KIT | KIT-Bibliothek | Impressum | Datenschutz

Validation Environment for Deep Reinforcement Learning Based Gear Shift Controllers

Altenburg, Stefan 1; Bause, Katharina 1; Albers, Albert 1
1 Institut für Produktentwicklung (IPEK), Karlsruher Institut für Technologie (KIT)

Abstract:

In conventional development processes, the control of gearshifts in automatic transmissions consists of parameter maps for open loop control and subordinate PI controllers to achieve desired target trajectories. This control approach requires tedious manual tuning by experienced engineers. Deep reinforcement learning (DRL) can be used to train neural network based controllers achieving comparable results to conventionally developed gearshifts on a transmission test bench. This article presents the validation environment (VE) with the following validation configurations (VCs) required for this comparison: Simplified transmission simulation and complete vehicle simulations, transmission test benches with simulated residual vehicle as well as test vehicles with rapid prototyping control for the transmission. The validation objectives, the test bench and common interfaces are discussed. Furthermore, several Key Performance Indicators (KPIs) as evaluation criteria for gear shift criteria are presented and checked for suitability. Two methods for calculating the correspondence between the VCs are presented, including the dynamic time warping (DTW) method. ... mehr


Originalveröffentlichung
DOI: 10.1007/978-3-658-37009-1_25
Dimensions
Zitationen: 1
Zugehörige Institution(en) am KIT Institut für Produktentwicklung (IPEK)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Deutsch
Identifikator ISBN: 978-3-658-37008-4
ISSN: 2198-7432
KITopen-ID: 1000182700
Erschienen in 22. Internationales Stuttgarter Symposium : Automobil- und Motorentechnik. Hrsg.: M. Bargende
Veranstaltung 22. Internationales Stuttgarter Symposium : Automobil- und Motorentechnik (2022), Online, 15.03.2022 – 16.03.2022
Verlag Springer Fachmedien Wiesbaden
Seiten 354–368
Serie Proceedings ; 1
Vorab online veröffentlicht am 14.03.2022
Schlagwörter Deep Reinforcement Learning; IPEK-X-in-the-Loop; Validation; Automatic Transmission; Gear Shifting
Nachgewiesen in Dimensions
OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page