)} = x{l +N(o, deﬂ = a:N(l, U;“). (6.16)

When modifying all individual values in a distribution according to this procedure, the
effect on the total distribution of values can be described through a convolution with
a Gaussian distribution of mean 0 and resolution o,qq. Thus, the new distribution has
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a mean consistent with that of the old distribution, but the new standard deviation is

increased as follows:
Tnew = \/Toiq + Tadas (6.17)

where 0,4 is the standard deviation of the old distribution. Thus, to perfectly match the
resolution between data (o) and simulation (¢’), the required additional smearing is given
by:

2

Oadd = V02 — /2. (6.18)

Here, it was assumed that the standard deviation in the data is larger than in the simulation.
This assumption is usually true because the simulation by construction only considers
effects that are understood (as they are fed into the simulation), while the data may also
contain unmodeled effects. Figure 6.4 illustrates the general concepts of the scale and
resolution correction with a hypothetical example.

Unlike indicated by the hypothetical example, the true value for the real data is usually
unknown, making a direct calibration challenging. A more practical approach is to iteratively
adjust correction parameters and assess the impact on agreement between simulation and
data. Dimuon resonances are particularly useful for such an approach, as they provide a
well-defined reference point: the peak position of the resonance reflects the momentum
scale, while the peak width is related to the momentum resolution. This makes them an
ideal object for validating and refining calibration procedures.

6.3.2 Correction Procedure

The muon momentum correction procedure presented in this work is based on the method
described in Reference [3], and was refined in the scope of this thesis in collaboration with
a master’s thesis [80]. The procedure consists of two main steps:

1. Extraction of information on the scale and resolution based on distributions of
single-muon quantities.

2. Refining of information from the first step by gradually improving the agreement
between data and simulation in the dimuon mass spectrum close to a resonance.

This process is also illustrated in Figure 6.5, reflecting that in each of the main steps the
scale is targeted before the resolution.

The corrections are derived separately in two phase spaces, where the properties of reso-
nances can be fully exploited:

¢ Medium-pp phase space: this is the main target of this part of the work. It can
be investigated at the Z boson resonance, using standard triggers in the main data
stream.

e Low-pr phase space: this serves mainly as a cross check of the method validity of the
results, but may become of greater value in the future. Here, the J/1 resonance is
used from a parking data set, as the corresponding low-pr triggers are prescaled in
the main data stream.

To focus on these processes while reducing background contributions, both phase spaces
require the presence of two opposite-sign muons with a dimuon mass close to the corre-
sponding resonance peak position. Table 6.1 summarizes the selection requirements for the
two regions.
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Figure 6.4: Simplified example of the correction procedure applied to a hypothetical
measurement of a specific true value (here 0). At the top, the original distributions of the
measurement of a certain true value in data and simulation are shown. The scale of the
distributions is corrected by applying a shift by the size of xiye — it to each value, where p
is the mean value of the corresponding distribution. The result of this correction is shown
at the bottom on the left and yields good agreement of the central value. The resolution is
then optimized by multiplying each value in the simulated sample with a random value
from a normal distribution, with mean one and standard deviation g,qq.

56



6.3 Muon Momentum Calibration
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Figure 6.5: Scheme for the derivation of the muon momentum scale and resolution corrections
in the CMS experiment.

Table 6.1: Baseline selection requirements for the derivation of the muon scale and resolution
corrections at low and medium pp. The selections are refined in the individual correction
steps, e.g., using a smaller range around the dimuon mass.

Requirement Low-pr region Medium-pr region
Trigger HLT DoubleMu4 3 LowMass HLT IsoMu24
Offline pp (GeV) >4 > 26

Muon |n] <24 <24

# muons 2 2

Sum of muon charges 0 0
Relative muon isolation — < 0.15
Identification soft tight
Dimuon mass (GeV) € [2,4] € [50, 130]
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To minimize systematic differences between data and simulation that are not a result of
deficiencies in the muon pt description, several corrections are applied: NLO samples are
used, wherever possible, to better approximate nature’s infinite-order behavior. Muon
efficiency scale factors are applied to the simulation to align the efficiency description
between data and simulation. Furthermore, the pileup distribution is reweighted to match
the expectation from the measured luminosity and the pp cross section. Additionally, the
transverse momentum of the dimuon system is reweighted to match the data, thereby
covering differences in the recoil descriptions arising from missing higher-order corrections.
In the Z region, background contributions are generally subtracted from the data. As the
J /1 region serves as a proof of concept rather than being as optimized as the medium-pp
region, the background contribution is not subtracted there. The missing background
subtraction in the low-pT region presents a systematic effect but is not considered a general
show-stopper for future developments.

6.3.2.1 Single-Muon-Based Scale Correction

After event selection and simulation-tuning, the first step in the correction procedure aims
to correct the muon pr scale. As the muon pr is reconstructed from the track curvature
using Equation 4.3, two primary sources can lead to momentum scale effects:

e Magnetic field mismodeling: affects the radius of the trajectories independent of the
charge sign.

e Detector misalignment: leads to deviations in the track reconstruction, which appear
as charge-dependent effects.

Additionally, approximations in the simulation—while computationally efficient—may
introduce minor biases. However, the corrections introduced in this thesis focus on first-
order effects and therefore neglect such simulation approximations.

The effect of alignment issues is assumed to be additive in the curvature. As illustrated by
Figure 6.6, the effect has a different sign for differently charged muons. Since the curvature
is related inversely to the transverse momentum, the alignment effect is additive in 1/pr.
Given Equation 4.3, differences in the magnetic field can be propagated to the momentum
as a multiplicative term. The size of this term is equal for both positive and negative muons,
as an increased magnetic field would lead to a larger muon track curvature independently
of the charge. In summary, the naive correction scheme follows the relation:

1 M
— — — +qA4, (6.19)
pr pr
with a multiplicative correction term M and an additive term A. Since both effects generally
vary with the detector position, the CMS detector is divided into bins of 17 and ¢ to derive
separate correction parameters for each region.

As explained in Section 6.1, the pp of muons from resonances follows a specific shape,
governed by the interplay of the resonance mass and its boost. Assuming the recoil and
parton momentum imbalance are described correctly by the simulation, a set of initial
corrections can be extracted directly from Eq. 6.19. For this, it is assumed that the
parameters A and M remain constant within each 7-¢ bin, independent of the charge.
Then, taking the mean of the 1/py distribution for both muons, the correction parameters
can be estimated by solving the system of linear equations:

!

C’1’1-‘3W,:|: =M - C'old,i + Au (620)
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Figure 6.6: Sketch of the impact of misalignment on the track curvature. The left part of
the sketch displays the true but unknown alignment of a simplified tracker, showing a small
shift in the positioning of several layers. True tracks for a positive and negative muon at a
certain momentum are represented by the black uninterrupted lines. The darker tracker
elements correspond to the hits from the true muons. The right part of the sketch displays
the alignment in reconstruction, where the shift is not accounted for. As a result of the
misalignment unaccounted for in reconstruction, the reconstructed tracks (represented by
dashed lines) are not aligned with the true tracks anymore. In particular, the impact on
the curvature has a different sign for the two differently charged muons.

where C' = (1/pr) for better overview, and the labels 'new’ and ’old’ depend on the chosen
reference. In this analysis, both data and reconstructed simulation are corrected to match
the generator-level distribution. This is the most general approach, as other transformations
(e.g., correcting only data to simulation) can be obtained from these parameters. The
solution of this system of equations is given by:

Cnew,f + Cnew,+
Cold,— + Cold, +

A= Cnew,+ - Cold,—l— ’

M =

6.21
Cnew,— + Cnew,—f— ( )

Cold,— + Cold, +

Generally, the accuracy of this step is limited by the assumption that the modeling of the
parton momentum imbalance and the recoil is sufficient. Consequently, it is only used as
an initial correction and fine-tuned in a further step with the help of a resonance.

6.3.2.2 Single-Muon-Based Resolution Extraction

The approach for obtaining resolution corrections differs from that used for scale corrections
due to their different cause. While scale corrections address systematic shifts in measured
momenta, resolution corrections focus on describing the spread of reconstructed values
around their true momenta. In the resolution correction procedure, the first step consists
of the parametrization of the muon pr resolution in simulation. The resolutions are then
tuned to achieve optimal agreement between the dimuon resonance in the simulation and
in the data.

The resolution of simulated muons is obtained by comparing the true (generator-level) pp
to the reconstructed value. This comparison is mathematically expressed by calculating

the ratio R for each muon:
_ PTgen

PTreco

If the resolution is high, then the reconstructed momenta closely match the generated
values, resulting in a distribution of R with a small variance.

R (6.22)
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Following the discussions in Section 4.2 leading to Equation 4.4, the muon pr resolution
depends on multiple factors. Apart from its intrinsic pt dependence, additional dependencies
can be effectively formulated as a function of |n|. Consequently, the variance of R values is
computed in bins of |n|, its dependence on pr is extracted using a second-order polynomial
fit, which includes the linear expectation from the Gluckstern Equation 4.4 as a special case
but was observed to describe the behavior better in some bins. However, binning solely in
|n| may not fully capture effects from a difference in the number of hits in the tracker layers.
If a muon leaves fewer hits in the tracker, then the corresponding pr measurement is less
precise than that of a similar muon with more hits. To account for this, the resolution is
further binned in the number of tracker layers ny,.

The extracted standard deviations alone are not sufficient, as the distribution of R values
is not purely Gaussian. To account for residual effects, a double-sided Crystal Ball
function [81,82] is fit to the pull distribution

R — (R)

Pull =
T em)

(6.23)

where (R) and o(R) denote the mean and standard deviation of R. The double-sided
Crystal Ball function contains a Gaussian core with power-law tails on both sides, making
it well suited for modeling non-Gaussian effects such as radiative energy losses.

Figure 6.7 illustrates example fits for both the quadratic parametrization of the resolutions
and the double-sided Crystal Ball fit applied to the pull distribution. While the resolution
fits in the shown bins exhibit a linear behavior, this is not representative for all bins. In
particular, less-populated bins often show non-linear effects, that are better captured by
the quadratic fit model compared to the idealized linear one. Nevertheless, the quadratic
fit provides a good model of the underlying linear behavior in the presented bins due to the
sufficient number of events in these bins. Closure plots for the resolution parametrization
are presented in Figure 6.8 and compare the original and smeared generator-level dimuon
mass distributions to the reconstruction-level distribution. In both regions, the dominant
share of the resolution difference is mitigated after the corrections, while a small discrepancy
remains, especially in the scale. These remaining differences are targeted in the following
fine-tuning steps.

6.3.2.3 Resonance-Based Scale Fine-Tuning

Unlike the pt spectrum of individual muons, the invariant mass of a resonance does not
explicitly depend on the modeling of its momentum. However, the reconstructed mass of
the dimuon system is derived from the single muon momenta using the formula:

m R \/QpTlpTQ[cosh An — cos Ag), (6.24)

which follows from the definition of the dimuon mass and relativistic approximations. In
this equation, pr; and pr, are the relativistic momenta of the two muons, while An and A¢
represent their pseudorapidity and azimuthal separation, respectively. Thus, in contrast to
the true invariant mass of the resonance, the reconstructed mass implicitly depends on the
modeling of the momentum. However, this dependence arises solely due to the position of
the muons in the detector. Since the scale corrections are generally derived and applied in
bins of pr and 7, this residual correlation should be eliminated to a large extent, allowing
for highly precise fine-tuning of the scale corrections at the resonance level.
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Figure 6.7: Example fits in the resolution extraction steps in the J/v region (left) and in
the Z region (right). Muons in these fits are characterized by hits in 13 tracker layers, and
n € [1.6,1.8]. At the top, the standard deviation values of the distributions R are shown as
data points. The dependence on the momentum is extracted with a quadratic fit, represented
by the red line. The bottom plots show the modeling of the non-Gaussian behavior of the
R distribution. Here, the histograms represent the normalized pull distribution of R, which
is modeled with a double-sided Crystal Ball function (blue line). The modeling between
the two regions is generally consistent in this bin.

61



6 Muon Corrections in the CMS Experiment

Private Work (CMS Simulation) anate Work (CMS Slmulatlon)
> e . e e B B > L L e B IREREEEEEE IEEEBEREEEEEEEEEREERY
& o2f[sm 4 8 0.06»D5im- —
g [ —Smeared gen. sim. ] g —Smeared gen. sim. 7
= 5 ] L i
S 0.15- —Gen. sim. N E r —Gen. sim. b
- [ ] S 0.04— -
2 o1 18 | ]
[ 4 =
g - ]
— L ] q>) 0.02— —
§ 0.05~ - O - 1
w r i L |
ok I I u| ol | | | | L I I I I
o 4 T T T T o 4 T T T I T T T T
IS 3 - _ N I 3
@ 2T T Tl @ 2
1 __— - —= —— 1 T
o) S I e S NS I AR o) | I I i I I I
3 3 02 3 04 3 06 3 08 3 1 312 314 316 3.18 32 86 87 88 89 90 91 92 93 94 95
m,, (GeV) (GeV)

Figure 6.8: Distributions of the dimuon mass in the J/v region (left) and in the Z region
(right). The upper panels show the normalized distributions of the reconstructed, the
smeared generated, and the original generated dimuon masses. The lower panels display
the ratio of the generator-level distributions to the reconstruction-level distribution.

Despite the advantages of using a dimuon resonance for calibration, the correlations of
scale adaptations for both muons must be addressed simultaneously. A naive approach
that optimizes the muon pr scale for only one muon at a time is inherently flawed, as the
second muon would remain uncorrected. Therefore, it is crucial to de-correlate the two
muons in order to enable an accurate scale optimization.

Building on the assumption from Eq. 6.19 that the p scale correction consists of both an
additive and a multiplicative component, the impact of this correction on the dimuon mass
can be expressed as:

1 1
m—m (6.25)

VM + Aipry /M- —A_pr_’

~14+Am/m

where the index + refers to the positively charged muon and the index — to the negatively
charged muon from the resonance. The correction parameters depend only on the position
of the muon. For instance, the notation A, is shorthand for A(ny, ¢ ), where ny and ¢
indicate the muon’s position in the detector, with analogous notation for the other parame-
ters. Expanding the square root via a Taylor series yields the following expression for the
mass shift:

My +Aypry -1 M_—A_pr_—1
— —1 2
> 5 ] (6.26)

= 2Am~m[M; -1+ Apr, + M_—1—-A_pr_]. (6.27)

Am =~ m[l —

Thus, the effect of small changes in the alignment or magnetic field on the dimuon mass is
parametrized. However, the issue of correlation between the two muons still persists.

To eliminate this correlation, an iterative approach is used to solve Eq. 6.27 under specific
assumptions. First, all positive muons within a certain 7-¢ bin are considered, and the
average value across these muons is computed:

—2(Am) = (m)(My — 1) + (mpr Y As + (m(M_ — 1)) — (mpr_A_).  (6.28)
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Here, all positively charged muons share the same correction parameters My, A, while
the negatively charged muons may have different parameters. Since the contribution of
the negative muons is relatively small when averaging over all positive muons in the same
bin, their effect could, in principle, be neglected entirely. Alternatively, the second muon
can also be assumed to fulfill similar properties as the muons in the current bin. Under
this assumption, the multiplicative terms double in size, while the additive correction
parameters AL cancel out. Previous versions of this method used a hybrid approach,
assuming that the multiplicative correction for the second muon is the same as for the first,
while the additive terms of the second muon cancel on average. Since this approach has
been found to perform well, it is also used in this work.

Applying these assumptions and performing the same procedure for the negative muon
yields a solvable system of equations:

(m)+(M = 1) + (mpr)+ 4,

() (M — 1) — {mpr) A (6:29)

—2(Am)_ =2
Here, Am represents the difference between the target mass, which follows the smeared
generator-level distribution, and the reconstructed mass at the current iteration. Since the
target values are independent from the iteration, the mean of the differences is equivalent
to the difference of the means. To ensure unbiased starting values, the initial corrections
are used as an input for the first iteration.

The updated parameters are determined by solving the equation system:

Moo ({ame (Y iy

(mpr)+  (mpr)- mpr)+  (mpr)

A <<Am>+ <Am>)/<<mpT<>+ (mpT)_)

(6.30)

(myy  (m)- 2(m)y 2(m)-

Due to the assumptions regarding the second muon, multiple iterations are required to
reach the target values. With each iteration, the impact of these assumptions on the
dimuon mass decreases, as the description of the second muon is also updated and moves
closer to the target.

While the mean is commonly used and a robust estimator for central values, it can become
biased when applied to asymmetric distributions, such as those encountered in dimuon
resonance spectra. For example, the peak of the Z boson is systematically shifted towards
lower massed due to F'SR effects, where photons carry away a fraction of the energy that is
not recovered in the dimuon mass reconstruction. Furthermore, the spectrum includes off-
shell photon contributions that create a smoothly falling continuum beneath the resonance.
Since these low-mass contributions are indistinguishable on an event-by-event basis, they
further distort the distribution and shift the mean away from the true peak position.

To reduce this bias, the dimuon mass window is restricted to a narrow window around the
resonance. For more precise measurements, the peak position could instead be determined
by fitting the mass spectrum with a suitable model—such as a Breit-Wigner function
convolved with a Gaussian or Crystal Ball function.

Figure 6.9 shows the evolving value of the mean of the reconstructed dimuon mass dis-
tribution with respect to the mean of the generator-level distribution over 20 iterations.
The impact of the correction on the reconstructed distributions in data and simulation is
shown by comparing the dimuon resonance mass distribution before and after applying the
correction in Figure 6.10.

63



6 Muon Corrections in the CMS Experiment

Private Work (CMS Simulation) Private Work (CMS Simulation)
L L L L L D

T % Scale-corr. sim. > I % Scale-corr. sim. |
S ---- Gen. sim. S [ ---- Gen. sim. ]
—~ 0.01r - —~ 0.01r -
3 3 b 4
3 " 3 [
S X x E
= 0.00F-—m—- ZE X X %% 5 3 e %26 - - 06 ~ 0.00F----- 3w e B e XX 6 K- 36 Hm3¢ e 4
[ N !
F X
—-0.01+ — —-0.01F —
F X
_ | | | _ L | | | ]
0.025 5 10 15 20 0.025 5 10 15 20
Iteration Iteration

Figure 6.9: Example plots of the evolution of the mean difference between the dimuon mass
distribution at the reconstruction-level and generator-level. Both distributions are from
the same correction bin, defined by —2.2 < n < —1.85 and —2.8 < ¢ < —2.4. The left plot
is from the J /1 region, while the right plot is from the Z region. Both converge towards
zero after a few iterations.

6.3.2.4 Resonance-Based Resolution Fine-Tuning

As a final step, the resolution parametrization from the simulation is tuned using the
dimuon spectrum. A scaling factor k is applied in bins of |n| to adjust the width of the
smeared generator-level distribution to match either data or reconstructed simulation. The
corresponding scaling factors, kqata and kem are determined by minimizing the y? between
the additionally smeared generator-level and the reconstructed distribution (either data or
simulation). Since no analytical solution is available, the optimal &k values are found via an
iterative grid refinement:

1. the x2 value is calculated for five different values of k, evenly spaced between 0.9
(slightly decreased smearing) to 1.4 (largely increased smearing).

2. the two values of k with the highest y? values are discarded, and two new intermediate
values are introduced between the remaining three.

3. This procedure is repeated five times, refining k to a precision of Ak = 0.2 %, halving
the step size in each iteration.

For applying these corrections, two strategies can be used. One applies the tuned resolu-
tion to generator-level muons, yielding a momentum distribution aligned with data but
potentially missing detector-specific effects. Alternatively, additional smearing is applied to
reconstructed muons in simulation, accounting more realistically for detector response. In
this case, the required extra smearing is smaller than for the generator-level muons, since
the reconstructed muons are already affected by detector resolution. The combined effect
is handled via Gaussian convolution properties:

kadd = \/ k3o — K2 (6.31)

sim*
In case kgata < Ksim, no additional smearing is applied.

The distributions of the dimuon mass in the resonance region before and after the application
of all corrections are provided in Figure 6.11. In general, the discrepancies between the
data and the simulated distributions are mitigated to a large extent.
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Figure 6.10: Dimuon mass distributions in the J/v¢ region (left) and in the Z region
(right). The plots show the normalized distributions of the data, and simulation, where
the latter is present at both generator- and reconstructed level. While the top plots show
the distributions before the iterative scale correction, the bottom plots display the same
distributions after the correction. In addition to the normalized distribution, their ratios
are provided in the panels below. Uncertainty bars include only the statistical uncertainty

due to

the limited size of the dataset.
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Figure 6.11: Distributions before (top) and after (bottom) the full correction procedure
for the low-mass (left) and the high-mass region (right). The upper panels display the
normalized distributions of the data and the normalized distribution of the simulated
samples, while the lower panels show the ratio of the normalized data distributions and
the combined simulated distributions.
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6.3.3 Uncertainty Estimation

The scale and resolution corrections are encoded in multiple parameters, making it essential
to carefully account for possible correlations when assessing their impact on results. However,
if these correlations are small, they can be neglected to simplify the overall model.
Several factors contribute to uncertainties in the correction parameters: on the one hand
there are statistical uncertainties that are primarily driven by the sample size. On the
other hand, the result is influenced systematically, which can have various reasons, such as:
the choice of binning used to obtain the parameters, the propagation of further systematic
uncertainties (for instance from the selection efficiency scale factors), and uncertainties
related to limitations of the fit models. Since there are no strong reasons to believe in
large correlations between these sources, the total uncertainty can be obtained by summing
them in quadrature. Hence, the largest uncertainties dominate the total uncertainty and
smaller sources of uncertainty can be neglected without major underestimations of the
total uncertainty. Therefore, second order effects such as the uncertainty on the efficiency
scale factors (primarily affecting normalization with a limited impact on shapes) are not
evaluated in this thesis.

In summary, the uncertainty estimation can be simplified by neglecting correlations between
different parameters, and by neglecting small effects in general. Both simplifications,
however, need to be applied with care, as they introduce certain biases. Whether these
biases are acceptable depends on the magnitude of the effect and the required precision of
the results.

In the following, first statistical and systematic uncertainties on the correction parameters
are examined. Then, a simplified approach, which drastically reduces the complexity
and computational demands, is presented and compared to the full propagation of the
uncertainties.

6.3.3.1 Uncertainty Derivation

To estimate the statistical uncertainties of the correction parameters, a bootstrapping
technique is applied, following the principles introduced in Section 5.2.2. This procedure
consists of n = 100 independent repetitions of the correction procedure with different
samples bootstrapped from the original distributions. The resulting parameter distributions
can then be used to estimate the statistical uncertainty in the correction procedure. The
choice of n balances the computing demands and the requirement for precision in the
uncertainty of the results; for this choice of n, the uncertainty on the standard deviation
of the parameter distributions obtained with the bootstrapping technique corresponds to
roughly 7 %.

The systematic uncertainties from the choice of histogram range are evaluated by varying
the range. Second-order effects from uncertainties on the corrections applied during the
derivation of the correction parameters are evaluated and found to be smaller than those
from the range variation.

The statistical and systematic uncertainties on the parameters of the fine-tuning correction
steps are illustrated in Figure 6.12. One key observation is that the statistical uncertainty
dominates over the systematic uncertainties across different bins. Following the line
of arguments introduced in Section 6.2.3, the systematic uncertainties can therefore be
neglected in the further discussion.

In addition to the aforementioned uncertainties, a potential bias in the simulation model
can be evaluated by comparing the correction parameters derived from different simulation
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Figure 6.12: Mean and standard deviation values of the parameter distributions from
bootstrapping (left) and dimuon mass range variation in the fine-tuning corrections (right)
in the 7Z resonance region. Each row represents a parameter, with distributions in the
upper panel for data and simulation. The lower panels show the correction needed for
simulation if the data is left uncorrected. The top and middle rows display the additive
and multiplicative parameters, for muons with —0.4 < n < 0 as a function of ¢. The
bottom row shows the additional smearing factor k that needs to be applied to pre-smeared
generator muons to match the Z boson peak width in data and simulation. No additional
smearing is applied to the simulation if Ak? < 0.
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samples. Since the scale and resolution corrections are specifically intended to address
effects related only to the muon object’s scale and resolution, it is essential to use the most
precise simulation samples available. In this context, samples generated at NLO precision
in QCD are considered suitable. At the time of the correction derivation, however, only
one centrally available NLO precision sample existed within the collaboration, along with
additional samples with LO precision in QCD. Using LO samples to estimate the impact of
simulation modeling would lead to an artificial overestimation of the associated uncertainty,
as the discrepancy between LO and NLO is typically much larger than that between NLO
and NNLO. For this reason, such uncertainties are not considered in this thesis. In general,
the evaluation of this uncertainty is straightforward to implement and can be studied once
sufficiently large samples with at least NLO precision in QCD become available.

6.3.3.2 Application of Uncertainties

Since statistical uncertainties dominate for the muon scale and resolution corrections, the
focus in the uncertainty application is placed on them. Other sources of uncertainty can
be incorporated in a similar or even more straightforward manner.

The boostrapping method is applied to produce n = 100 self-consistent sets of correction
parameters. In principle, all of these variations could be provided to the collaboration
and applied directly in analyses. To quantify the impact on the corresponding final
observable, each analysis would need to be repeated n times; once per correction parameter
set. The effect of the correction could then be estimated from the distribution of results
obtained through this procedure. While this approach has been used in the past, it requires
substantial computing resources—an often unnecessary cost due to the typically negligible
impact of the associated uncertainties in most analyses.

To address this, a simplified approach is introduced in this thesis, reducing the computational
demand of the uncertainty evaluation for analyzers by a factor of 25 (for the target
uncertainty precision of 7 %; even more for higher precision in the uncertainty). Instead
of performing O(100) computations for each bootstrapped sample, only four calculations
are needed: one upward and one downward variation each for both scale and resolution
corrections.

The simplified approach is based on two main assumptions, which ultimately allow simple
propagation of uncertainties:

1. Independence of scale and resolution corrections: this assumption is well-
motivated since scale corrections primarily affect the means of distributions, whereas
resolution corrections impact their standard deviations.

2. Neglecting uncertainties from initial steps: this assumption is well justified for
scale corrections, as the fine-tuning step directly updates the initial scale parameter
sets, largely reducing the impact of the original single-muon based corrections. For
resolution corrections, however, this assumption is less robust, since the final correction
is defined by both the initial resolution parametrization and the subsequent fine-
tuning. Therefore, it is particularly important to validate the results built on this
assumption.

Both assumptions largely reduce the complexity of the uncertainty model. In particular,
ignoring the uncertainty on the resolution parametrization is crucial for the simplified
approach. This is due to the non-analytical step of sampling a random number that follows
a double-sided Crystal Ball function. Consequently, the related uncertainty cannot be
propagated.
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With these simplifications, the number of correction parameters that are subject to un-
certainties is reduced to three: two for the scale correction, and one for the resolution
correction. Since the scale correction is parametrized using two parameters, their correlation
must be taken into account. The uncertainty propagation formula for the scale correction
uncertainty is given by:

1 1 2
Opp = —————1 | —=0% + 02, + —PAMTATM 6.32
pT (% + qA)Q \/pT2 A M P , ( )

9 I 5 9 2
NPTy — 504 T 0y T ——PAMOATN, (6.33)
pr pr

where 04 and o are the standard deviations of the corresponding parameter samples,
and pa ar is the correlation coefficient between A and M.

While the scale correction can be implemented in different ways—correcting simulation
to data, data to simulation, or both to the generator-level distribution—the associated
uncertainties are typically assigned only to the simulation. Consequently, even if the data
are corrected to match the simulation, the uncertainty from this procedure must still be
applied to the simulation. This is implemented by evaluating the uncertainty based on the
parameter values that would correct the simulation to the data, regardless of the specific
correction strategy. By construction, the dominant contributions to this uncertainty arises
from the (statistical) discrepancies between the data and signal distributions, with the
generator-level distribution playing a less significant role. This behavior aligns well with
the primary correction goal of correcting residual differences in the muon pt between data
and simulation.

For the resolution correction, this inconsistency in the treatment of corrections and the
application of their uncertainties does not arise, as the resolution corrections are applied
exclusively to muons in simulation. Nevertheless, the uncertainty in the resolution correction
consists of two components as well: one originating from the fit of the pre-smeared
generator-level dimuon distribution to data, and one from the fit to the reconstruction-level
simulation. Similarly to the scale correction, the uncertainty can be evaluated without
separately considering the individual contributions kqat, and kgm, but instead by evaluating
the uncertainty in the effective correction parameter k,qq. This approach accounts for
statistical correlations between the two individual components, which may arise from the
common parametrization used to pre-smear the generator-level distributions. It is also
consistent with the assumption (still to be validated) that the final correction is independent
of the specific parametrization.

To validate the simplified uncertainty estimation, its results are compared to those obtained
from the bootstrapped approach for individual muons. Following the distinction between
scale and resolution corrections, the two components are evaluated separately.

The bootstrapped approach to evaluate the scale correction involves of two steps: first, a
distribution of scale corrected muons is obtained by applying each individual correction set
to the uncorrected muon. Then, the standard deviation of this distribution is taken as the
uncertainty estimate. In the simplified approach, the uncertainty is estimated by applying
the scale correction twice—once using the upward variation of the parameters and once
using the downward variation. The difference between these two corrected values serves as
an estimate of the uncertainty in the scale correction.

For the resolution uncertainty, both approaches require an additional step: estimating
the resolution corresponding to each specific parameter set. This is done by applying the
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Figure 6.13: Exemplary comparison plots for the calculation of the uncertainty in the
correction of the scale (left) and resolution (right). Each point corresponds to the evaluation
of the scale or resolution with one bootstrapped set. The simplified model is shown as
a Gaussian distribution, where the standard deviation is calculated from the difference
between the upward and the downward variation of the simplified method. To improve
the visual comparison of the distribution widths, the mean value of the Gaussian does not
correspond exactly to the nominal correction value, but to the mean of the bootstrapped
distribution.

resolution correction 100 times per muon and calculating the standard deviation of the
resulting distribution. The remaining steps are conducted similarly to the scale correction:
the distribution of resolution estimates from the bootstrapped samples is compared to the
up and down variations derived from the simplified method.

Examples of this comparison are shown in Figure 6.13 and show good agreement between the
pr distribution obtained by correcting the original pt value with the different bootstrapped
correction parameter sets, and the simplified method. This good level of agreement is
representative for muons in all detector regions for the scale correction. For the resolution
correction, on the other hand, the good agreement is only representative for bins in which
the additional smearing factor in the data is significantly larger than that in the simulation.
In the other case, which for example affects muons in the central detector region of |n| < 0.4,
the resolution is not corrected at all and therefore does not provide meaningful uncertainty
variations. Figure 6.14 shows the impact of the individual uncertainty variations of the
scale and resolution corrections on the dimuon mass distribution.

6.3.4 Consistency Checks

In addition to the self-consistency check of the correction, cross-validations can be performed
using different momentum regions. However, these checks must be interpreted carefully, as
differences in muon properties across pr regions may dominate over discrepancies between
data and simulation.

In particular, low-pt muon paths have a considerably larger curvature, making them less
sensitive to misalignment effects, which are more prominent at high p, where curvature
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Figure 6.14: Distributions of the corrected dimuon mass including variations of the statistical
uncertainty in the scale (left) and resolution (right) parametrization. The lower panels
display the ratio of the normalized data distributions or variations in the simulation to
the normalized and nominally corrected simulation. The difference between the nominal
simulation and the data are covered by each of the corrections individually.

is small. Effects such as mismodeling of the magnetic field, on the other hand, affect all
muon pr ranges similarly, as the magnetic field governs the relationship between curvature
and pr. Furthermore, any unaccounted effects in the model may be absorbed differently
across pr regions, which carries the potential for inconsistencies.

Figure 6.15 displays example distributions of the scale and resolution fine-tuning parameters
in the low-p region. In comparison with Figure 6.12, which shows the same distributions
in the medium-p region, the multiplicative scale correction parameters appear consistent,
while the additive parameters show a relative modulation between the two regions. This
modulation is partly covered by the significantly larger statistical uncertainties in the
low-pt domain, which reflect the smaller impact of the misalignment on the stronger curved
low-pr muons. The uncertainties in the multiplicative parameters, on the other hand, are
generally smaller in the low-p region. This behavior is a consequence of the smaller impact
from misalignment, allowing to additionally constrain the magnetic field correction. The
interplay between the two correction terms is encoded in the correction parametrization
from equation 6.19, where the multiplicative term becomes relatively more important for
smaller pt values.

The differences observed in the additional smearing factor between low- and medium-p
corrections are less intuitive than those for the scale parameters. This is partly due to
the fact that resolution fine-tuning is less well motivated and parametrized compared
to the scale corrections. Furthermore, it is highly sensitive to the underlying resolution
parametrization, since the required additional smearing to match the reconstructed dimuon
mass distribution can vary. If, for instance, the parametrization underestimated the
true resolution, the extracted smearing factors will be larger. A full consideration of the
differences in the resolution correction thus requires the inclusion of the resolution model
itself. However, this aspect is beyond the scope of this thesis and is left for future work.

Apart from the comparison in the low-pr region, a partial crosscheck can also be performed
with the high-pt regime, based on preliminary results from the CMS Collaboration in
Run 3 [83]. This independent analysis employs the general endpoint method [77] to extract
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Figure 6.15: Example distributions of fine-tuning correction parameters in the J /1 region.
The top row shows the additive (left) and multiplicative (right) scale correction param-
eters for muons with —0.4 < n < 0. The bottom plot displays the additional smearing
factors applied to generator-level muons, pre-smeared according to the extracted resolution
parametrization. Points in the upper panels represent the correction parameters; uncer-
tainty bars indicate their standard deviation obtained via bootstrapped samples. The lower
panels illustrate the behavior of the parameters when applying the correction to simulated
muons at reconstruction-level, aiming to match the description of muons in data.

73



6 Muon Corrections in the CMS Experiment

Private Work (CMS Data/Simulation) 17.6 fb™ (13.6 TeV)
[ CMS Early 2023 Data

sim
bias
o
N
+‘\\\‘\\\‘\\\
o
N

0.4
< [ e~ Cl R
07 1 ¢ ¥ OI””i ,,,,,,,, — —— Py l
Y e gy SN [ = ._x_. L4 -—?—-
— o0 C —_—
-0.21 024~
[ —§— -180° < 9< -67.5° —e—| r —§— -180° < @< -60° —
-0.4- 0.4~ +—
F —§— -675°< <675 F —§— -60°< g<60°
-0.6— -0.6—
r —I—67.5°<(p<180° r +60°<m<180°
_08\’\uMu\\u\\\uuMu\\uu\uu\uu\uu\uu _087\\\\uuMu\\u\\\uuMu\\uu\uu\uu\uu
) 2 -15 -1 05 0 05 1 15 2 ’ 2 -15 -1 05 0 05 1 15 2
n n

Figure 6.16: Crosscheck of the additive term in the muon scale correction between the
medium-pp region analyzed in this chapter (left) and the high-pt region (right), taken
from Reference [83]. The points indicate the additive curvature correction applied to
simulation to improve agreement with data. Unlike the high-pt analysis, where corrections
are extracted by directly comparing reconstructed simulation and data, the medium-pr
corrections are derived by aligning both reconstructed simulation and data to the generator-
level simulation. This difference is addressed by considering the difference of the additive
curvature terms between simulation and data in the medium-pr region. Furthermore, the
parameters in the medium-pt region have been re-binned to approximate the binning
scheme used in the high-pp analysis for visual comparison. Statistical uncertainties are
indicated by vertical bars in both regions.

scale corrections at high pr. Conceptually, the method injects an additive term to the muon
curvature in the simulation on reconstruction-level and optimizes it to achieve the best
agreement between the curvature distributions in data and simulation for dimuon events.
Due to the fundamentally different approach of the high-pt correction, a direct one-to-one
comparison is not straightforward. Instead, the additive correction parameters obtained in
this work are re-binned to match the binning used in the high-pt analysis as closely as
possible. Figure 6.16 compares the parameters for one data-taking period, observing a
reasonable level of agreement. The smaller uncertainties in the medium-pr values indicate
the benefit of higher statistical precision in the Z boson region, which outweighs the larger
systematic sensitivity of the high-pt muons.
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6.4 Discussion

The work presented in this chapter represents a substantial contribution to the understand-
ing of muon objects in the CMS experiment in Run 3. It was conducted within the expert
group of the CMS Collaboration and regularly presented at internal meetings. Preliminary
results of the momentum scale and resolution corrections in the medium-pr region for 2022
and 2023 have been published in a detector performance summary [83] and are in use of
physics analyses of that data.

While the efficiency correction using the TnP method is a well-established procedure—
maintained and adjusted but not originally developed in the scope of this thesis—the
momentum scale and resolution corrections were developed in this work based on loosely
defined recipes from earlier data-taking periods. The framework for deriving these correc-
tions was built and validated in collaboration with a master’s thesis [80], reproducing key
features of previous corrections. Additionally, a new method to simplify the propagation
of uncertainties for analyzers was proposed and tested in collaboration with a bachelor’s
thesis [84].

To conclude the chapter, the impact of these corrections on different analyses is briefly
discussed: obviously, the corrections are only relevant for analyses that rely on muon
properties. When muon-based event selection is used, the efficiency correction via scale
factors becomes essential. If an analysis makes use of muon pr, scale and resolution
corrections should generally be applied to mitigate residual biases between data and
simulation.

For analyses focused on process rates, scale factors often have the larger impact, as they
directly affect normalization. In contrast, shape-dependent analyses are usually more
sensitive to the specific use case. In mass measurements, for example, scale corrections
dominate due to their direct influence on the reconstructed mass. For these it can make
sense to improve the description of the scale beyond the level provided by the method in
this thesis, as done in the W* boson mass measurement [85]. In searches for new processes,
resolution corrections can be more impactful, as improved resolution allows to pronounce
certain features in distributions, such as resonances, enhancing the signal-to-background
discrimination.

Beyond direct shape changes, scale and resolution corrections can also affect normalization
indirectly, particularly if they cause events to shift across selection thresholds. The size of
this effect depends on the magnitude of the correction (uncertainty) and the shape of the pr
distribution. For the scale correction, a large share of the events near the threshold increases
the effect. For the resolution correction, the impact on the normalization is strongest when
the pr distribution is steep near the threshold, causing asymmetric migrations.

Cross checks of the correction values across different p regions show reasonable agreement
in the scale correction, while the differences in the resolution corrections require further
investigation. These comparisons also underline the expected varying level of precision in
different pt regimes. Future studies could therefore benefit from a combined approach, that
uses the strengths of each region for the determination of common underlying parameters.
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7 Measurements of the Cross Sections of
W and Z Boson Production

This chapter presents a measurement of the fiducial and total cross sections of W+ and Z
boson production, and their corresponding ratios, which was developed within the CMS
Collaboration in the scope of this thesis [5]. The analysis is conducted with a dataset
collected early in the recent LHC Run 3 and corresponding to an integrated luminosity
of 5.01fb~!. The measurement primarily focuses on muons and is performed inclusive with
respect to other particle types.,

Section 7.1 introduces concepts that are relevant to this measurement. To enhance
the accuracy of the theoretical model, several optimizations are applied, as detailed in
Section 7.2. The fitting procedure and results are summarized in Section 7.3, and discussed
in Section 7.4.

7.1 Introduction and Overview

The discovery of the massive W* and Z bosons at the CERN Proton-Antiproton Collider
SppS by the UA1 and UA2 collaborations in 1983 [86-89] marked a crucial milestone in the
development of the SM of particle physics. These direct mass measurements provided the
experimental confirmation for the long-standing theory of electroweak symmetry breaking.
Ever since, the properties of the W* and Z bosons have been measured with increasing
precision. The most precise determination of the Z boson mass was achieved at the Large
Electron-Positron Collider [90]. In contrast, the W boson mass remains less precisely
known due its decay structure—containing either a neutrino or jets in the final state—
which inherently limits the precision compared to the Z boson decay into two charged
leptons. Recently, the W+ boson mass was measured by the CMS Collaboration with high
precision [85]. When combined with other precise measurements, these results allow for
stringent consistency tests of the electroweak sector in the SM.

7.1.1 Motivation

The production cross sections and decay widths of W* and Z bosons provide fundamental
insights into their coupling strengths to fermions. However, in pp collisions, cross sections
depend not only on these couplings but also on additional factors, as outlined in Section 3.2.

77



7 Measurements of the Cross Sections of W and Z Boson Production

In particular, they are sensitive to the proton’s PDF's, making them dependent on the
center-of-mass energy of the collisions. As a result, these cross sections have been measured
at various energies (y/s = 2.76, 5.02 7, 8, 13, and 13.6 TeV) by the ATLAS, CMS, and
LHCb collaborations [91-106]. To date, all measured cross sections have been consistent
with theoretical predictions within uncertainties.

Despite the strong agreement between theoretical predictions and experimental results
so far, precise measurements of these cross sections remain essential. Most notably, any
deviation from the theoretical expectations could indicate theoretical mismodeling or
unaccounted experimental effects. Given the large production rates of Z and W* bosons
in LHC collisions, statistical uncertainties in these measurements are generally small—
even in partial datasets such as that investigated in this analysis—making it easier to
identify systematic effects. However, agreement between theoretical predictions and the
measurements does not necessarily confirm the correctness of either. It remains possible
that both the theoretical prediction and the measurement are subject to unmodeled effects,
which could result in a biased but seemingly consistent result.

Assuming sound theoretical modeling, any discrepancy between measurement and the-
oretical prediction would instead indicate issues in the experimental analysis. Finding
and studying such effects is crucial for future analyses, particularly in cases where the
level of trust in the theoretical model is not as great, for instance in exclusion studies.
Consequently, this analysis was conducted in close collaboration with experts from different
CMS groups, providing valuable internal feedback on the status of triggers and physics
objects at the start of the new Run.

Beyond the interest in the production of W* and Z bosons itself, these processes are
important background contributions in many analyses, such as in the measurement of
the Higgs boson decay into two muons. The accuracy of such results heavily depends on
precise modeling of these backgrounds, making this measurement an important ingredient
for increasing sensitivity.

Additional systematic precision is gained by considering cross section ratios rather than
their absolute values. While their direct impact on other analyses as background con-
tributions is limited, ratios provide insight into the parton modeling, as the dominating
systematic uncertainties cancel. For illustration, consider the uncertainty in the integrated
luminosity measurement oy, which is the dominant uncertainty in this analysis. If two
cross sections 01 and o2 are measured with the same dataset of integrated luminosity L,
their ratio simplifies to:

o1 514 N1 Aser
op) Ny Ajer’

where Npo are the observed event counts for each process, whereas A and € denote the
acceptance and efficiency of the selection, respectively. Additional positively correlated
uncertainties, such as those in the efficiency, also (partially) cancel, enabling highly precise
measurements that are particularly sensitive to inconsistencies in the parton modeling.

R= (7.1)

This analysis focuses on muonic decays of the Z and W+ bosons. While this choice intro-
duces a statistical limitation compared to fully-inclusive measurements, the large number
of produced bosons ensures that statistical uncertainties remain negligible. Generally, the
impact of this restriction to muonic final states is small since the overall precision of muons
is exceptional in the CMS experiment, both in terms of momentum precision and recon-
struction efficiency. Adding further decay channels to the analysis would only significantly
improve the precision, if those channels offered either smaller intrinsic uncertainties or
introduced strong correlations that allow to further constrain the statistical model. Neither
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hadronic decay channels of the Z or W* bosons, nor their decays to electrons are expected
to have a smaller intrinsic uncertainty than the muonic channel. While some additional
constraints could be introduced, they are not expected to significantly benefit the analysis.
Given that focusing on a single channel greatly simplifies the measurement, the muonic
final state was chosen for this study.

7.1.2 Event Topology

To optimally design the analysis, it is crucial to understand the event topology, which is
influenced by two main factors: the kinematic constraints from the initial state, and the
characteristics of the final-state particles.

7.1.2.1 W* and Z Boson Production

In pp collisions, W* and Z bosons are produced exclusively through quark-quark inter-
actions, as gluons couple only to color-charged particles and therefore do not directly
contribute to electroweak boson production. The production of these bosons typically
involves quarks carrying momentum fractions in the order of a few permille of the proton’s
total momentum.

The most striking difference between the three bosons is their electric charge, which dictates
both their production and decay modes. Specifically, the initial state compositions for the
production through quark-antiquark annihilation at L.O are:

« WT: an up-type quark and a down-type antiquark
e W™: a down-type quark and an up-type antiquark
e 7: a quark-antiquark pair of up- or down-type, respectively

Due to the proton’s valence quark composition, there is a slight preference for up quarks over
down quarks, leading to a higher production rate for W* bosons compared to W~ bosons.
Contributions from heavier quark generations are suppressed because their significantly
larger masses shorten the lifetime of their vacuum fluctuations. The LO Feynman diagrams
for the production of W+ and Z bosons are shown in Figure 7.1.

Since the production mechanisms are similar for W+ and Z bosons, higher order corrections
are expected to affect their kinematic properties—such as boson recoil—in a similar manner.
Furthermore, due to the similar size of the mass, the parton momentum imbalance is
expected to be of comparable magnitude as well. As a consequence, their overall momentum
profiles are expected to be similar, implying that variations in their boost are not expected
to be significant.

7.1.2.2 Boson Decay

This difference in charge between the W+ and Z bosons is reflected in their muonic decay
final states: the Z boson decays into a pair of oppositely charged muons, while W* bosons
decay into a muon and the corresponding muon-neutrino. The LO decay processes for each
boson are illustrated in Figure 7.2.

For the W* bosons, the branching ratio of muonic decays is approximately 1/9. This
follows from the fact that the W+ bosons couple exclusively to the weak isospin, which
is equal in magnitude for all left-handed quarks and leptons. In contrast, the Z boson
couples to a linear combination of the weak isospin and electric charge, resulting in a
smaller branching ratio of about 3.4 % for decays into muons.
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Figure 7.1: Feynman diagrams illustrating the LO mechanisms for Z, W+, and W~ boson
production at parton level (from left to right).
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Figure 7.2: Feynman diagrams illustrating the LO mechanisms for muonic Z, W+, and W~
boson decays (from left to right).

Since the boson boosts are similar in magnitude, the kinematic distributions of their decay
products should also be comparable. The distributions for Z boson decays are discussed in
greater detail in Section 6.1. However, for the W* boson decays, only one of the daughter
particles is directly observable. The neutrino, on the other hand, leads to an imbalance in
the transverse momentum profile, which is measured by the piiss.

7.1.3 Measurement Strategy

The general strategy in this analysis is to compare the theoretical prediction with the data
by using a maximum likelihood (ML) fit, as described in Section 5.1. Here, the theoretical
prediction is represented by MC simulated samples that typically span a large part of the
phase space. However, to ensure a meaningful comparison, the theoretical prediction has
to be transformed into a representation that is comparable to the data. That means, three
major steps are required:

1. Reduction from the total to the fiducial phase space, which is covered by the detector.
2. Simulation of the detector response.
3. Reconstruction of the event.

In the data, only the reconstructed event content is present, which induces the requirement
of performing the comparison with the prediction in this format. Since the data contains
also events that (on reconstruction level) are indistinguishable from the signal events, these
must be accounted for in the prediction. Figure 7.3 provides a simplified overview of the
different samples and their logic connection for a single signal measurement. The ML fit is
then performed by comparing the statistical model, consisting of the reconstructed fiducial
signal contribution, as well as reconstructed background processes with the data. However,
the result of this fit cannot be interpreted without an in-depth understanding of the CMS
experiment because the result depends on both selection efficiency and fiducial acceptance.
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Figure 7.3: Schematic concept of the different phase spaces in the analysis. The measurement
is done by comparing the data, with the reconstructed contributions from signal, non-
fiducial signal, and backgrounds in the selected phase space.

Consequently, the results on reconstructed level are extrapolated to the generator level in
both fiducial and total phase space.

To optimize the information content in the measurement, the dataset is divided into three
distinct categories, each corresponding to one boson type. This classification is based on
the number and charge of well-reconstructed muons in the event:

e 7 region: events with two oppositely charged muons
o WT region: events with exactly one positively charged muon
e W7 region: events with exactly one negatively charged muon

This primary separation is highly efficient because the probability of misidentifying a muon
charge is generally low for medium pp. In particular, for muons with pr < 100 GeV in
the central region of the detector the charge misassignment rate has been found to be
well below 0.1 % [107]. Since the charge misassignment effect is present in both data and
simulation, any impact on the analysis would arise only from mismodeling of this effect,
which—given the small size of the total misassignment effect—is expected to be negligible
and is therefore not considered further. As a result, contamination from W# events in the
opposite-sign regions is largely suppressed. However, efficiency and acceptance effects may
lead to non-negligible spill-over from the Z region into the W* regions when one muon
is not detected. This correlation is accounted for by performing a combined maximum
likelihood fit, allowing the simultaneous measurement of all three processes.

In this fit, each category includes templates representing the relevant physics processes.
These templates are then adjusted within their uncertainty ranges to achieve the best
agreement between the prediction and the observed data. To enhance the precision of
the measurement by suppressing background contributions, additional selection criteria
are applied, as detailed in the next section. The precision can be further increased by
using histogram templates of variables that provide strong separation between signal and
background processes. In the Z region, the reconstructed dimuon mass m,,, is a powerful
discriminator since the probability of obtaining a dimuon pair from background processes
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with an invariant mass near that of the Z boson is small. It can be calculated from the
four momenta p; and po of the two muons and approximated using their pr values, as well
as their angular differences in 1 and ¢:

My = \/(pl +p2)? ~ \/2pT1pT2[cosh An — cos Ag. (7.2)

While the exact definition is used to construct the fit templates, the approximation formula
will be used to explain the muon pr correction procedure. For the W+ regions, the final-
state neutrino cannot be directly measured, prohibiting the reconstruction of the mass of
the muon-neutrino system. However, p'* provides indirect information on the neutrino.
By combining it with the muon pr and including the A¢ information between these two

objects, the transverse mass mT can be constructed:

mr = \/Qpr%liSS[l — cos Ag). (7.3)

Similar to the dimuon mass in the Z region, the probability to obtain a large mT value
is significantly larger for W+ processes than for most background processes, providing
effective discrimination. Despite this, misreconstructed events from the Z region in which
one muon is not properly reconstructed can mimic W* events, as the misreconstructed
muon behaves similar to a neutrino. However, as a result of the combined fit approach,
this background contribution is effectively constrained through the parallel fit in the Z
region, thereby limiting its impact on the precision of the W* measurement.

Since all relevant processes have already been discovered, a fully blinded analysis is
not required. In most analyses, the signal contribution is significantly smaller than the
background, marking the need for independent validation studies of the background model
in phase spaces orthogonal to the signal region. However, in this analysis, the signal
contributions are dominating over the background contributions, allowing for a different
blinding strategy. Here, blinding primarily focuses on the normalization of the data, while
the shapes of the data distributions remain unblinded.

7.1.4 Ingredients for the Measurement

To conduct the measurement, both experimental input (the data) and theoretical input
(the fit model) are required. The results of the measurement can then be compared to
theoretically predicted cross sections. Since the signal strength parameters in the fit are
allowed to float freely, the signal templates are not strictly required to be normalized to
the predicted cross sections. However, incorporating the best available predictions and
using them as initial values in the fitting procedure usually improves the fit stability.

7.1.4.1 Dataset and Event Selection

The dataset analyzed in this thesis was collected during the early phase of LHC Run 3
and corresponds to an integrated luminosity of (5.01 + 0.07) fb~! [1]. Events are selected
based on the presence of at least one isolated muon with pp > 24 GeV at the trigger-level.
This trigger strategy effectively reduces contributions from background processes while
maintaining a high signal efficiency.

Once the full offline reconstruction is applied, all objects are reconstructed with higher
precision than at the HLT. Consequently, all subsequent steps, most notably event selection
and categorization, are based on the offline reconstruction. To ensure full trigger efficiency
for the selected events, the offline muon selection is stricter than at the trigger level,

82



7.1 Introduction and Overview

reducing systematic uncertainties at the trigger threshold. Specifically, muons are required
to have pr > 25GeV, |n| < 2.4, and satisfy the tight working points in terms of both
isolation and identification.

To improve the signal-to-background ratios, the initial rough categorization into the three
signal regions is further refined. In the W¥ regions, a veto is required on additional
loosely identified muons to decrease contributions from only partially reconstructed Z
boson decays. In the Z region, the mass of the dimuon system is required to be in the
range of 60 GeV < my, < 120GeV. This criterion ensures a focus on the Z resonance,
while suppressing mass regions that are dominated by photon contributions to dimuon
final states.

7.1.4.2 Monte Carlo Simulation

MC simulated templates represent the theoretical model in the maximum likelihood
estimation. To ensure accurate results, the simulated samples must include all significant
contributions in the relevant phase space, covering both signal and background processes.
The most important background contributions in both regions are the following;:

« tt: events in which at least one top quark from a top-quark-antiquark system decays
leptonically, leading to final-state muons; due to the large top quark mass, these
daughter muons often enter the selected phase space.

e VV: any pairwise production of W+ and Z bosons.

e vector boson fusion (VBF): the production of a W* or Z boson through the annihi-
lation of two vector bosons (W or Z). While technically a higher-order electroweak
correction to the signal process, it is treated as background for consistency with the
LO electroweak theoretical calculations, which do not include it. This distinction is
largely of technical relevance, as the VBF contribution to the signal region is at the
permille level, making the difference between its treatment as signal or background
negligible.

o single-top (ST): the production of a single top quark, which may decay into a final
state that includes muons.

e QCD multijet: SM events composed exclusively of jets produced through the strong
interaction, where a jet is misidentified as a muon.

o« Z 1T, Wt > Ti(;): the production of W* and Z bosons that decay to tau leptons,
which subsequently decay into a muon.

« V (nonfiducial): the production of W* and Z bosons that decay to muons, which are
created outside of the fiducial phase space and accidentally enter it due to the finite
precision of the reconstruction process.

Example Feynman diagrams for the first four processes are provided in Figure 7.4. Except
for the QCD multijet background, all of these processes are simulated with MC methods.
While the hard processes are generated with different MC event generator programs,
the description of the PDFs, as well as the simulation of the colored residues from the
collisions, and detector response are modeled consistently across all samples: proton PDF's
are described with the NNPDF 3.1 package [108] at NNLO. The colored residues, i.e.,
parton showering, hadronization, and the underlying event are simulated with the PYTHIA
8.306 package [109] and the tune CP5 [110]. Then, the detector response is simulated using
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Figure 7.4: Example Feynman diagrams in LO of the background processes. At the top,
the production of a top-quark-antiquark system and the subsequent decay is shown. The
middle row shows diboson production on the left, and the electroweak production of W+
and Z bosons on the right. The latter is considered a background contribution because
the corresponding order in electroweak correction is not part of the generator calculation.
The lower row shows the production of a single top quark in the ¢ channel (left), and the
associated production of a top quark and W* boson (right). All these background Feynman
diagrams have in common that one or more W* and Z bosons are created, which—for
muonic decays—mimic the selection criteria.
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the GEANT4 software package [111]. Lastly, additional minimum bias pp interactions are
simulated with PYTHIA and added to the event to reflect the presence of pileup.

The matrix elements for the signal processes are generated with MADGRAPH5_ aMC@NLO
version 2.9.9 [112] at NLO precision in perturbative QCD. To avoid double counting of
parton emissions from the matrix element and from the parton shower simulation, the
FxFx merging scheme is applied [113].

Background processes including the electroweak production of a Z or W* boson are
simulated with MADGRAPH5__aMC@NLO version 2.9.13 at LO in QCD. All the remaining
background samples (except for the data-driven QCD multijet background) are simulated
with POWHEG version 2 [114-119] at NLO precision in perturbation theory. The top quark
decay is described with MADSPIN [120] for events with a single top quark produced in the
t channel.

7.1.4.3 Theoretical Cross Sections

Cross sections of the signal processes are calculated with the generator DY TURBO 1.3.2 [121—
124] and the NNPDF 3.1 sets. The precision of these calculations is LO in electroweak
perturbation theory, NNLO in perturbative QCD, and next-to-next-to-leading logarithmic
(NNLL) in g7 resummation. At small values of the boson transverse momentum gr, fixed-
order QCD predictions contain large logarithmic terms of the form log(Q2 / qgf), which can
lead to divergent or unphysical behavior. The resummation at NNLL accuracy accounts for
such terms to provide a reliable description, in particular for small values of gr. Different
PDF sets are investigated, where the nominal set is the NNPDF 3.1 set, and the alternative
sets are the MSHT20 [125] and the CT18 [126] sets. Uncertainties on the cross sections
are evaluated with respect to PDF's, the scale at which the cross sections are evaluated,
and the uncertainty due to the limited sample size in the numerical approximation of the
integral.

The predictions for the cross sections and their ratios—evaluated with the NNPDF 3.1 sets—
are presented in Tables 7.1 and 7.2, respectively. A notable feature of these predictions is
the presence of asymmetric scale uncertainties, indicating that variations in the QCD scale
induce larger deviations in one direction than the other. The large downward fluctuations
in the cross section consistently arise from the downward variation of the factorization scale
with fixed renormalization scale. As none of the other scale variations lead to a comparable
upward deviation of the cross section, the resulting scale uncertainty—calculated from the
envelope of all deviations—shows large asymmetries. These asymmetries were confirmed in
discussion with the DY TURBO authors and were cross-validated independently.

In the ratios, where the scale variations are treated as fully correlated between numerator
and denominator, the impact of these large outliers partially cancels. For instance, the
relative size of the downward fluctuation in the W~ /Z ratio is at roughly 0.5 %, compared
to 1% and 0.7 % for the W~ and Z cross sections individually.
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Table 7.1: Predictions for the product of the cross sections and branching fractions, evaluated
in the fiducial and total phase space. The provided variations correspond to uncertainties
in the PDF, the QCD scale, and the integration.

Process ogaBB &+ (PDF) &£ (scale) &+ (int) in nb  oot8 + (PDF) &£ (scale) £ (int) in nb
W+ 5490 +0.040 o5 £ 0.007 12.06 +0.10 995 +0.01

W- 4.222 +£0.032 0013 +0.005 8.97 +0.07 3% +o0.01

W 9.710 £ 0.071 F5hss =+ 0.009 21.03 £0.16 *053 +0.01

Z 0.7663 =+ 0.0067 T0093L + 0.0007 2.027 + 0.015 T390 + 0.001

Table 7.2: Predicted ratios of the product of cross sections and branching fractions, evaluated
in the fiducial and total phase space. The provided variations correspond to uncertainties
in the PDF, the QCD scale, and the integration.

Process  Rgq £ (PDF) & (scale) £ (int) Riot = (PDF) £ (scale) £ (int)
W+/7Z 7.158 £ 0.041 )03 £0.012  5.951 + 0.027 T00% + 0.004
W~ /% 5.508 + 0.030 73992 + 0.009  4.424 + 0.016 *339 + 0.004
WE/Z 12,666 + 0.069 393 + 0.016  10.375 + 0.040 T9910 + 0.007
W+H/W~  1.300 + 0.003 7395 + 0.002  1.345 4 0.004 TJ35% + 0.001
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7.2 Data Calibration and Tuning of the Prediction Model

The MC simulations can reproduce many different aspects of the real data with high but
limited precision. To further optimize this precision, multiple correction methods are
applied to the simulated samples. In addition, the data are calibrated such that they
are consistent with fundamental physical principles, such as the peak position of the Z
resonance and the isotropic nature of particle decays.

As this analysis is among the first to investigate the newly collected data, some essential
calibration inputs were initially unavailable. Consequently, certain corrections—usually
determined and provided by expert groups within the CMS Collaboration—had to be
developed specifically within the scope of this analysis.

7.2.1 Pileup Reweighting

In the simulation, minimum bias events are added to the hard process to emulate pileup.
The number of added minimum bias events follows a certain pileup profile that is chosen
to be close to the expected pileup distribution in the data. However, the pileup in the
recorded data is subject to variations both within a single fill and between different fills.
To correct for these variations, the pileup distribution in simulation is reweighted to match
that in the data, significantly mitigating residual differences.

While the true pileup value is an input to the simulation and therefore known explicitly,
it must be estimated in data using indirect methods. These methods rely on quantities
that are strongly correlated with pileup and are therefore suited to adjust the underlying
difference in the pileup distribution.

One option is to use detector-level quantities, such as the number of reconstructed vertices
or the energy density in the calorimeters. However, this method is generally limited by
detector resolution and reconstruction algorithms. Therefore, it may reduce discrepancies
in the detector response rather than the true pileup profile.

Alternatively, the expected number of pp interactions per bunch crossing can be computed
using the measured bunch luminosity, i.e., the average instantaneous luminosity in fixed
time intervals, divided by the number of bunch crossings. The average rate of inelastic
pp collision per bunch is then given by the product of the bunch luminosity and the cross
section value. To obtain the average pileup in the corresponding time interval, the average
rate is divided by the collision frequency of single bunches (about 11kHz). By repeating
this procedure for all time intervals in the investigated dataset, a pileup profile is obtained.
This profile depends on the precision in the measurement of the instantaneous luminosity
and that of the inelastic pp cross section value.

In this analysis, this second, luminosity-based approach is applied. Furthermore, a cross
check is performed with the number of reconstructed vertices. The uncertainty in this
procedure is estimated—according to CMS internal recommendations—by varying the
value of the inelastic pp cross section up and down by 4.6 % around the nominal value
of 69.2mb. Figure 7.5 shows the distributions of the number of good reconstructed primary
vertices (npvGood) before and after the reweighting procedure. In this context, ’good’
refers to the satisfaction of a basic set of quality requirements, such as a small shift with
respect to the beamspot. Before the correction, the simulation tends to overestimate
the number of primary vertices, suggesting an overestimation of pileup in data. After
the correction, the agreement between the simulation and data distributions is improved;
differences being generally covered by the assigned uncertainties in the vast majority of the
bins.
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Figure 7.5: Distributions of the number of good reconstructed primary vertices before (left)
and after (right) the pileup reweighting. The distributions of both data and simulations in
the upper panels are normalized. The lower panels show the ratio of the normalized data
to the normalized simulation. On the right, the 1o variations of the corrections are shown
as well.

Figure 7.6 illustrates the impact of the pileup reweighting procedure on the simulated signal
samples, showing a tendency towards improved resolution for both. This effect is consistent
with the correction lowering the mean of the pileup distribution in the simulation. Lower
pileup generally results in fewer tracks and reduced energy deposition in the calorimeters,
both leading to improved measurement precision.

The effect on the dimuon mass is generally small, because the muon momentum is only
weakly dependent on pileup due to strict muon selection criteria. However, the impact is
more pronounced in the m distribution of the W* boson samples, where PSS is highly
sensitive to pileup and can be reconstructed with much higher precision for low pileup. Since
it will be further refined through a recoil calibration procedure, the overall impact of this
correction is still expected to be small. Nevertheless, to correctly propagate the associated
uncertainty (up and down variations of the reweighting procedure), the correlations between
the variations and the recoil calibration need to be taken into account.

7.2.2 Boson Momentum Reweighting

The modeling of the W* and Z boson pr in the simulation is limited by the order of the
perturbative calculation applied. Discrepancies between the true pp spectrum and the
simulation are mitigated by using NLO samples for the main processes, generated with up
to two additional jets at LO. This means, the samples contain up to three emitted partons
at the matrix-element level, providing a first-order correction to the boson pr spectrum.
Higher-order emissions become increasingly suppressed, but their absence in simulation can
lead to distortions, particularly in the low-pt region, where soft radiation is more frequent.

This mismatch is addressed by reweighting events in the Z boson signal sample such that
the shape of the dimuon transverse momentum distribution aligns with that observed in the
data. To ensure that this correction accurately reflects the boson kinematics, contributions
from non-Z background processes are subtracted from the data before deriving the weights.
While the dimuon system can be measured with excellent precision in the data, the pr
of W* bosons presents a challenge due to the presence of an undetectable neutrino. The
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Figure 7.6: Distributions of the reconstructed mass of the dimuon system in the Z signal
region (left) and the transverse mass in the W+ signal regions (right). The upper plots
show the distributions before and after the pileup reweighting, as well as the distributions
obtained by varying the correction procedure—all normalized to one. The lower panels
show the ratio of the normalized simulation before the correction or after the correction
with varied parameters and the normalized simulation obtained with the nominal correction
set. To visualize the variations in both ratio panels, the scale is chosen a factor of ten
larger for the mr distributions. In both plots, a u-shaped behavior of the ratio of the
uncorrected to the corrected distribution can be observed in the peak region.

resolution of p%‘iss is significantly worse due to cumulative uncertainties from multiple

detector measurements. Therefore, instead of correcting the reconstructed pr of the muon-
neutrino system in the W+ boson signal samples to that in the data, the same weights
are applied as for the Z boson signal sample. To align both application methods, the
generated W boson pr is treated as the reconstructed dimuon momentum in the Z boson
sample. This approach is justified by the similarity of the production mechanisms of W+
and Z bosons, which differ only in the quark flavors involved. Since QCD interactions are
flavor-blind, higher-order effects on the pp spectra of W+ and Z bosons are expected to be
similar.

Figure 7.7 shows the background-subtracted dimuon pr distribution in data compared to
the signal distribution in the Z signal region. Event weights for the Z (W) boson signal
sample are obtained from the ratio of these distributions in the corresponding bin of the
measured dimuon (generated W+ boson) pr value in the event. The uncertainty on this
procedure is estimated conservatively with the full deviation of the weight from unity,
applied symmetrically.

Figure 7.8 illustrates the impact of this correction on the signal shapes. Theoretically, the
invariant mass of the dimuon system should be independent from its momentum. However,
the limited precision in the reconstruction of the dimuon system can introduce systematic
effects. This can be observed as a shift in the lower half of the dimuon mass distribution,
which is of the order of the statistical uncertainty in the simulated samples. A similar
behavior is observed in the low mr area of the corresponding spectrum in the W* boson
signal samples.
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Figure 7.7: Distributions of the reconstructed pt of the dimuon system in the Z region
before (left) and after (right) the boson momentum reweighting. The distributions of both
data and simulations in the upper panels are normalized. The lower panels show the ratio
of the normalized data to the normalized simulation. On the right, the 1o variations of the
corrections are shown as well, one of which is by construction the uncorrected distribution.
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Figure 7.8: Distributions of the reconstructed mass of the dimuon system in the Z signal

region (left) and the transverse mass in the W+ signal regions (right). The upper plots
show the distributions before and after the boson momentum reweighting, as well as the
distributions obtained by varying the correction procedure—all normalized to one. The
lower panels show the ratio of the normalized simulation before the correction or after
the correction with varied parameters and the normalized simulation obtained with the
nominal correction set. By construction, the down-variation coincides with the uncorrected
distribution in both distributions. Moreover, both plots indicate a residual effect for small
values of the corresponding mass distribution. One variation is covered by the uncorrected
distribution by construction.
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7.2.3 Muon Efficiency Correction

The selection of muon objects in this analysis is subject to efficiencies. Residual differences
in the efficiency modeling between data and simulation are targeted by applying muon
efficiency scale factors as event weights in the simulation. Unlike the previously discussed
reweighting procedures, the scale factors primarily affect the normalization, which is
consistent with the principle formula of the cross section measurement in Equation 5.14.

Dedicated scale factors are derived for this analysis, according to the procedures outlined
in Section 6.2. The total efficiency is decomposed into individual contributions:

e &ga: the efficiency of the standalone muon reconstruction for a muon tracker track
e Eglobal: the efficiency of the global muon reconstruction for a standalone muon

e ¢iq: the efficiency of the tight identification process for a global muon

e &igo: the efficiency of the tight isolation selection for a tightly identified muon

o Eirigger: the trigger efficiency for a muon fulfilling the criteria above

This approach allows to identify potential inefficiencies or systematic effects in the muon
reconstruction, which is particularly relevant since this analysis provides one of the first
detailed examinations of muons in Run 3. Since each efficiency builds up on the previous
selection criteria, the total efficiency for one selected muon is given by:

Etot = Esta * Eglobal * €id * €iso * Etrig- (74)

For events with two muons, the total efficiency is the product of the individual muon
efficiencies except for the trigger efficiency. Unlike the other selection criteria, which require
both muons to pass simultaneously, the event is saved if at least one muon satisfies the
trigger conditions. Consequently, the event-level trigger efficiency in this case is given by:

Etrig = 1-—- (1 - E‘crig,l) : (1 - 5trig,2)a (75)

which corresponds to the counter-probability of no muon fulfilling the trigger criteria.

Figure 7.9 presents the total efficiency for single muons in data and simulation. A more
detailed breakdown is provided in Appendix B. The uncertainties in the muon efficiency
scale factors are estimated by varying the bin sizes, signal and background models, and
incorporating statistical uncertainties from the TnP fitting procedure. Systematic uncer-
tainties are considered if they exceed statistical uncertainties. All uncertainties are treated
as fully correlated between different pr and 7 bins, potentially affecting both shape and
normalization. Consequently, they are incorporated as shape uncertainties in the fit.

In general, the impact of muon efficiency corrections varies between the Z and W regions,
because of the different number of muons in the respective region. For the Z region, where
two muons are required, the overall effect of scale factors is more pronounced, except
for the trigger efficiency, which benefits from the presence of a second muon. Hence,
the uncertainty associated with efficiency scale factors is expected to be larger in the Z
region for all components except for the trigger efficiency. In the W* regions, the impact
is expected to be similar in size but may differ slightly due to variations in the trigger
efficiencies for different charge states.
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Figure 7.9: Selection efficiency for a negative muon in the simulation (left) and the data
(right). The efficiencies are binned in the pseudorapidity 7, and provided for different
ranges of pp. The choice of n binning reflects the detector properties. For example, the
small bin from 0.2 to 0.3 has limited coverage of the muon chambers and therefore a smaller
standalone muon efficiency. In general, the efficiency is higher for larger values of pr, where
the muon isolation criterion is fulfilled more frequently by construction, and the muons are
further away from the trigger threshold. The uncertainty on the total efficiency in this plot
is obtained by considering the contributions from the individual efficiencies as uncorrelated.

7.2.4 Muon Inefficiency Correction

The high event rate at the L1 trigger requires rapid decision-making and excellent time
resolution in the relevant detector components. However, due to limitations of the time
resolution, L1 trigger signals are sometimes assigned to the wrong bunch crossing. When
this occurs, the event content from the incorrect bunch crossing is read out and passed to
the HLT. Since this event is unlikely to contain interesting physics, it is typically rejected
by the HLT.

To maintain a manageable data load in the L1 buffer, a trigger rule prohibits more than
one accepted event within three consecutive bunch crossings [127]. Consequently, if an
L1 trigger signal from an interesting event is mistakenly associated with the previous
bunch crossing—a phenomenon commonly referred to as prefiring—the event is lost. This
introduces an inefficiency, meaning that any interesting event that fulfills the selection
criteria has a nonzero probability of being rejected due to L1 trigger limitations. Since
this effect is not accounted for in the simulation, it introduces a bias in cross section
measurements.

Unlike standard muon efficiency corrections, this inefficiency cannot be measured using
the TnP technique because the affected events are never recorded. Instead, the trigger
prefiring rate is estimated using a set of unbiased events. To understand how these events
are selected, it is essential to consider the L1 trigger rules. When an event is accepted by
the L1 trigger, the L1 objects from the current bunch crossing, as well as those from the
two preceding and following bunch crossing, are stored. Additionally, the L1 trigger rules
generally veto events in these surrounding bunch crossings. As a result, the first event that
can be read out after a triggered event is the one occurring three bunch crossings later.
This event is guaranteed to be free of prefiring effects, as the L1 trigger rules prevent it.
Similarly, trigger prefiring is ignored for the first event in a bunch train, since these events
have no immediately preceding event.
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Because L1 objects from the previous two bunch crossings are also recorded, these unbiased
events allow the estimation of the prefiring probability. This is done by counting the
relative frequency of cases in which the L1 information of the preceding bunch crossing
indicates an L1 trigger signal in the set of unbiased events. Furthermore, this probability
has to be corrected for HLT effects, since unbiased events must pass the HLT, while the L1
objects from the preceding bunch crossing do not have this requirement.

However, the probability of observing two triggered events separated by exactly two bunch
crossings is extremely low, occurring in fewer than 0.25% of the Ll-triggered events.
Thus, prefiring corrections are typically statistically limited. The associated uncertainty
is binned in 7, meaning it may introduce a shape effect, but primarily impacts the event
normalization. Following recommendations from trigger experts, the statistical uncertainty
is conservatively increased by 20 % to account for potential systematic effects. Although
this correction strictly does not address the selection efficiency, it is grouped together with
the muon efficiency scale factors. Similar to the non-trigger efficiency scale factors, the
impact of the prefiring uncertainties increases with the number of muons in the final state.

7.2.5 Muon Momentum Correction

When this analysis was started, the scale and resolution corrections described in Section 6.3
were not available yet. For this reason, a preliminary set of corrections was developed early
in this analysis, to account for residual discrepancies in the muon p description between
data and simulation.

This preliminary method uses the same fundamental principles as the fine-tuning steps of
the dedicated scale and resolution corrections, namely aligning the peak position and width
of the dimuon mass distribution. Yet, in contrast to the scale and resolution calibration
described before, the momentum corrections are derived purely based on the reconstructed
muon momenta. Therefore, different approximations are made in order to correct the
residual differences.

The general idea is to scale the muon pr in the data such that the peak position is aligned
with that in the simulation. Then, the pr in the simulation is smeared such that the width
of the dimuon mass distribution matches that in the data.

Both corrections use a common binning in pt and 7, assuming the dependence on ¢ is
negligible. In each bin, the dimuon mass distribution is fitted with a convolution of a
Breit-Wigner distribution and a double-sided Crystal Ball function. Here, the Breit-Wigner
distribution models the underlying physical resonance and is therefore fixed to the currently
best values. The double-sided Crystal Ball function, on the other hand, accounts for
detector resolution effects: in particular, its Gaussian core quantifies detector effects, where
the mean models scale effects, and the width models resolution effects. The exponential
tails in the Crystal Ball function increase the stability of the fits in comparison with a
convolution of the Breit-Wigner and a pure Gaussian function. This behavior can be
attributed to effects, such as radiative corrections, which alter the pure Breit-Wigner shape
and cannot be absorbed efficiently by a Gaussian model due to their asymmetric nature.

The derivation of the correction is based on the dimuon mass equation:

My ~ \/ZpTlpTz[cosh An — cos Ad, (7.6)

where pp; is the transverse momentum of muon i, and An (A¢) is the difference in
pseudorapidity (azimuthal angle) between the two muons. This approximation is valid for
relativistic muons, which is the case for muons in this analysis, where the lower threshold
of pr > 25 GeV corresponds to more than 200 times the muon mass.
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7.2.5.1 Scale Correction

If the pt values of both muon are scaled by a common factor a, the dimuon mass is also
scaled by a (neglecting any correlations). The optimal « is determined by aligning the
extracted dimuon mass peaks in data and simulation:

Mz + lsim

mz + Hdata

where fiqata/sim are the mean values of the double-sided Crystal Ball function fitted to the
dimuon mass distribution in data and simulation, respectively. Since muons in a given
event are not necessarily in the same n-pt bin, the correction is applied assuming that the
integrated effect on the second muon is of similar magnitude to that on the muon under
consideration.

7.2.5.2 Resolution Correction

Aprt

To estimate the impact of the muon pp smearing S on the dimuon mass, the mass
equation can be log-linearized:
1
Inmy, = i(linl + In prsy + terms unrelated to pr). (7.8)

Differentiating both sides yields:

A A A
9 mu,u: pT1+ pTQ.

(7.9)
L P11 P12

Using this equation, an implicit connection between the muon pt resolution in the data
and simulation can be extracted by comparing the width of the corresponding dimuon
mass peaks.

The total fitted width of the dimuon mass peak consists of the intrinsic Z resonance width
I'z, as well as the detector induced resolution ogatasim, in the data or simulation. Usually,
the resolution in data is larger than in simulation. Their difference can be extracted from
the detector induced resolutions:

2 2 ! 12 2
I‘Z + Odata — I‘Z + Jszim + Oextras (710)
= Oextra = Ugata - O-S%m' (711)

To improve the agreement between the resolution in data and simulation, this difference
needs to be reduced. Following Equation 7.9 and assuming no correlation, this can
be implemented by applying an additional smearing to the pr of both muons that is
proportional to pr/my,:

pr = pr N (1, Uextra), (7.12)
Myp

where N(.,.) denotes the normal distribution which depends on mean and standard
deviation, respectively.

This smearing is observed to not describe the data adequately. To account for effects from
the simplifying assumptions—such as that of no correlation between the muons—a further
degree of freedom is introduced in the form of an additional smearing factor k. This factor
is then optimized to yield the best agreement between data and simulation. The technical
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Figure 7.10: Distributions of the reconstructed mass of the dimuon system in the Z signal
region before (left) and after (right) application of the muon pr scale and resolution
corrections. Events are included in the distributions if they contain at least one selected
muon with 1.2 < n < 2.4 and 39 < pr < 42 GeV. The upper plots show the normalized
distributions in data, from which background events are subtracted, and the simulated
signal sample, as well as fits to both. The fit model is a convolution of a Breit-Wigner
distribution and a double-sided Crystal Ball function, where the parameters of the Breit-
Wigner distribution are fixed to the mass and width of the Z boson, and the remaining
parameters are left freely floating. Fit results for the mean and standard deviation of the
double-sided Crystal Ball function are provided as well. The lower panels show the ratio of
the normalized data and the normalized simulation.

procedure to derive the optimal agreement consists of testing different values for k and
then fitting the resolution with a second order polynomial.

Twenty values between 0 and 4 are injected for k and the resolution is extracted through a
fit with the aforementioned model. The added impact of the additional resolution scaling on
the actual resolution is assumed in quadrature, due to the Gaussian convolution properties.
Hence, using the twenty resolution values at different values of k, the quadratic function
can be fitted:

Amﬂﬂsim = \/FQZ + Gs2im + (ak)zv (713)

where a and og, are parameters extracted in the fit. Finally, the extra smearing factor k
is obtained from the intersection of the fitted function and the resolution value og4.t, in the
data.

As this method contains 20 individual fits of the dimuon mass, it is more robust than a
single fit. Consequently, instead of extracting ogata from one fit to the dimuon mass, the
approach described above is applied to the data as well to obtain a more robust value of
the resolution in the data. Figure 7.10 provides two example fits of the dimuon mass, while
Figure 7.11 illustrates the procedure to extract the additional smearing factor k.

The uncertainty on the momentum corrections is conservatively estimated as 50 % of the
correction value. While the absolute size of the correction is small, it can impact the
cross section by shifting events across acceptance thresholds. For instance, a muon with
a reconstructed pr of 25.01 GeV could be corrected down to 24.99 GeV and thereby leave
the acceptance region. Since the scale correction is applied to the data but uncertainties
are generally applied to the simulation, the uncertainty on the scale correction is applied
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Figure 7.11: Dependence of the dimuon mass peak width on the additional smearing factor,
where the intrinsic width of the Z peak is subtracted. The muons used in these fits are
characterized by 1.2 < 7 < 2.4 and 39 < pt < 42 GeV. The points are extracted by injecting
an additional smearing to the individual muons and evaluating the impact through fits
such as those in Figure 7.10. Then, a second-order polynomial is fitted to the individual
points for data and simulation to find the optimally injected k in the simulation to match
the resolution in the data. The fit is used as a robust method to estimate the resolution
in the data (indicated by the grey dashed line), and the optimal smearing factor k in the
simulation (indicated by the red dashed line).
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Figure 7.12: Distributions of the reconstructed mass of the dimuon system in the Z signal
region before (left) and after (right) the muon pp corrections. The upper plots show
the normalized distributions in the data, from which the background contributions are
subtracted, and in the Z boson signal samples. The lower panels show the ratio of the
normalized distributions in data and simulation. Moreover, the systematic impact from
the scale correction is illustrated in the right plot. After the correction, a slight residual
slope is persistent, which is not addressed by the muon pr corrections.

to the simulation with opposite sign. That means that an up-shift of the muon pr in the
data is modeled by a down-shift in the corresponding bin of the simulation. Thus, the
relative increase in the acceptance of the data with respect to that in the simulation is
reproduced correctly. The improvement in the agreement between the dimuon mass peak
in data and simulation is shown in Figure 7.12, which also illustrates the aforementioned
inverse impact of the scale correction uncertainty.

7.2.6 Azimuthal Correction of the Missing Transverse Momentum

In both data and simulation, the azimuthal p%liss distribution follows a sinusoidal shape.
This effect is known from previous data-taking periods and many reasons have been
hypothesized [128], including the following:

o anisotropic detector response: e.g.due to misalignment, inactive calorimeter cells or
tracking regions,

o displacement of the beam spot: e.g. due to refocusing or proper motion of the detector.

Each of these factors can introduce a preferred direction for measured particle momenta.
While the effect may be negligible for single measurements, it becomes significant when
considering a large number of particles; the larger the set of particles, the larger the trend.
Moreover, since p* is a global event variable—computed from the vector sum of all
reconstructed pr—any systematic distortion in the measurement of individual particles
will be reflected by the final piss value. This effect is expected to increase with pileup, as

the number of reconstructed particles per event grows, amplifying the effect on p2iss.

To study this behavior, the z and y components of the p%ﬂss—pg‘i“ and p;niss, respectively—
are examined in the Z region as a function of npvGood, as depicted in Figure 7.13. This
region is dominated by the contribution from Z boson events, which do not contain a

neutrino in the main interaction at LLO precision in electroweak perturbation theory. The
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Figure 7.13: Normalized distributions of x (left) and y (right) component of the pi™* as a
function of npvGood in the data. The red lines represent linear fits to the profile of the
distributions, and the fit result is provided as well.

dominant true contributions to p=S come from weak decays inside of jets, and from the

background contributions. Since both these effects are generally small, both pis and
pzr/niss are expected to be symmetrically distributed around zero in the Z region. Instead,
both distributions show a deviation from zero, in particular for large values of npvGood in
pg*iss. To reduce the effept of the Qbserved linear trend, an ad-hoc correction is derived by
fitting the profiles of p;"** and py"** as functions of npvGood with a linear model f. The
correction formula is then given by

p;n/izs7 data/sim — p?}ff’ data/eim _ f g?} a/Sim(anGood), (7.14)
and applied to the x and y components for each event in both data and simulation,

effectively restoring the mean p%liss value of both to zero. Events with significant true

contributions to p&is, such as W+ events with a neutrino in the final state follow the same

pileup distributions as those in the derivation procedure, only with an overlayed true p%ﬁss
contribution. Consequently, the pileup-dependent bias can be reduced with this correction,
thereby improving the estimation of the true p%liss contributions as well. The impact of
this correction is illustrated in Figure 7.14, indicating that the strong sinusoidal pattern in

the angular distribution is significantly reduced.

The uncertainty associated with this correction is dominated by the statistical uncertainty
in the determination of fizta’Sim (npvGood). This uncertainty is negligible in the central
region of the npvGood distribution, where the high number of events effectively constrains
the fit. For small and large numbers of reconstructed primary vertices, the absolute size
of the uncertainties increase. However, the relative contribution of these regions to the
total event yield is small. Furthermore, this correction is only the first step in the overall
PSS calibration procedure, which is dominated by the recoil calibration. Given that
the uncertainties from the recoil calibration are significantly larger than those from the
azimuthal pP'* corrections, the latter is not explicitly propagated in further systematic
uncertainty evaluations.

7.2.7 Recoil Calibration

An additional physics-based correction is applied to the p%iss by aligning the boson recoil
profiles in the simulation with those in the data. The hadronic recoil of the boson is defined
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Figure 7.14: Distributions of the p** azimuthal angle in the Z signal region before (left)
and after (right) the azimuthal psS correction. The upper panels represent the normalized
distributions in the data and simulation, respectively. The lower panels show the ratios
of the normalized data distribution and that in the simulation. Before the corrections, a
strong modulation in ¢ can be observed, which is mitigated through the corrections to a

large extent. Note that the scale of the ratio plot differs by an order of magnitude.

as the vector sum of transverse momenta of all the particles in an event, except for the
boson’s daughter particles. Ordering the total number n of particles such that the boson
daughters are labeled as particles 1 and 2, the recoil can be expressed as:

n
U= pr;=—((7r"+pr1+DPr2) (7.15)
>
—~

7

where pr; is the reconstructed transverse momentum vector of particle 4, and therefore
vanishes for neutrinos. In an ideal detector with perfect calibration and infinite resolution,
the hadronic recoil would exactly match the negative of the boson’s transverse momentum.

In the Z region, where no p?iss is expected, the recoil can be directly mapped to the

reconstructed pr of the dimuon system. Given that the muons’ kinematic behavior is
already precisely calibrated, the reconstructed pr of the dimuon system can be estimated
with high accuracy and consistency between data and simulation. The recoil, on the
other hand, is reconstructed from a large number of individual measurements within one
event, which makes it more prone to detector effects and discrepancies between data and
simulation.

To improve agreement of the recoil distributions in simulation and data, the relationship
between the recoil and dimuon pr is exploited by decomposing the recoil into its components
parallel and perpendicular to the dimuon pr:

. P,
wy = - D
‘PT,W’ (7.16)
U = (ﬁx ]iT,,u,u )-2,
‘pT,,u,u|

where pr ,,, is the pr vector of the dimuon system, and 2 the unit vector along the beam
axis. The parallel component wu is highly correlated with the dimuon pr, while the
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perpendicular component u is expected to be centered around zero. The resolutions of
these components depend on multiple factors, leading to systematic differences in the recoil
distributions between data and simulation.

To mitigate these discrepancies, a cumulative distribution function (c.d.f.) matching method
is applied to align the probability density functions (p.d.f.s) of the recoil components between
data and simulation, based on the Z region:

1. distributions of the recoil components are created in bins of the dimuon pt for both
simulation and data, from which the background contributions are subtracted,

2. the p.d.f.s of the recoil distributions are determined by fitting them with a sum of
three Gaussian functions,

3. for a given simulated signal event, the c.d.f. values of its recoil components are
computed from the simulation p.d.f.,

4. the corresponding value in the data p.d.f. is found by inverting the c.d.f.

The recoil component is then adjusted according to:
u—u+ Udata,ref — Usim,ref s (717)

where Ugim /data,ref ar€ the values that solve the equation

UP ’ d r usim/data,refp ’ d ’ 7 18
: z(u)du' = 0 Z,sim/data(u) u . (7.18)

c.d.f. value at u c.d.f. value at Ugim /data,ref

Here, Pz represents the p.d.f. of the current sample in the corresponding boson pt bin,
while Pz gim/data i the p.d.f. extracted from the Z boson reference sample in the simulation
or data, respectively. Example distributions of the recoil in a specific bin of the dimuon
pr before and after applying the c.d.f. matching, along with a closure test with the mr
spectrum in the Z region, are shown in Figure 7.15. Discrepancies between data and
simulation are mitigated largely through the corrections in all shown distributions.

The recoil corrections are then extended to events in the W+ region, where a direct mapping
between the recoil and the boson pr is not possible at reconstruction level due to the
presence of an undetectable neutrino in the final state. Instead, it is assumed that the
differences in the recoil p.d.f.s between data and simulation for W* processes are similar
to those observed in the Z region. This allows the application of the reference recoil
p.d.f.s derived from Z events to correct the recoil in W* events as well. To determine the
appropriate pr bin of the reference distributions for a given W* event, the generator-level
pr of the W+ boson is used.

Uncertainties associated with the hadronic recoil modeling are evaluated by varying different
aspects of the correction. First, statistical uncertainties of the fit are evaluated using the
diagonalized covariance matrices from the triple-Gaussian fits in the different pt bins. Since
the nominal model consists of three Gaussians, there are six parameters (three times p
and o), each associated with an eigenvalue. Each eigenvalue corresponds to a nuisance
parameter, whose impact is assessed by shifting the model by +10 and recalculating the
template.

The uncertainty in the modeling is evaluated by replacing the triple-Gaussian with a
double-Gaussian fit, and taking the shape difference as systematic uncertainty.
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Background contamination in the data is an additional source of uncertainty, which is
evaluated by calculating the correction without the background subtraction in the Z region.
Finally, a potential systematic uncertainty due to varying detector performance in different
boson rapidity sections is evaluated by testing alternative binnings:

ly| < 0.5, 0.5< |y] <1.0, |y|> 1.0, (7.19)

while the nominal correction is applied inclusive in boson rapidity. The shape differences
induced by these variations are incorporated as systematic uncertainties in the maximum
likelihood fit.

7.2.8 Estimation of the QCD Multijet Background

Processes of the strong interaction are highly abundant in pp collisions at the LHC, spanning
a wide energy spectrum. Events in which strong interactions dominate the momentum
transfer while further interactions only play a secondary role (e.g. during the particle
propagation through the detector), are referred to as QCD multijet background. Such
events can contain a reconstructed muon, which comes from weak decays inside of the jet,
or jet remnants that were not fully contained in the HCAL. While most of these events are
removed by the tight muon identification and isolation criteria, a residual contamination
from QCD multijet events remains. This background is particularly relevant in the W+
region, where only a single muon is required and no further transverse mass criteria are
imposed. In contrast, the Z region is largely unaffected, as the requirement of two opposite-
sign muons with a combined mass of at least 60 GeV makes accidental QCD contributions
extremely unlikely.

The number of QCD multijet events generally decreases with increasing muon pt and p%iss,

as such events require highly energetic jets in combination with reconstruction failures.
Consequently, an accurate description of the QCD multijet background in the W+ region
is crucial, in particular at low mr values. However, modeling this background using MC
simulations is challenging due to the limited order in perturbation theory in combination
with important non-perturbative contributions requiring tuned models. Furthermore, the
high abundance and low selection efficiency (due to the tight muon selection criteria)
demands large samples of simulated events, or selective phase-space sampling, which would
be subject to additional uncertainties. To avoid these issues, a data-driven approach is
adopted in this analysis. This method consists of two main steps:

1. the shape extraction in a QCD-enriched control region, and

2. the extrapolation to the W+ signal region, where the normalization of this background
is determined in the final ML fit.

The QCD enriched region is constructed by inverting the muon isolation requirement from
the W selection. However, the number of events satisfying both isolation and anti-isolation
criteria is limited because events are initially selected based on an isolated muon at the
trigger level. To account for potential biases in the selection efficiency, separate efficiency
scale factors are determined with the TnP technique for three muon isolation ranges:

0.2,0.3,0.5,1.0]. (7.20)

This binning reflects the decreasing number of events at higher isolation values. A con-
sistency test is performed in the Z region with inverted isolation criterion, confirming
improved agreement between data and simulation.
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Figure 7.15: Distributions related to the hadronic recoil before (left) and after (right) the
recoil corrections in the Z signal region. The upper two rows show the recoil component
parallel and perpendicular to the momentum vector of the dimuon system for dimuon pr
values between 10 and 12.5 GeV, respectively. The lower row displays the mr distributions,
integrated over all dimuon pr values. In each plot, the upper panel indicates the normalized
distributions of the data, from which background contributions are subtracted, and the
normalized distribution of the Z boson signal sample, while the lower panel shows the ratio
between the two.
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In the anti-isolated control region, QCD templates for the mr distribution are extracted
by producing m distributions of the data and all simulated samples, and then subtracting
the non-QCD MC simulated contributions (including the W* contribution) from the data.
To mitigate the impact of the decreasing data normalization for higher relative isolation
values, the QCD shapes in the non-isolated regions are all normalized to the same value.
These extracted QCD shapes are then extrapolated bin-wise to the isolated W+ signal
regions using a linear fit. As the individual shapes are normalized to the expected QCD
yield in the corresponding W* signal region rather than being normalized to one, the
extrapolated result is expected to have a normalization in the correct order of magnitude.
Further optimizing the pre-fit normalization of the QCD contribution is not expected to
improve the results as their normalization is associated with a freely floating signal strength
parameter in the fit anyway. Figure 7.16 illustrates the two-dimensional concept of the
extrapolation procedure.

A possible bias in the extrapolation model is taken into account by considering the difference
to the extrapolation with a quadratic fit. The total uncertainty is then composed of this
fit model uncertainty and the statistical uncertainty of the linear extrapolation. While fit
model uncertainties could, in principle, be correlated across bins (if the true QCD shape
deviates systematically from a linear function), the observed variation across bins suggests
an uncorrelated approach. This choice allows for a greater degree of flexibility in the QCD
shape, which is expected to be constrained by the fit but may ultimately limit the precision
of the measurement.

In the anti-isolated region, the contribution from the W* signal process is non-negligible.
Since the signal cross section both serves as input to the QCD background estimation and
is subject to the measurement, there is potential for a bias in the extracted QCD shape.
The optimal solution would be to correlate the signal yield in the anti-isolated region
with the signal strength parameter in the fit. However, implementing this correlation is
technically complex, as the mapping between the signal cross section in the anti-isolated
region and the resulting QCD distribution in the isolated region is non-trivial. Furthermore,
the signal model in the anti-isolated region is subject to significantly larger uncertainties,
both statistically and in the modeling.

An alternative implementation could be to iteratively determine the signal strength pa-
rameter by performing the fit and then repeating the fit with the output values from the
previous iteration as input value for the QCD estimation. Given that the measured cross
section is expected to be close to the predicted value, which is used as fit input, the impact
of a single iteration is assumed to be small. To verify this assumption, the effect of a 10 %
bias in the signal cross section in the anti-isolated region is evaluated and found to result
in a 0.2 — 0.3 % shift of the result. If repeated infinity-many times, the total effect would
correspond to

0.3\’

— | —1=3.1 7.21
(%) % (7.21)
of the deviation from unity, which is negligibly small. Nonetheless, a 10 % uncertainty on
the signal cross section in the anti-isolated region is incorporated into the fit to account for
possible modeling imperfections.

Naively, the uncertainties on the QCD multijet background should only affect the W+
region, as QCD contribution in the Z region is assumed to be negligible. However, during
the fit, variations in the QCD background can indirectly influence the Z boson signal
normalization. Specifically, a shift in the QCD background alters the balance of the
remaining uncertainties, causing the fit to adjust other parameters to achieve convergence.
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7 Measurements of the Cross Sections of W and Z Boson Production

lation)

Figure 7.16: Conceptual design of the QCD extrapolation method from the mt distributions
in the non-isolated regions to the isolated region with a linear fit. The plot at the top
shows the extrapolation in the W™ region, while the bottom plots shows that in the W
region. Each slice in muon isolation shows the normalized mt distribution of the QCD
multijet background. For relative isolation values > 0.2, the templates (blue-edged white
bars) are constructed by subtracting the non-QCD contributions from the data. For the
signal region with relative isolation values < 0.15 (colored in this plot), each mr bin is
obtained via linear extrapolation from the non-isolated region. The linear fit is displayed
as a (partly hidden) red line. While statistical uncertainties are considered in the fit, they
are not displayed here for better overview. However, as a general rule of thumb: the
larger the isolation value, the larger the statistical uncertainty and the smaller the effective
constraint of the corresponding bin in the linear fit. This plot contains only final states
with a negatively charged muon. Exemplary plots for a slice in both mt and relative
isolation of the muon are provided in Figures C.7 and C.8 in the appendix.
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7.2 Data Calibration and Tuning of the Prediction Model

This indirect effect is taken into account when assessing the overall uncertainty on the Z
boson cross section measurement.

7.2.9 Further Sources of Uncertainty

The uncertainties associated with the various corrections have already been discussed in
the previous subsections. Additional systematic uncertainties are briefly introduced in the
following.

The luminosity is calibrated with a method based on van-der-Meer scans, limiting the
uncertainty in the luminosity measurement to 1.4 % [1]. To avoid unphysical constraints
or shifts in the central luminosity value during the ML fit, its nominal value is fixed
at 5.01fb~!. Instead, the luminosity uncertainty is applied to the result post-fit, treating
it as completely uncorrelated with other sources of uncertainty. Since the luminosity
uncertainty is fully correlated across different cross section measurements, it cancels out
when considering cross section ratios.

The predictive power of the MC simulated samples is limited by statistical uncertainties
due to finite sample sizes. This uncertainty is incorporated into the model by application
of the Barlow-Beeston lite approach [129].

Uncertainties on the PDFs are evaluated by applying 100 weights that are provided in the
simulated samples and correspond to a Hessian set of uncertainties. Renormalization and
factorization scale uncertainties are assessed by varying the corresponding input scales by
a factor of two up and down, where the extreme case of variations in opposite directions is
omitted. Similarly, parton shower uncertainties are evaluated using event weights provided
by the PYTHIA shower generator. These weights reflect variations in key parameters affecting
the parton shower evolution. All these uncertainties are treated as shape uncertainties
that affect event kinematics but are constructed to not change the overall normalization.
The uncertainties are combined into the uncertainty group called ‘PDF, scales, and parton
shower’.

Background processes in the simulation are normalized to the product of their cross section
and luminosity, taking into account acceptance requirements and all relevant corrections.
Another source of uncertainty in these backgrounds is the cross section uncertainty, which
is conservatively considered by varying the normalization up and down by 10 %. At first
order, an increase in the background cross sections reduces the measured signal cross
section, with the magnitude of the effect depending on the fraction of background effects.
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7.3 Statistical Fit

Following the strategy outlined in Section 7.1, a combined template fit is performed in
the three signal regions (W* and Z) using a framework based on the COMBINE tool [130].
Common parameters of the fit model—such as the sample normalizations—are treated
as correlated between the different regions. The principle fit setup in this cross section
measurement and the methodology are described in Section 5.1.

The fit model includes five signal strength parameters: one for each signal process, and
one for the QCD background contributions in each of the W regions. Furthermore,
uncertainties are incorporated as nuisance parameters and grouped into two categories:
pure normalization uncertainties on the background models, and shape uncertainties (in
some cases also affecting the normalization).

7.3.1 Fit Performance

During the unblinding procedure, the model was validated by applying the fit to Asimov
data (pseudo-data following the model prediction). This self-consistency check revealed sub-
percent expected uncertainties on the signal strength parameters (excluding the uncertainty
in the luminosity measurement). For the cross section of Z boson production, the largest
uncertainties are expected to stem from the muon (in-)efficiency measurements. In contrast,
for the W+ cross sections, the dominant uncertainties arise from the QCD background
modeling.

As part of the unblinding procedure, pre- and post-fit distributions are studied (see
Figure 7.17). Two dominating traits are observed that require further explanation.

First, a discrepancy is visible in the low mr range in the W* regions before the fit. This
effect is expected, as the pre-fit normalization of the QCD contribution is taken directly
from the extrapolation and is not further optimized before the fit. Since the normalization
is left freely floating, an improved pre-fit estimate would only simplify the fit convergence
but would not alter the final result significantly.

The second effect is particularly apparent in the post-fit W+ regions and suggests signs of
overfitting. The close agreement between the post-fit model and the data, with negligible
differences in comparison with the uncertainties, arises from the large and uncorrelated
uncertainties in the QCD pre-fit model. These uncertainties are significantly larger than
the statistical uncertainties in the fit, which allows to greatly reduce differences between
the data and the model in the different mr bins. However, this high degree of flexibility
can counteract variations in the signal normalization as well, and consequently limits the
fit precision with respect to the signal strength parameters. Since variations of the signal
normalization affect all 20 bins of the fit in the corresponding W region at once, the
different QCD bin uncertainties are implicitly correlated, diminishing the impact on the
signal strength parameters to some extent.

Tables 7.3 and 7.4 provide the pre- and post-fit event yields associated with the different
contributions in Figure 7.17. In comparison, the post-fit yield of the W process is decreased
by about 1 %o, while the W~ and Z yields are increased by 5 %o and 6 %o, respectively.
While this would naively indicate that the cross section results behave similarly with respect
to the theoretical prediction, several different effects need to be considered additionally.
First, variations in the nuisance parameters may have affected the normalization as well,
e.g., in the efficiency scale factors. Second, the pre-fit yields do not exactly correspond to
the best theoretical prediction in Table 7.1, since these precise theoretical predictions were
calculated at a later stage. As explained before, the cross section results do not depend on
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Figure 7.17: Pre-fit (left) and post-fit (right) distributions in the three signal regions. At
the top, the dimuon mass distributions is shown in the Z region, in the middle and at the
bottom, the m distributions are displayed for the W* and W~ regions, respectively. The
lower panel in each plot shows the ratio of the number of events observed in data to that
of the signal and background predictions. Overflow entries are included in the bottom two
plots. The vertical uncertainty bars on the data represent the statistical uncertainty.
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7 Measurements of the Cross Sections of W and Z Boson Production

Table 7.3: Pre-fit event yields in the fiducial region. A dash indicates that the corresponding
contribution is found to be negligible in this signal region.

Process W region W™ region Z region
W+ 20035607 15591 566 —
Z 958 372 896734 2944611
EWK: (989729)  (801381)  (27526)
W+ (= 117) 608711 498 487 —
Z (= 77) 119263 114194 2177
W= (nonfiducial) 121304 72035 —
Z (nonfiducial) 9000 8789 16165
VvV 45062 42333 6 500
VBF V 21284 16 522 1680
Single top quark 65106 49021 1004
tt 215 409 216 695 9278

the input fiducial cross sections of the signal processes. Therefore, this approach does not
harm the validity of the results.

However, the cross section results do depend on the input background cross sections because
these are not left freely floating in the fit. Based on the post-fit reduction of the yield
of both EWK and tt processes by a few percent across all regions, their pre-fit fiducial
cross sections seem to have been slightly overestimated. Since the simulated background
processes only contribute in the single-digit percent range to the different signal regions,
the effective impact from these normalization uncertainties is expected to not exceed the
low permille range.

Apart from these observations in the difference of the pre- and post-fit yields, there are a
few structural differences between the provided tables:

e EWK contributions: before the fit, the individual contributions of different sub-
processes are known. However, the sub-processes are treated as a common template
in the fit to simplify the model. Consequently, the individual contributions cannot
be broken down anymore after the fit.

e Uncertainties: the total post-fit uncertainties on the yield consist of the correlated
individual post-fit uncertainties on the corresponding event yields. This number
cannot be provided for the pre-fit yields as the correlations are not yet known at this
stage.

¢ QCD multijet contribution: as discussed before, the normalization of the QCD
contributions is extracted in the ML fit. Since there is no expected normalization,
the contribution is not provided in the pre-fit table.

Overall, the systematic uncertainties on the fit results are very small, much smaller than
the uncertainties on the normalization of the corresponding simulation samples. While this
may seem inconsistent, it is explained by the interplay between the nuisance parameters
and signal strengths. If one parameter is varied by a certain amount, the other parameters
are tuned to cover up for the effect on the shape and normalization. This behavior can
be observed in the correlation matrices provided for the leading systematic uncertainty
sources in Appendix D. Consequently, the effect on the process event yield is comparably
small, in particular for the total event yield, where also correlations between the different
process event yields are considered.
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Table 7.4: Post-fit event yields in the fiducial region. The post-fit uncertainties include
only statistical and systematic uncertainties, but not the uncertainty in the luminosity
measurement. The individual uncertainties in the event yields for a given process are
derived by taking the full covariance matrix into account. A dash indicates that the
corresponding contribution is found to be negligible in this signal region.

Process W region W™ region pu T region
W=+ 20013000 £ 31000 15665000 =+ 22000 —

Z 966700 £+ 2300 905000 £+ 2300 2962980 £ 970
EWK 966000 £ 14000 782000 + 11000 26560 =+ 460
tt 200800 £+ 3400 202100 £+ 3400 8630 + 130
QCD multijet 2973000 + 33000 2920000 =+ 24000 —

Total 25119600 =+ 1500 20475200 =+ 1300 2998160 + 850
Data 25119622 20475186 2998125

7.3.2 Cross Section Measurement

The fiducial cross section values are obtained by multiplying the best-fit signal strength
parameters with the corresponding input fiducial cross sections. Assuming that the
efficiency is accurately described after applying the correction via scale factors, this
approach effectively removes any dependence on the nominal cross section used in the
simulation. However, it is essential to ensure consistency in the definition of the fiducial
phase space between the result and the theoretical prediction. In this analysis, this primarily
concerns the treatment of generator-level muons, which can be defined either before or after
the emission of FSR. Since the theoretical predictions from DY TURBO are computed at
LO precision in QED, the acceptance region in the result is defined using muons before the
emission of FSR. The total cross sections are then extrapolated from the fiducial results
using acceptance values derived from DY TURBO.

Table 7.5 summarizes the products of cross sections and branching fractions for both the
fiducial and total phase space, along with the acceptance values used for the extrapolation.
In both cases, the total uncertainty is dominated by the uncertainty in the luminosity
measurement, which is more than twice as large as the combined systematic uncertainties
considered in the fit. In each extrapolation from the fiducial to the total cross section,
the uncertainties on the theoretical acceptance values are also taken into account. These
uncertainties are generally of similar magnitude as the combined systematic uncertainties
from the fit. Since the acceptance enters the extrapolation procedure in the denominator,
the larger up-fluctuations in the asymmetric scale uncertainties translate to larger down-
fluctuations in the total cross section results.

7.3.2.1 Breakdown of the Leading Sources of Uncertainty

Investigating the post-fit values of the nuisance parameters is crucial as significant variations
from their pre-fit values may indicate deficiencies in the statistical model. The significance
can be interpreted in two ways: with respect to the prior or posterior uncertainties of the
nuisance parameter. While the prior uncertainties are an input to the statistical model,
post-fit uncertainties can be estimated from the curvature of the likelihood, specifically
by evaluating the second derivative with respect to each nuisance parameter at the fit
minimum. A small (large) curvature implies that deviations in the parameter value have
weak (strong) effect on the likelihood. Reductions in the uncertainty after the fit suggest
that the data provide more information than what was initially encoded in the prior. The
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7 Measurements of the Cross Sections of W and Z Boson Production

Table 7.5: Results for the fiducial and total inclusive cross sections times branching fractions
measurements. For the measured values, the quoted uncertainty represents the systematic
uncertainty, while the statistical uncertainty is negligible. For the acceptance predictions,
the first uncertainty is the PDF uncertainty, the second is the scale uncertainty, and the
third is the integration uncertainty of the calculation.

Process ofaB & (syst) Acceptance +(PDF) OtotB £ (syst) + (lumi)
+(lumi) in nb +(scale) £ (int) in % +(acceptance) in nb
w+ 5.428 + 0.037 + 0.076 45.48 + 0.24 T5701 £ 0.07 11.93 +0.08 + 0.17 )07
i 4.167 + 0.028 £ 0.058 47.06 £ 0.22 7010 £0.07  8.86 +0.06 +0.12 00
W 9.60 +0.06 +0.13 46.15 £ 0.22 T)4¢ £ 0.05 20.79 +0.14 +0.29 1)
Z 0.764 + 0.003 £ 0.011 37.80 + 0.19 T4} +0.04  2.021 & 0.009 + 0.028 0014

impact of a given nuisance parameter on the signal strength can be quantified by fixing the
parameter to its nominal value +10 and re-optimizing the likelihood. The relative impacts
of the five leading sources of uncertainty on the Z and W+ signal strength parameters are
provided in Figure 7.18.

In the Z region, the dominating systematic contributions stem from the muon efficiency
corrections. These affect the normalization directly through the scale factors applied to
simulated events. Since the Z region contains two muons, the effect is approximately
doubled for all efficiencies except the trigger efficiency. The trigger requires only a single
muon, so its relative impact is lower when two muons are present. The leading four
systematic uncertainties in this region show only small shifts from their initial values and
are only mildly constrained by the data, indicating that the fit provides limited additional
information. All four have a negative effect on the signal strength, which is expected since
a higher value of the scale factor effectively raises the normalization of simulated events,
requiring a smaller signal strength to match the data.

The fifth-largest uncertainty in this region arises from the renormalization scale. It is
pulled up by about one standard deviation and constrained to roughly 50 % of its pre-
fit uncertainty. This behavior is likely due to the scale’s influence on the dimuon mass
distribution shape. Raising the renormalization scale lowers the strong coupling constant,
reducing the impact of higher-order QCD corrections. As a result, contributions from
ISR decrease, potentially increasing the energy available for Z boson production, which
modifies the shape of the mass distributions by introducing a tendency towards larger
dimuon mass values. This residual slope can compensate for the trend observed in the
pre-fit distributions (Figure 7.17). However, this adjustment is not physically meaningful,
as the renormalization scale is a theoretical artifact rather than an observable. Moreover,
the direction of the effect on the Z boson signal strength parameter is ambiguous and
arises from second-order effects, as the templates are normalized by construction and any
apparent normalization shift must be compensated by other systematic variations.

In the W* regions, the most dominant uncertainty arises from the signal contamination
in the QCD control regions. The fit parameter corresponding to this nuisance is pulled
down by approximately 1.2 pre-fit standard deviations and constrained to about 60 % of its
pre-fit uncertainty. Generally, a reduced contamination of the W+ boson signal processes
in the anti-isolated control regions leads to a relatively increased QCD background at high
mr values. The reason is that the W* boson process—along with the other simulated
contributions—is subtracted from the data in the anti-isolated regions. Since the W+
boson process is most prominent at high mr values, this region is relatively affected the
most. The strong pull and constraint of the nuisance parameter indicates that the data
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Figure 7.18: Distribution of the pull and impact values of the leading nuisance parameters
with respect to the Z and W% signal strength parameters. The points show to the
pull (? —v)/o,, corresponding to the difference between post-fit value © and pre-fit value v,
relative to the pre-fit uncertainty o, of the nuisance parameters v, while the uncertainty
bars show the ratio of post-fit to pre-fit uncertainties associated with v. The bar histograms
indicate the relative impact of a variation by one post-fit standard deviation on the signal

strength parameter.
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provide more and different information than supplied in the anti-isolated regions. This
is not surprising due to the precision limitation in the determination of the processes in
the anti-isolated regions, which is caused by the contradicting isolation criteria: in these
regions, the muon is required to be isolated on the trigger-level and non-isolated offline.
To mitigate systematic effects from this contradiction in the selection, dedicated muon
scale factors have been calculated for the anti-isolated regions. These scale factors are
subject to large uncertainties up to the order of 10 % and are effectively included in the
10 % uncertainty on the signal contamination. As a consequence, the precision in the
normalization in the non-isolated region is limited and deviations from the normalization
in the signal region, where all processes are better-understood, are not unexpected. In
summary, the difference between the pre- and post-fit values of this nuisance parameter
is not considered problematic. During the unblinding process, the robustness of the fit
was studied by repeating it with the input value of the W* boson cross section in the
anti-isolated region blindly updated to the post-fit value. The second fit was found to be
consistent with the first iteration. Despite having the largest impact on the W* boson
signal strength parameters, the effect is rather small because of the relatively small share
of signal events in the non-isolated region in contrast to the isolated signal regions. More
specifically, a 6 % variation (corresponding to one post-fit uncertainty) leads to a signal
strength variation in the order of 3 — 4 %o. Thus, even if this variation would iteratively
increase the impact, the effect would still decrease by an order of magnitude for each
iteration.

In addition to the signal contamination, several high-mT bin uncertainties from the QCD
templates are among the leading systematics. Their pre-fit uncertainties are relatively
large, allowing for significant constraint in the fit. Interestingly, the direction of their
impact on the signal strength parameters is not uniform. While most bins follow the
intuitive trend—more QCD reduces the space available for signal, thus lowering the signal
strength—the nuisance parameter for the 19th bin shows a positive impact. This can be
explained with a strong correlation of roughly 84 % with the signal contamination nuisance
parameter, illustrated by Figure D.11. In this case, an increased QCD yield in the 19th
bin is compensated by an increase in signal contamination, which in turn decreases the
QCD yield globally and thus raises the signal yield. Nuisance parameters connected to
other QCD bins generally show a smaller (or even negative) correlation with the signal
contamination nuisance parameter, explaining their different behavior.

Finally, the trigger uncertainty has a larger impact in the W* regions than in the Z region
due to the presence of only one muon. Similar to the other scale factors, the sign of its
impact is determined by the effect on the normalization. Unlike the other scale factors, the
corresponding nuisance parameter is pulled by almost one standard deviation. While there
is no clear indication why this is the case, the pull is still covered by the uncertainty and is
therefore not alarming.

A summary of the systematic impacts, where different nuisance parameters are grouped
together for better overview, is provided in Table 7.6. All evaluated uncertainties lie
well below the 1.4 % luminosity uncertainty, and statistical uncertainties in the data are
generally negligible.

7.3.2.2 Comparison with Theoretical Predictions

Figure 7.19 presents comparison plots between the measured cross sections and theoretical
predictions obtained with DYTURBO at NNLO in perturbative QCD, using three different
PDF sets. Overall, the theoretical predictions are compatible with the measurements. The
agreement is particularly good for the Z boson cross sections, both in the fiducial and total
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Table 7.6: Post-fit uncertainties in percent for the fiducial cross section measurement. For
completeness, also the integrated luminosity and statistical uncertainty are given.

- . ;
Uncertainty source Uncertainty in o3 (in %) for

W+ W~ W+ Z
Muon efficiency 0.28 0.29 0.29 0.40
Finite size of MC samples (bin-by-bin)  0.27 0.27 0.25 0.08
QCD background 0.53 0.49 0.49 0.07
PDF, scales, and parton shower 0.25 0.25 0.25 0.06
Muon momentum correction 0.01 0.02 0.01 0.03
Recoil correction 0.09 0.08 0.08 0.02
EWK background normalization 0.05 0.05 0.05 0.02
7 boson pr correction 0.03 0.04 0.03 0.01
tt background normalization 0.01 0.03 0.02 0.01
Pileup 0.01 0.02 <0.01 <0.01
Total 0.68 0.66 0.65 0.42
Integrated luminosity 14 1.4 14 14
Statistical uncertainty 0.03 0.03 0.02 0.06

phase space. In contrast, the predictions for the W+ boson cross sections show a slight
tendency to overestimate the data, especially in the total phase space.

Among the theoretical uncertainties, those from the NNPDF sets are generally smaller
compared to the other predictions. In particular, the CT18 uncertainties are larger
and highly asymmetric in some cases. These asymmetries stem mainly from the PDF
uncertainties, which are evaluated based on the corresponding procedure (Hessian or MC).

7.3.3 Cross Section Ratios

Nominal results for the fiducial cross section ratios are obtained by dividing the corre-
sponding measured cross sections by each other. The associated uncertainties are derived
analogously to those of the individual cross sections, i.e., by fixing each nuisance parameter
at its 10 variation and evaluating the resulting effect on the ratios. As a consequence,
uncertainties that affect both processes in a similar way tend to cancel (partially), which
enhances the precision of the ratio measurement, in particular for the W+ boson ratio.

As in the cross section measurement, fiducial ratios are extrapolated to the total phase
space using theoretical acceptance values computed with DYTURBO. Table 7.7 summarizes
the fiducial and total cross section ratios, along with the acceptance values used for the
extrapolation. The uncertainty in the luminosity measurement cancels completely, due to
its 100 % correlation between the different processes. In contrast, statistical uncertainties
are uncorrelated across the different data regions—except for the small contributions of the
7 boson process in the W* regions, which has negligible impact on the precision of the Z
boson cross section measurement. Consequently, the statistical uncertainties do not cancel
and therefore become relevant, although they are still notably smaller than the systematic
uncertainties.
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Figure 7.19: Comparison between the measured cross sections and theoretical predictions
generated with DYTURBO and different PDF sets. On the left, the fiducial cross section
comparisons are shown, while on the right, the total cross section comparisons are presented.
All values are normalized to the measured cross sections, which are represented as a red
line. The systematic uncertainties considered in the fit are represented by the blue area,
while the total uncertainty—including the uncertainty in the luminosity measurement—is
indicated by the green area. Since the acceptance calculated with the NNPDF set is used
for the extrapolation from the fiducial to the total phase space, the corresponding entries
are consistent, while the remaining theory entries vary from the fiducial to the total result.
All theoretical values are found to be consistent with the measurement.

Table 7.7: Ratios of the measured product of the fiducial and total inclusive cross sections
and branching fractions along with the corresponding acceptance predictions. Since some
contributions of the systematic uncertainty, most prominently the luminosity uncertainty,
cancel out in the ratios, the statistical component becomes relevant. For the predictions of
the acceptance ratios, the first uncertainty is the PDF uncertainty, the second is the scale
uncertainty, and the third is the integration uncertainty of the calculation.

Acceptance ratio Riot £ (stat) &£ (syst
Process Ria = (stat) & (syst) :i:(PDF)I:l): (scale) £ (int) j:(a(ccep‘ganc(e)y !
W*/Z 7.105 + 0.005 + 0.048 1.203 + 0.003 79007 £ 0.002  5.906 + 0.004 £ 0.040 79922
W~ /7 5.455 + 0.004 + 0.036  1.245 + 0.004 *9051 +0.002  4.382 + 0.003 + 0.029 *002
WE/Z  12.559 + 0.008 + 0.081 1.221 4 0.003 *0902 + 0.002  10.288 + 0.007 + 0.066 *J037

W+H/W=  1.303 4+ 0.001 £ 0.005 0.966 + 0.003 T0:505 + 0.002  1.348 + 0.001 + 0.005 3056
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Figure 7.20: Distribution of the pull and impact values of the leading nuisance parameters
with respect to the Wt /Z, W~ /Z and Wt /W~ ratios. The points show to the pull (¥ —
v)/o,, corresponding to the difference between post-fit value 2 and pre-fit value v, relative
to the pre-fit uncertainty o, of the nuisance parameters v, while the uncertainty bars show
the ratio of post-fit to pre-fit uncertainties associated with v. The bar histograms indicate
the relative impact of a variation by one post-fit standard deviation on the cross section
ratios.

7.3.3.1 Breakdown of the Leading Sources of Uncertainty

Based on the considerations for the dominant uncertainties in the cross section measurement,
a few expectations can be established:

e Muon efficiencies: the impact of uncertainties in the efficiency scale factors is governed
by the number of muons in the final state. As a result, their impact is expected to
be negligible in the W+ /W~ ratio, and significantly reduced in the W* /Z ratio.

e QCD contribution: for uncertainties related to the QCD background estimation,
which primarily affect the W* regions and have only second-order effects on the
Z region, a dominant contribution is expected in the W*/Z ratios. In contrast, a
partial cancellation of these uncertainties is expected in the W+ /W™ ratio.

Figure 7.20 shows the leading sources of uncertainty and their impacts on the ratio
measurements, as well as the post-fit nuisance value distributions. While the distributions
of the nuisance parameters with respect to their nominal values and uncertainties remain
unchanged, their impacts on the ratios differ from those on the cross sections. As expected,
muon efficiency scale factors no longer appear among the top five uncertainty sources;
instead, uncertainties related to the QCD modeling dominate across all ratio measurements.
The W /Z ratios behave very similar to each other and to the W* boson cross section
uncertainties, while the W /W™ ratio shows notable differences. Here, uncertainty sources
that were dominant in the cross section measurement are significantly reduced, leaving
the QCD uncertainties in the bins close to the W+ boson mr peak as the leading ones.

115



7 Measurements of the Cross Sections of W and Z Boson Production

Interestingly, these specific bins were not leading contributions in the individual cross
section fits. Their prominence arises from anti-correlated behavior between the W and
W™ regions: a variation in one bin tends to shift the signal strength in the same region
negatively while shifting the other positively. Moreover, correlations between different bins
(of up to 29 %) increase this effect by propagating shape variations across neighboring bins
(see Figure D.15). The resulting shifts are counteracted by other systematic uncertainties
that exhibit opposite behavior across the two regions. While the exact mechanisms for the
translation from one region into the other are difficult to spot, this interpretation provides
a conceptual understanding of the fit behavior.

To provide an overview of all uncertainties, they are grouped together and their impact is
listed in Table 7.8. Across all three regions, uncertainties related to the QCD modeling are
dominant. Their relative impact is reduced to some extent in the W /W™ ratio due to the
partial cancellation of correlated dominant effects.

In contrast to the naive expectation, the muon efficiency uncertainties are not completely
canceled in the ratios. In the W /W™ ratio, residual contributions remain due to differences
in the trigger efficiency for differently charged muons, in particular at high |n| values. In
the W*/Z ratios, the muon efficiency uncertainties remain at the level observed in the W*
boson cross section measurements, which is consistent given that the effective difference is
the presence of one muon in the final state.

The uncertainty associated with the limited size of the simulated samples decreases by 30 %
for the W+ /W~ ratio, but not significantly in the W*/Z ratios. This can be explained by
implicit correlations through other nuisance parameters, similarly to the bin uncertainties
in the estimation of the QCD multijet background. Since the impact of the limited size of
the simulated samples is significantly smaller for the Z boson process, the resulting effect
on the W*/Z ratios is small.

Other uncertainty groups, such as those associated with PDF, scale variations, and parton
showers, behave similarly to their contributions in the cross section measurements. However,
as the overall impact of the remaining uncertainty groups is small, a detailed discussion is
omitted.

Overall, the total systematic uncertainty on the W*/Z ratios does not differ significantly
from that of the W* cross section measurement and remains around 0.7 %, while the
W /W~ ratio benefits from larger cancellations and achieves a reduced uncertainty of
approximately 0.4 %. The dominant trait in the ratio measurement lies in the full cancel-
lation of the luminosity uncertainty, allowing the intrinsic precision of the analysis to be
fully exploited.

7.3.3.2 Comparison with Theoretical Predictions

Figure 7.21 presents comparison plots between the measured cross section ratios and the
corresponding theoretical predictions, obtained with DY TURBO at NNLO in perturbative
QCD using three different PDF sets. Due to the cancellation of the luminosity uncertainty,
the total measurement uncertainty is significantly reduced. Similarly, the uncertainties in
the theoretical predictions are notably smaller, primarily due to reduced uncertainties in
the PDFs, as well as the variations of the renormalization and factorization scales.

In general, the theoretical predictions are in good agreement with the measurements, with
deviations well below the 20 level. However, the spread among the different predictions is
comparable in size to the experimental uncertainty, highlighting the potential of future,
high-precision differential measurements to further constrain the PDFs.
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7.3 Statistical Fit

Table 7.8: Post-fit uncertainties in percent for the fiducial cross section ratio measurement.
For completeness, also the statistical uncertainty is given.

Uncertainty in Rgq (in %) for

Uncertainty source Wt/Z W7 WE/Z WH/W-

Muon efficiency 0.27 0.29 0.28 0.02
Finite size of MC samples (bin-by-bin)  0.26 0.26 0.25 0.19
QCD background 0.52 0.47 0.48 0.29
PDF, scales, and parton shower 0.24 0.24 0.24 0.04
Muon momentum correction 0.04 0.05 0.04 0.01
Recoil correction 0.10 0.09 0.09 0.04
EWK background normalization 0.07 0.07 0.07 <0.01
7 boson pr correction 0.04 0.05 0.05 0.01
tt background normalization 0.02 0.04 0.03 0.02
Pileup 0.01 0.02  <0.01 0.03
Total 0.68 0.66 0.64 0.38
Statistical uncertainty 0.07 0.07 0.06 0.04
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Figure 7.21: Comparison between the measured cross section ratios and theoretical pre-
dictions generated with DY TURBO and different PDF sets. On the left, comparisons of
the fiducial cross section ratios are shown, while on the right, the total cross section ratios
are compared. All values are normalized to the measured cross section ratios, which are
represented as a red line. The systematic uncertainties in the measurement are indicated
by the blue area. Since the acceptance calculated with the NNPDF set is used for the
extrapolation from the fiducial to the total phase space, the corresponding entries are
consistent, while the remaining theory entries vary from the fiducial to the total result. All
theoretical values are found to be consistent with the measurement.
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7.4 Discussion

The cross section measurements presented in this thesis are among the most precise
determinations of inclusive W* and Z boson production to date. Main driver of this
exceptional precision is the luminosity uncertainty of 1.4 %, which is unprecedented for the
CMS experiment and has been achieved following extensive studies and excellent work of
the corresponding CMS subgroup. Although the remaining uncertainties are significantly
smaller than the luminosity uncertainty, they play a central role in the cross section ratios,
where many common uncertainties cancel.

A key factor influencing the precision is the level of pileup in the data, which has a

direct impact on the accuracy of the p%iss reconstruction. With fewer simultaneous pp

interactions, fewer unrelated particles contribute to the pss calculation, thereby improving
its resolution. This, in turn, enables a more precise reconstruction of the W+ boson mr,
yielding a sharper peak around its mass. As a result, the fraction of signal events in the
low-mT region is significantly reduced, allowing for the definition of an additional control
region to better constrain the QCD background.

For these reasons, certain previous measurements have been performed using low-pileup
datasets that—despite their reduced statistical size—offer improved precision, in particular
in the estimation of the QCD background. Figure 7.22 provides a comparison of the total
inclusive cross section measurements at various center-of-mass energies conducted with the
CMS experiment.

Already in 2024, the ATLAS Collaboration published results for vector boson production
cross sections at the new center-of-mass energy of 13.6 %TeV [106]. While the nominal values
reported by ATLAS and those presented in this thesis are compatible within uncertainties,
the precision achieved in this thesis exceeds that of the ATLAS measurement substantially.
In particular, for the Z boson production cross section, the uncertainty quoted by ATLAS
is larger by a factor of 1.8; for all other measured quantities, the difference in precision
is even more pronounced. To understand this difference in precision, it is necessary to
highlight differences in the analysis strategy.

While the measurement presented in this analysis uses an early subset of the data recorded
in 2022, the ATLAS measurement is based on the full dataset. In addition, ATLAS includes
final states with both electrons and muons, further increasing the effective size of the dataset.
However, the resulting statistical gain by a factor of v/12 (six times more luminosity, two
times the final states) is practically negligible, since the statistical uncertainties are already
tiny in comparison with the systematic uncertainties—even for the smaller dataset used in
this analysis. Furthermore, the early dataset used in this thesis contains a smaller average
pileup value, which generally allows for a higher resolution of the mr spectrum in the W+
region.

Beyond these differences in the dataset, the ATLAS measurement uses a simplified approach,
in which each signal region is represented by a single bin in the fit. As a result, the
measurement does not fully exploit the discriminating power of the shape information,
unlike the multi-bin fit used in this analysis. The ATLAS analysis also follows a different
strategy for estimating the QCD background in the W™ regions, which ultimately affects the

precision via an implicit threshold in the p&i* variable. In this thesis, the measurement is

inclusive in both p%liss and mr, and the normalization of the QCD background is extracted
directly in the statistical fit. While the control-region setup is similar in the ATLAS
analysis—using non-isolated regions to estimate the QCD contribution in the isolated
signal region—the normalization is constrained externally, not in the fit. The external

normalization is obtained by dividing the p#i% (or mr) distribution into two regions, where
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Figure 7.22: Comparison of measured products of total cross section and branching fractions
for W* and Z boson production at different center-of-mass energies with the corresponding
theoretical prediction. All quoted measurements were conducted by the CMS Collabo-
ration, while the predictions are derived consistently from DY TURBO at NNLO-+NNLL
accuracy in QCD. The uncertainties in the theoretical prediction include variations of
the renormalization and factorization scales, as well as the PDF uncertainty evaluated
with the NNPDF 3.1 set. The vertical uncertainty bars on the markers represent the total

uncertainty of the measurement.
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7 Measurements of the Cross Sections of W and Z Boson Production

the low-mT region with limited signal contamination is used to extract transfer factors
carrying the normalization information. However, the relatively large signal contamination
in this low-m region limits the precision of the transfer factors. The implicit p%iss threshold
introduced in the ATLAS approach leads to additional uncertainties, particularly from
jet-related sources at the threshold.

Furthermore, the muon efficiency uncertainties reported in the ATLAS measurement are
substantial—above 2 % for the Z — uu category, compared to 0.4 % in this thesis—which
is also atypical for the ATLAS experiment, based on results in Run 2 [131].

Finally, the uncertainty in the luminosity measurement is also notably larger in the ATLAS
analysis—at 2.2-2.5% for the ATLAS measurement compared to the 1.4 % used in this
analysis. Combined, these factors result in a considerably lower total uncertainty in the
measurement presented in this thesis.

In summary, the measurements presented in this thesis rank among the most precise cross
section determinations ever achieved in hadron collider experiments. This level of precision
is achieved primarily due to the highly accurate luminosity measurement—with 1.4 %
uncertainty the most precise achieved with the CMS experiment so far—and due to the use
of a multi-bin fit approach that fully exploits the shape information. While the luminosity
remains the dominant uncertainty source in the absolute cross section measurements, the
precision of their ratios is limited by the modeling of the QCD background, which in turn
is affected by pileup. Low-pileup conditions improve the resolution of p%iss and sharpen
the m distribution, reducing the signal contamination in the low-mr region and allowing
for a more precise background estimation.

Assuming the validity of the theoretical results, the excellent agreement between the
measurement and the predictions—in combination with the precision of the results—
highlights the impressive performance of the CMS detector in the latest LHC Run 3. Apart
from this demonstration of the potential of the new data, the processes studied in this
analysis serve as important backgrounds in many searches and measurements. Thus, the
results help to validate the modeling in such analyses. Moreover, the results emphasize
the potential to further constrain the proton PDFs, for example through differential
measurements of Z boson production in association with jets. Since the uncertainty in the
luminosity dominates the total uncertainty, these measurements could also serve as input
for alternative luminosity determinations, effectively inverting the measurement.

Future improvements in the precision of the inclusive cross sections of Z and W+ boson
production will mainly depend on further reducing the luminosity uncertainty. However,
with higher pileup expected in the high-luminosity LHC era, improvements in the p%ﬁss
reconstruction will be necessary to match the precision reached, in particular in the cross
section ratios. Alternatively, reducing the reliance on pﬁ?iss, for example by focusing on
the lepton momentum or using combined observables, could help mitigating the impact of

pileup while still maintaining sensitivity.
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In 2022, the Large Hadron Collider (LHC) started into its latest data taking era, colliding
protons at the unprecedented center-of-mass energy of 13.6 TeV. After the pause in opera-
tions during the preceding long shutdown (LS) 2 (2018-2022), checking the early-recorded
data was an essential step to ensure optimal performance later on.

This thesis is a strong contribution to the successful start of LHC Run 3 from the perspective
of the Compact Muon Solenoid (CMS) Collaboration. A dataset recorded early in Run 3
and corresponding to an integrated luminosity of 5.01 fb~! is analyzed to measure the cross
sections of W+ and Z boson production in muonic final states. Achieving high precision in
this measurement required a detailed calibration of the simulated samples, particularly in
the modeling of the muon momentum and the missing transverse momentum. A method
for reducing residual differences in scale and resolution of muon momenta was developed,
generalized, and made available for use in future CMS analyses.

Due to their large production rates at the LHC, W* and Z boson cross sections can be
measured with high statistical precision. This sensitivity makes them ideal for early studies,
as even small systematic discrepancies can become visible. These measurements also
provide important tests of theoretical predictions at high orders in perturbative quantum
chromodynamics (QCD), and serve to validate background models for analyses, in which
W+ and Z bosons appear as backgrounds.

Systematic differences between data and simulation are reduced through a sequential
procedure: simulated events are corrected to match the pileup distribution in data, and
to account for missing higher-order corrections in the description of the boson transverse
momenta. Furthermore, scale factors are applied to the simulation to improve the description
of muon selection efficiencies. Then, both muons and the hadronic recoil are corrected in
terms of scale and resolution of their transverse momentum.

After having addressed these effects in the description of the final-state particles, the
representation of the theoretical prediction in the statistical fit can be constructed. For
the W boson, this requires the estimation of a background contribution that arises from
events in which muons are not produced in the main interaction, but in the hadronization
process of quarks and gluons. Unlike the other contributions, this background is estimated
in a data-driven approach by extrapolating the shape from a control region enriched in
such QCD multijet events. The normalization, on the other hand, is obtained through the
maximum likelihood (ML) fit.
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8 Conclusions

The measured values for the product of total cross sections and muonic branching fractions
in the total phase space are:

W* = uty,) =11.93 +£0.08 (syst) +£0.17 (lumi) 7007 (acc) nb,
W~ = u 7,)= 886 +0.06 (syst) £0.12 (lumi) "007 (acc)nb,
o(Z2)B(Z — pTp™) = 2.02140.009 (syst) £ 0.028 (lumi) 0013 (acc) nb.

In these results, statistical uncertainties are negligible, the systematic uncertainty is denoted
with ‘syst’, the uncertainty in the integrated luminosity with ‘lumi’, and the uncertainty
in the acceptance with ‘acc’. Based on these values, cross section ratios are calculated,
reaching relative uncertainties below the level of 1%, as the uncertainty in the luminosity
measurement cancels along with further correlated uncertainties. All measured values are in
good agreement with theoretical predictions at next-to-next-to-leading order (NNLO)+next-
to-next-to-leading logarithmic (NNLL) precision in QCD.

In summary, the results represent some of the most precise cross section measurements
ever conducted at hadron colliders. Despite the high precision, the results are still in good
agreement with theoretical predictions. Due to the high trust in the theoretical predictions,
building upon the manifold of previous tests, this combination indicates an excellent quality
of the data and great potential for future analyses. The analysis has successfully finished
the internal review process and has been submitted to the Journal of High Energy Physics,
a preprint being already available [5].

Following the detailed studies of muons in the scope of the cross section measurement,
the effort in the calibration of muon momenta was further intensified and the results were
ultimately provided internally to the CMS Collaboration. In the calibration procedure,
residual differences in the muon description are divided into two categories: scale and
resolution. The correction parameters are derived in four consecutive steps, where first
a rough parametrization is extracted based on single muon distributions. These initial
rough corrections are then fine tuned by using a dimuon resonance, such as the Z boson
peak or the J/1¢ peak. Here, the peak position gives rise to the momentum scale of the
muons while the width of the peak contains information on the resolution. The correction
procedure has been made publicly available in a Detector Performance Summary [83].
The muon scale and resolution corrections are a key piece of the puzzle in conducting
high-precision analyses with the CMS experiment. Along with the efficiency corrections
they belong to the fundamental corrections applied to almost any muon-related CMS
analysis. For this reasons a fast and reliable alternative to calculate the uncertainties of
the correction was developed, tested and provided to the CMS Collaboration in the scope
of this thesis. This method simplifies the uncertainty calculation drastically, decreasing
the computing demand for the uncertainty calculation by a factor of 25 without losing
significant description power.

Although the method leads to highly precise results, there are still possible ways to further
advance the accuracy in the correction. High potential lies in the combination of information
from the different muon momentum regions, fully exploiting the different sensitivities of
each region. Furthermore, additional resonances, such as the T mesons, which are located
in the mass region between the J/¢ meson and the Z boson, can be added either to
cross-check the results or to add to the sensitivity.
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Appendix

A Estimations for Relevant Final-State Particles

In this thesis, the most important final-state particles are muons and neutrinos. To provide
a deeper understanding, this appendix makes a few rough estimations on the behavior of
these particles in the CMS detector.

A.1 Muons in the CMS Detector

Usually, muons in the medium-pt range are simply assumed to consistently reach the muon
chambers. Since this assumption is crucial for the muon reconstruction and therefore has a
strong impact on the different studies in this thesis, it is examined briefly.

The assumption rests on two main claims:

1. Energy content: muons retain sufficient energy to traverse the detector material
without significant energy loss.

2. Lifetime considerations: muons live long enough to reach the muon chambers
before decaying.

If a muon does not fulfill either of these aspects, then it is not expected to reach the muon
chambers.

A.1.1 Limitations Due to Energy Loss

A muon can reach the muon chambers only if the energy it loses while traversing the
detector is smaller than its initial energy. Since its mass is approximately 200 times larger
than that of the electron, the critical energy, at which bremsstrahlung becomes dominant
over ionization, is significantly higher for muons than for electrons. In copper, for example,
muons between the energies of approximately 100 MeV and 10 GeV primarily lose energy
through ionization, with a stopping power of just below 2MeVem?/g. As the stopping
power —dE/dX is roughly constant across different materials, this value is considered
representative for the entire CMS detector. The average density of the detector material
excluding the muon system can be estimated as follows:

~ 14000t — 12500 ¢

= ~ 4.24 3 8.1
P S Bm)? 125m gfem’, (8:1)
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Figure A.1: Muon energy loss in copper, taken from Reference [132].

where the numerator represents the difference between the total detector mass and the
mass of the iron return yoke, and the denominator is derived from the solenoid dimensions.
Using this estimate, the average energy loss for muons per meter of travel within the
detector is approximately 0.85 GeV/m. This implies that a 10 GeV muon could traverse
over 11 m of detector material before being stopped, which corresponds to nearly half a
revolution in the transverse plane of the detector while propagating along the z axis. Since
this estimation is conservative, all muons with energies above 20 GeV—which are the focus
of this study—should reach the muon chambers with high probability, ensuring a high
muon reconstruction efficiency.

A.1.2 Limitations Due to Lifetime Effects

While muons are unstable, they have a relatively long lifetime of 7, = 2.20 ps. This finite
lifetime means that some muons may decay before reaching the muon chambers, reducing
the efficiency of muon reconstruction. To estimate an upper limit on this effect, consider a
low-energy muon reaching the muon chambers with S = 1, corresponding to a momentum
of approximately 100 MeV. Assuming conservatively that the muon has this final momentum
throughout its entire journey in the central part of the detector, the probability that it
decays before reaching the muon chambers (assumed to be at 3m from the interaction
point) is given by:
3m

YTuBc
Since the muons analyzed in this thesis typically have much higher momentum, their
probability of decaying before reaching the muon chamber is negligible. Moreover, effects
like these are fully accounted for in the detailed detector simulations, meaning they only
contribute as second-order corrections.

Pz <3m)=1-— exp(— )% 0.5 %. (8.2)
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A.2 Neutrinos

As neutrinos carry neither electromagnetic nor color charge, they only interact via the
weak interaction. Consequently, the cross sections o, of neutrino interactions are very
small. The number of interactions of a neutrino stream within a material can be estimated
using the mean free path A. This quantity is defined as the average distance a neutrino
can cover in the material before taking part in an interaction with the material:

A= , (8.3)

where n is the number density of the interactive particles in the material, which can be
calculated from the mass density p and the atomic mass M of the material, as well as the

Avogadro constant Ny:
M

- pNAUV '

(8.4)

Using this mean free path, the interaction probability for a neutrino to decay in a material
of maximum depth L can be calculated by evaluating the formula:

el (D)

For neutrinos at typical collider energies at the GeV scale, the cross section for interaction
with material is roughly 10 x 10738 cm?. Using the material properties of lead, M = 207 u,
p=11.3gcm ™3 and the Avogadro constant of Ny = 6.02 x 1023 mol !, the mean free path
is of the order A = 3 x 103 m. This value corresponds to an interaction probability in 10 m
of lead of roughly P =3 x 1073,

In conclusion, the scattering of single neutrinos can not be detected with the CMS experi-
ment at a sufficient statistical significance.
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B Muon Selection Efficiencies

This appendix provides a detailed overview of the different efficiencies in the muon re-
construction and selection procedure. All efficiencies are calculated using the tag-and-
probe (TnP) technique as outlined in Section 6.2.
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Figure B.6: Distributions of the muon trigger efficiency in the data (left) and in the
simulation (right). The efficiency is calculated separately for negatively (top) and positively
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particular in the endcap regions at || > 0.9 The muon trigger efficiency is calculated based
on tight identified and isolated muons.
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C QCD Multijet Background Estimation

This appendix shows example plots in support of the QCD multijet background estimation.
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Figure C.7: Example plots for the first step of the QCD extrapolation procedure in the W~
region (left) and in the W region(right)—corresponding to isolation slices from Figure 7.16.
The first step consists of the QCD shape extraction in the non-isolated region. Here, the
top plots correspond to muon isolation values between 0.2 and 0.25, and the bottom plots
correspond to muon isolation values between 0.45 and 0.5. The difference between the
mr distributions in the data and the combined simulation is assumed to come from QCD
multijet background and is therefore extracted by subtracting the simulated background
contributions from the data. As the contributions from Z boson production are very small in
the non-isolated regions, the contributions are counted in the electroweak (EWK) category.
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Figure C.8: Example plots for the second step of the QCD extrapolation procedure in the
W#* regions—corresponding to mr slices from Figure 7.16. The second step consists of
the extrapolation of the QCD shape from the non-isolated into the isolated W signal

region and is displayed here for two different bins of mT in the W~

region (left) and in

the W™ region (right). At the top, the mr bin with values in the range of 12 to 18 GeV
is considered, while the right plot shows the extrapolation for the bin with mT values
between 102 and 108 GeV. The linear extrapolations are used to construct the nominal
QCD shape, while the quadratic extrapolation and the statistical fit uncertainties are used
as an estimate of the uncertainty.
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C QCD Multijet Background Estimation
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Figure C.9: Extrapolated QCD templates in the W™ region (left) and in the W™ region
(right), corresponding to the colored distributions from Figure 7.16. The inputs to this
distribution come from the linear or quadratic extrapolation from the non-isolated control
regions, such as those in Figure C.8.
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8 Appendix

D Correlation Plots of Maximum Likelihood Fit

This appendix provides details on the correlations between the leading systematic uncer-
tainties with respect to the different points of interest.
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Figure D.10: Correlation matrix of signal strength parameter and leading uncertainty
contributions in the Z cross section measurement.
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D Correlation Plots of Maximum Likelihood Fit
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Figure D.11: Correlation matrix of signal strength parameter
contributions in the W™ cross section measurement.
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Private Work (CMS Data/Simulation)
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Figure D.13: Correlation matrix of signal strength parameter and leading uncertainty
contributions in the measurement of the W+ /Z cross section ratio..
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Figure D.14: Correlation matrix of signal strength parameter and leading uncertainty
contributions in the measurement of the W~ /Z cross section ratio..
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D Correlation Plots of Maximum Likelihood Fit
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Figure D.15: Correlation matrix of signal strength parameter and leading uncertainty
contributions in the measurement of the W+ /W™ cross section ratio..
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Figure D.16: Correlation matrix for the individual signal strength parameters in the
combined ML fit.
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