

1 Nanopores in the ventral scales of *Bitis rubida* and *Bitis* 2 *armata* cause white venters

3
4 KM Samaun Reza^{1,2}, Luisa Maren Borgmann¹, Dmitry Busko¹, Junchi Chen², Hans
5 Gunstheimer^{1,3}, Richard Thelen¹, Guillaume Gomard⁴, Uli Lemmer^{1,2}, Hendrik Hölscher^{1,*}
6

7 ¹*Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-
von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany*

8 ²*Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse
13, 76131 Karlsruhe, Germany*

9 ³*Nanosurf AG, Gräubernstrasse 14, 4410 Liestal, Switzerland*

10 ⁴*Carl Zeiss AG, ZEISS Innovation Hub @ KIT, Hermann-von-Helmholtz Platz 6, 76344
Eggenstein-Leopoldshafen, Germany*

11 Date: 5 April 2025

12 Email: hendrik.hoelscher@kit.edu

13 **Keywords:** Snake scales, structural white, wideband scattering, thermoregulation

14
15 **Abstract:** Recent studies speculated that some snakes developed white venters to avoid
16 overheating caused by highly radiative soil and rocks. Here, we present the scale-embedded
17 porous nanostructures through which some snake species of the genus *Bitis* achieve such
18 whiteness. Our analysis reveals nanopores causing scattering underneath the external surface
19 of the white ventral scales of *Bitis rubida* and *Bitis armata*. Such nanopores are not present in
20 the scales of *Bitis parviocula*, *Bitis arietans*, and *Bitis rhinoceros* that appear transparent or
21 translucent to the naked eye. White ventral scales with nanopores reflect up to 40% of light in
22 the visible regime. The reflection, however, decreases for longer wavelengths and drastically
23 reduces in the infrared. In contrast, a much lower, almost constant reflection around 8%
24 between 250 nm and 2500 nm is observed for the transparent or translucent ventral scales
25 without nanopores. Our study demonstrates that some snake species of the genus *Bitis* utilize
26 a light scattering network of nanopores underneath their external surfaces to create white
27 ventral scales.

28 29 30 31 32 33 34 **Introduction**

35 Numerous ecological and evolutionary factors lead to the colouration in organisms through
36 evolution [1]. This colouration might be caused by pigmentation, structural colours or both [2–
37 4]. The resulting broad variety of colours assists animals in camouflage [5–9], communication

38 [10,11], mating [12], and thermoregulation [13–15]. In general, body temperature is directly
39 affected by the absorption and reflection of electromagnetic radiation [16]. Especially, cold-
40 blooded squamates rely on this property for thermoregulation [17].

41 In general, multifunctional macromolecules like melanin play a significant role in
42 controlling the brightness of the skin [18]. The dark optical appearance of melanin helps to
43 absorb solar radiation [16,19]. Many studies on squamates discuss their dorsal scale colouration
44 (see, *e.g.*, Refs. [14,20–23]). Martínez-Freiria *et al.* [24], for example, studied the relation
45 between the degree of pigmentation of the zigzag pattern on the dorsal scales of Eurasian vipers
46 and environmental variables such as solar radiation, elevation, and latitude. They concluded
47 that the dorsal scales with high melanin content help snakes absorb more sunlight to ensure
48 thermoregulation within the snake’s body.

49 Although several studies discussed the colouration of dorsal scales, only a few focused
50 on the ventral colouration of the squamates [25–28]. In 2015 and 2016, Moreno Azócar *et al.*
51 [29,30] concluded that species living closer to the Equator are most likely to have brighter
52 venters. Later, Goldenberg *et al.* [31] reported on the reflecting venters of snakes, comparing
53 the scales of 126 species. They applied a comparative approach to investigate the macro-
54 evolutionary processes involved in developing ventral brightness. Their study concludes that
55 vipers living on hot and highly radiative and superficially conductive substrates develop less
56 melanic ventral scales because the colour of the venter influences body temperature via the
57 thermal transfer with the ground [30,31]. Conversely, the species living in lower energy
58 radiation zones tend to have darker ventral scales, providing a thermal advantage. These studies
59 already indicate that the colouration of the ventral snake scales might depend on the habitat of
60 ectotherms. However, they did not examine the optical mechanism through which the
61 respective snake species achieve such white ventral scales.

62 Here, we present a study on the structural and optical properties of the shed skin of
63 ventral scales of snakes that appear white or transparent/translucent to the naked eye. Five
64 species of the genus *Bitis* [32] were used as samples for this study. The ventral scales of the
65 Red Adder (*Bitis rubida*), the Southern Adder (*Bitis armata*), the Ethiopian Viper (*Bitis*
66 *parviocula*), the Puff Adder (*Bitis arietans*), and the West African Gaboon Viper (*Bitis*
67 *rhinoceros*) are examined to reveal the physical origin of the whiteness of ventral scales. The
68 surface analysis of these scales by atomic force microscopy (AFM) reveals shallow nanoscale
69 features on the scale’s surfaces of all five species. However, scanning electron microscopy
70 (SEM) of the ventral scale cross-section revealed numerous nanopores underneath the external
71 surfaces of the reflecting scales of *B. rubida* and *B. armata*. In opposite to that, such nanopores

72 are not observed in the transparent or translucent scales of *B. parviocula*, *B. arietans*, and *B.*
73 *rhinoceros*. As it was speculated that snakes utilize the colouration of their venter for
74 thermoregulation, the scales were optically characterized in the wavelength range of 250 nm
75 to 2500 nm. High reflection is observed in the visible and near-infrared light for the porous
76 ventral scales of *B. rubida* and *B. armata*. Low constant reflection of 8%, on the other hand, is
77 observed on the scales of *B. parviocula*, *B. arietans*, and *B. rhinoceros* in the entire spectrum
78 of consideration. Therefore, we conclude that these nanopores scatter light in the visible and
79 near-infrared regime, leading to white ventral scales. This enhanced reflection in such a
80 broadband spectrum might help snakes to enhance their thermoregulatory properties on their
81 ventral side.

82 Results

83 The left panel of Figure 1 displays photographs of the examined snake species and ventral
84 white scales of *B. rubida* (Figure 1A), *B. armata* (Figure 1B) and transparent or translucent
85 scales of *B. parviocula* (Figure 1C), *B. arietans* (Figure 1D), and *B. rhinoceros* (Figure 1E).
86 The moulted ventral scales of the snakes, taken from the belly of the respective snake species,
87 were placed on white paper with a printout of our university logo. In this way, the optical
88 properties of the scales can be easily assessed by the naked eye. The printout cannot be seen
89 through the reflecting ventral scales of *B. rubida* and *B. armata*. However, it can be easily
90 spotted through the transparent or translucent ventral scales of *B. parviocula*, *B. arietans*, and
91 *B. rhinoceros*.

92 As mentioned in the introduction, it was speculated in previous studies [29–31] that
93 various reptiles developed white ventral bellies for thermoregulation. A white venter caused by
94 white scales seems fortunate for the examined snakes to avoid overheating. Therefore, we
95 studied the optical response of the scales of *B. rubida*, *B. armata*, *B. parviocula*, *B. arietans*,
96 and *B. rhinoceros* in the wavelength range of 250 nm to 2500 nm (right panel of Figure 1).

97 A more or less constant total reflectance of around 8% is recorded on the ventral scales
98 of *B. rhinoceros*, *B. arietans*, and *B. parviocula* in the range from 250 nm to 2500 nm.
99 Accordingly, we observe a transmittance which increases sharply from the UV to values of
100 about 90% for wavelength larger than 400 nm. However, as it might be expected by the optical
101 impression already, a much higher reflectance and lower transmittance is observed on the
102 ventral scales of the two other species. For *B. rubida*, the reflectance is about 30% in the lower
103 range of the visible regime and increases continuously until it reaches a maximum of about
104 40% close to 500 nm. For increasing wavelengths, however, the total reflection decreases again

105 and reduces to values of 20% at 2000 nm. The shape of the spectrum of *B. armata* is the same,
106 but the overall reflectance values are about 10% lower. The transmittance for *B. rubida* as well
107 as *B. armata* is about zero in the UV and increases continuously till it reaches a plateau in the
108 infrared.

109 The comparison of the five spectra reveals that the total reflection of the white scales is
110 much larger as for the transparent/translucent scales for all wavelengths under consideration.
111 Especially in the near-infrared and even in the near ultraviolet (300 nm to 400 nm), the white
112 scales of *B. rubida* and *B. armata* reflect significant parts of the electromagnetic spectrum.

113 To understand the mechanism through which these scales produce such a high
114 reflection, we compare the topography and the inner structure of the scales imaged by AFM
115 and SEM in Figure 2. A continuous ridge-like structure is observed on the surface of the scales
116 of *B. rubida* (Figure 2A) and *B. armata* (Figure 2B). The ridges found on the scales of *B. rubida*
117 are about 700 nm to 800 nm in width and around 1.7 μ m to 2 μ m on the scales of *B. armata*.
118 The height of the ridges is around 100 nm for both species. Spike-like microfibrils are found
119 on the scales of *B. parviocula* (Figure 2C) and *B. rhinoceros* (Figure 2E). The microfibrils are
120 oriented in head to tail direction of the snakes' bodies. The AFM images in Figure 2C and E
121 are oriented such that the head points toward the right side of the images. The height and
122 periodicity of these microfibrils found on the scales of *B. parviocula* are in the range of 80 nm
123 to 100 nm and 5 μ m to 6 μ m. The geometric values observed on the scales of *B. rhinoceros* are
124 in the range of 40 nm to 50 nm and 7 μ m to 8 μ m, respectively. The surface found on the ventral
125 side of *B. arietans* (Figure 2D) features a different structure with pits with a depth of around
126 15 nm to 30 nm and a diameter of 200 nm to 300 nm. Such pits were also observed on the
127 scales of other species [33,34]. This topographical analysis reveals shallow nanostructures on
128 the ventral scales of the investigated snake species. However, considering previous studies, we
129 assume that snakes develop such nanoscale features to optimize their locomotion [35–42]. Such
130 shallow nanostructures do not cause white, reflecting ventral scales.

131 Therefore, we cut the scales and imaged the resulting cross-sections by SEM. The
132 resulting images show that the ventral scales of all examined species are multi-layered. In the
133 first layer directly underneath the external surface of *B. rubida*, we observe a spongy layer with
134 numerous nanopores. These nanopores are found in the upper 20-25 μ m thick region of the top
135 layer. Further magnification of these porous regions reveals that the embedded nanopores have
136 neither a regular shape nor a pattern. They are about 0.5 μ m to 1 μ m in length and 0.25 μ m to
137 0.5 μ m in width. In the cross-section images, numerous nanopores are also found under the
138 external surface of the white scales of *B. armata*. In both cases, the nanopores are closed

139 structures without an opening to the outside. Consequently, we did not observe a colour-change
140 when wetting the scales with water or index-matching liquid. However, such nanopores were
141 not observed in the transparent or translucent scales of *B. parviocula*, *B. arietans*, and *B.*
142 *rhinoceros* (see the zoom into the amorphous structure in Figure 2C).

143 To conclude, the metrological analysis reveals that nanopores are found in the white
144 scales of *B. rubida* and *B. armata* while an amorphous structure without pores is found in the
145 transparent or translucent scales of *B. parviocula*, *B. arietans*, and *B. rhinoceros*. This
146 observation indicates that the nanopores scatter light to develop white ventral scales in some
147 snake species. The overall results prove that the total reflectance of the porous ventral scales
148 of *B. armata* and *B. rubida* is quite high in the visible and near-infrared regimes. However, the
149 total reflectance is much lower for the amorphous ventral scales of *B. rhinoceros*, *B. arietans*,
150 and *B. parviocula*. This result is conclusive evidence that high reflection is associated with the
151 interaction of visible and near-infrared light with the nanopores found under the external
152 surface.

153 Discussion and Conclusion

154 In the aforementioned studies [29–31], it was already discussed that many snake species
155 develop a white reflecting venter. These species are mostly found in the equatorial region or
156 hot and highly radiative and superficially conductive substrates. It was concluded that the
157 reflecting venters facilitate such species in reducing heat absorption. Our experimental results
158 are in accordance with these studies. Furthermore, our characterization identifies the optical
159 structure through which some snakes achieve white-coloured scales, which assists their
160 thermoregulation.

161 High reflection is observed on the ventral scales of *B. rubida* and *B. armata* where
162 numerous nanopores were found underneath the external surfaces, but low reflection is
163 measured on the amorphous scales of *B. parviocula*, *B. arietans*, and *B. rhinoceros*. This
164 indicates that nanopores underneath the external surface interact with electromagnetic waves
165 to reflect visible and near-infrared light. This high reflection in the visible and near-infrared
166 regime indicates that these scales absorb less heat.

167 Surface topography analysis showed a ridge-like structure on the ventral scales of *B.*
168 *rubida* and *B. armata*. These nanoscale ridges are quite shallow. Microfibril like patterning is
169 observed on the ventral scales of *B. parviocula* and *B. rhinoceros*. Such structures are often
170 found on the ventral scales of snake species [36]. Numerous pits are found on the ventral
171 surface of *B. arietans*. It is widely accepted that such nanostructures on the ventral scales assist

172 snakes in locomotion [35–41]. The ridge-like structure observed on the white scales does not
173 interact with light to develop such optical properties, as similar structures can be observed on
174 many other snakes without white venters. In the cross-section of ventral scales, numerous
175 nanopores are observed in the white scales of *B. rubida* and *B. armata* underneath their external
176 surfaces. However, such nanopores are not present in the transparent or translucent scales of *B.*
177 *parviocula*, *B. arietans*, and *B. rhinoceros*.

178 We, therefore, conclude that these nanopores cause significant light scattering for a
179 wide range of wavelengths. The same scattering principle was developed by beetles and birds,
180 which utilize porous structures in their scales and feathers, respectively (see, *e.g.*, Refs. [43–
181 45] and references therein). In summary, the white ventral scales of *B. rubida* and *B. armata*
182 apply the same physical principle as beetles and birds so that they achieve whiteness through
183 nanopores within an upper layer of their scales.

184 Methods

185 **Snake Species:** The surface topology, internal structure, and optical properties of the shed skin
186 of ventral scales of five African vipers were analysed. Among them, the Red Adder (*Bitis*
187 *rubida*) as well as the Southern Adder (*Bitis armata*) are only found in South Africa while the
188 Ethiopian Viper (*Bitis parviocula*) originates from Ethiopia. The Puff Adder (*Bitis arietans*) is
189 found in South Africa and other African countries. The West African Gaboon Viper (*Bitis*
190 *rhinoceros*) is endemic to West Africa. According to Barlow *et al.* [32], this selection of *Bitis*
191 species covers several types of habitats. As described in Ref. [32], the habitat of *B. rubida* and
192 *B. armata* is lowland and montane rocky or gravelly grassland, karroid and sclerophyllous
193 scrub; *B. parviocula* and *B. rhinoceros* live in tropical and montane forest; while *B. arietans*
194 lives in open savanna, grassland, and karroid scrub absent from forests and deserts. The
195 moulted skins from captive snakes were collected by G. Gomard thanks to the contribution of
196 different snake keepers (see Acknowledgments). Temperature (21 °C – 23 °C) and humidity
197 (50% — 70%) were well controlled during storage and measurements of all samples.

198 **Optical Spectroscopy:** The total transmittance and reflectance spectra of the ventral scales
199 were determined using a Cary 7000 spectrophotometer with an integrating sphere (DRS
200 attachment, Agilent, USA). Unpolarized light was used to measure spectral properties, shining
201 incoming light beams on the outer surfaces of the moulted snake scales close to normal
202 incidence. The measured spectrum range was set to 250 to 2500 nm with a spectral resolution
203 of ≈ 1 nm and a beam spot diameter of about 2 mm. This spectroscopy range covers most of

204 the solar spectrum. The NIST calibrated Spectralon® diffuse reflectance standard (Labsphere,
205 USA) was used to define a reference reflection.

206 **Atomic Force Microscopy:** To conduct a topological analysis of the scales' surface by atomic
207 force microscope (AFM, Dimension Icon, Bruker), the scales were cut into small pieces. Two-
208 component glue (UHU End-fest, UHU GmbH & Co. KG) was used to attach the samples to a
209 glass slide for AFM imaging. The prepared samples were carefully cleaned with pressured air.
210 Afterward, the samples were imaged in tapping mode utilizing rectangular silicon cantilevers
211 (All-in-One-Al, Budget Sensors, Type C) as sensors.

212 **Scanning Electron Microscopy:** Scanning electron microscopy (SEM, SUPRA 60 VP, Zeiss,
213 Germany) was applied for imaging the cross-sections of ventral scales. For that, the samples
214 were carefully cut into pieces with a sharp razor blade and sputtered with a thin silver layer.
215 The imaging was conducted with an acceleration voltage of 5 kV and the detector was placed
216 at a working distance of 5 to 7 mm.

217 Supplemental

218 The supplemental shows a collection of photos displaying and cites references describing the
219 venters of the examined snakes of the genus *Bitis*.

220 References

- 221 1. Endler JA, Westcott DA, Madden JR, Robson T. 2005 Animal Visual Systems and the
222 Evolution of Color Patterns: Sensory Processing Illuminates Signal Evolution. *Evolution*
223 **59**, 1795–1818. (doi:10.1554/04-669.1)
- 224 2. Parker AR. 2000 515 million years of structural colour. *J Opt. A* **2**, R15–R28.
225 (doi:10.1088/1464-4258/2/6/201)
- 226 3. Vinther J, Briggs DEG, Clarke J, Mayr G, Prum RO. 2010 Structural coloration in a fossil
227 feather. *Biol Lett* **6**, 128–131. (doi:10.1098/rsbl.2009.0524)
- 228 4. McNamara ME, Briggs DEG, Orr PJ, Noh H, Cao H. 2012 The original colours of fossil
229 beetles. *Proc. R. Soc. B.* **279**, 1114–1121. (doi:10.1098/rspb.2011.1677)
- 230 5. Mäthger LM, Denton EJ, Marshall NJ, Hanlon RT. 2009 Mechanisms and behavioural
231 functions of structural coloration in cephalopods. *J. R. Soc. Interface.* **6**, S149–S163.
232 (doi:10.1098/rsif.2008.0366.focus)
- 233 6. Wilts BD, Michielsen K, Kuipers J, De Raedt H, Stavenga DG. 2012 Brilliant
234 camouflage: photonic crystals in the diamond weevil, *Entimus imperialis*. *Proc. R. Soc.*
235 *B.* **279**, 2524–2530. (doi:10.1098/rspb.2011.2651)
- 236 7. Norris KS, Lowe CH. 1964 An Analysis of Background Color-Matching in Amphibians
237 and Reptiles. *Ecology* **45**, 565–580. (doi:10.2307/1936109)

238 8. Allen JJ, Mäthger LM, Barbosa A, Hanlon RT. 2009 Cuttlefish use visual cues to control
239 three-dimensional skin papillae for camouflage. *J Comp Physiol A* **195**, 547–555.
240 (doi:10.1007/s00359-009-0430-y)

241 9. Cuthill IC *et al.* 2017 The biology of color. *Science* **357**, 470.
242 (doi:10.1126/science.aan0221)

243 10. Kemp DJ, Herberstein ME, Grether GF. 2012 Unraveling the true complexity of costly
244 color signaling. *Behavioral Ecology* **23**, 233–236. (doi:10.1093/beheco/arr153)

245 11. Vukusic P, Sambles JR, Lawrence CR, Wootton RJ. 1999 Quantified interference and
246 diffraction in single Morpho butterfly scales. *Proc. R. Soc. B.* **266**, 1403–1411.
247 (doi:10.1098/rspb.1999.0794)

248 12. Loyau A, Gomez D, Moureau B, Théry M, Hart NS, Jalme MS, Bennett ATD, Sorci G.
249 2007 Iridescent structurally based coloration of eyespots correlates with mating success
250 in the peacock. *Behavioral Ecology* **18**, 1123–1131. (doi:10.1093/beheco/arm088)

251 13. Schultz TD, Hadley NF. 1987 Structural Colors of Tiger Beetles and Their Role in Heat
252 Transfer through the Integument. *Physiol Zool* **60**, 737–745.
253 (doi:10.1086/physzool.60.6.30159990)

254 14. Tanaka K. 2007 Thermal biology of a colour-dimorphic snake, *Elaphe quadrivirgata*, in a
255 montane forest: do melanistic snakes enjoy thermal advantages? *Biol J Linn Soc* **92**, 309–
256 322. (doi:10.1111/j.1095-8312.2007.00849.x)

257 15. Smith KR, Cadena V, Endler JA, Porter WP, Kearney MR, Stuart-Fox D. 2016 Colour
258 change on different body regions provides thermal and signalling advantages in bearded
259 dragon lizards. *Proc. R. Soc. B.* **283**, 20160626. (doi:10.1098/rspb.2016.0626)

260 16. Clusella Trullas S, Van Wyk JH, Spotila JR. 2007 Thermal melanism in ectotherms. *J*
261 *Therm Biol* **32**, 235–245. (doi:10.1016/j.jtherbio.2007.01.013)

262 17. Christian KA, Tracy CR. 1981 The effect of the thermal environment on the ability of
263 hatchling Galapagos land iguanas to avoid predation during dispersal. *Oecologia* **49**,
264 218–223. (doi:10.1007/BF00349191)

265 18. Cordero RJB, Casadevall A. 2020 Melanin. *Curr. Biol.* **30**, R142–R143.
266 (doi:10.1016/j.cub.2019.12.042)

267 19. Geen MRS, Johnston GR. 2014 Coloration affects heating and cooling in three color
268 morphs of the Australian bluetongue lizard, *Tiliqua scincoides*. *J Therm Biol* **43**, 54–60.
269 (doi:10.1016/j.jtherbio.2014.04.004)

270 20. Jackson JF, Ingram W, Campbell HW. 1976 The Dorsal Pigmentation Pattern of Snakes
271 as an Antipredator Strategy: A Multivariate Approach. *Am Nat* **110**, 1029–1053.
272 (doi:10.1086/283125)

273 21. Wüster W *et al.* 2004 Do aposematism and Batesian mimicry require bright colours? A
274 test, using European viper markings. *Proc. R. Soc. Lond. B* **271**, 2495–2499.
275 (doi:10.1098/rspb.2004.2894)

276 22. Allen WL, Baddeley R, Scott-Samuel NE, Cuthill IC. 2013 The evolution and function of
277 pattern diversity in snakes. *Behavioral Ecology* **24**, 1237–1250.
278 (doi:10.1093/beheco/art058)

279 23. Clause AG, Becker RN. 2015 Temperature Shock as a Mechanism for Color Pattern
280 Aberrancy in Snakes. *Herpetol Notes* **8**, 331–334.

281 24. Martinez-Freiria F, Toyama KS, Freitas I, Kaliontzopoulou A. 2020 Thermal melanism
282 explains macroevolutionary variation of dorsal pigmentation in Eurasian vipers. *Sci Rep*
283 **10**, 16122. (doi:10.1038/s41598-020-72871-1)

284 25. Ressel S, Schall JJ. 1989 Parasites and showy males: malarial infection and color
285 variation in fence lizards. *Oecologia* **78**, 158–164. (doi:10.1007/BF00377151)

286 26. Morrison RL, Rand MS, Frost-Mason SK. 1995 Cellular Basis of Color Differences in
287 Three Morphs of the Lizard *Sceloporus undulatus erythrocheilus*. *Copeia* **1995**, 397.
288 (doi:10.2307/1446903)

289 27. Stuart-Fox DM, Ord TJ. 2004 Sexual selection, natural selection and the evolution of
290 dimorphic coloration and ornamentation in agamid lizards. *Proc. R. Soc. Lond. B* **271**,
291 2249–2255. (doi:10.1098/rspb.2004.2802)

292 28. Langkilde T, Boronow KE. 2012 Hot Boys Are Blue: Temperature-Dependent Color
293 Change in Male Eastern Fence Lizards. *J. Herpetol.* **46**, 461–465. (doi:10.1670/11-292)

294 29. Moreno Azócar DL, Perotti MG, Bonino MF, Schulte JA, Abdala CS, Cruz FB. 2015
295 Variation in body size and degree of melanism within a lizards clade: is it driven by
296 latitudinal and climatic gradients? *J Zool* **295**, 243–253. (doi:10.1111/jzo.12193)

297 30. Moreno Azócar DL, Bonino MF, Perotti MG, Schulte JA, Abdala CS, Cruz FB. 2016
298 Effect of body mass and melanism on heat balance in *Liolaemus* lizards of the *goetschi*
299 clade. *J Exp Biol* , jeb.129007. (doi:10.1242/jeb.129007)

300 31. Goldenberg J, D’Alba L, Bisschop K, Vanthournout B, Shawkey MD. 2021 Substrate
301 thermal properties influence ventral brightness evolution in ectotherms. *Commun Biol* **4**,
302 26. (doi:10.1038/s42003-020-01524-w)

303 32. Barlow A, Wüster W, Kelly CMR, Branch WR, Phelps T, Tolley KA. 2019 Ancient
304 habitat shifts and organismal diversification are decoupled in the African viper genus
305 *Bitis* (Serpentes: Viperidae). *J Biogeogr* **46**, 1234–1248. (doi:10.1111/jbi.13578)

306 33. Campbell AL, Bunning TJ, Stone MO, Church D, Grace MS. 1999 Surface Ultrastructure
307 of Pit Organ, Spectacle, and Non Pit Organ Epidermis of Infrared Imaging Boid Snakes:
308 A Scanning Probe and Scanning Electron Microscopy Study. *J Struct Biol* **126**, 105–120.
309 (doi:10.1006/jsbi.1999.4121)

310 34. Arrigo MI, De Oliveira Vilaca LM, Fofonjka A, Srikanthan AN, Debry A, Milinkovitch
311 MC. 2019 Phylogenetic mapping of scale nanostructure diversity in snakes. *BMC Evol
312 Biol* **19**, 91. (doi:10.1186/s12862-019-1411-6)

313 35. Hazel J, Stone M, Grace MS, Tsukruk VV. 1999 Nanoscale design of snake skin for
314 reptation locomotions via friction anisotropy. *J Biomech* **32**, 477–484.
315 (doi:10.1016/S0021-9290(99)00013-5)

316 36. Wu W, Yu S, Schreiber P, Dollmann A, Lutz C, Gomard G, Greiner C, Hölscher H. 2020
317 Variation of the frictional anisotropy on ventral scales of snakes caused by nanoscale
318 steps. *Bioinspir Biomim* **15**, 056014. (doi:10.1088/1748-3190/ab9e51)

319 37. Rieser JM, Li TD, Tingle JL, Goldman DI, Mendelson JR. 2021 Functional consequences
320 of convergently evolved microscopic skin features on snake locomotion. *PNAS* **118**.
321 (doi:10.1073/pnas.2018264118)

322 38. Abdel-Aal HA, Vargiolu R, Zahouani H, El Mansori M. 2012 Preliminary investigation
323 of the frictional response of reptilian shed skin. *Wear* **290–291**, 51–60.
324 (doi:10.1016/j.wear.2012.05.015)

325 39. Abdel-Aal HA. 2018 Surface structure and tribology of legless squamate reptiles. *Journal
326 of the Mechanical Behavior of Biomedical Materials* **79**, 354–398.
327 (doi:10.1016/j.jmbbm.2017.11.008)

328 40. Benz MJ, Lakhtakia A, Kovalev AE, Gorb SN. 2012 Anisotropic frictional properties in
329 snakes. In *Proceeding of the SPIE*, p. 83390X. San Diego: SPIE.
330 (doi:10.1117/12.916972)

331 41. Baum MJ, Kovalev AE, Michels J, Gorb SN. 2014 Anisotropic Friction of the Ventral
332 Scales in the Snake *Lampropeltis getula californiae*. *Tribol Lett* **54**, 139–150.
333 (doi:10.1007/s11249-014-0319-y)

334 42. Filippov AE, Gorb SN. 2016 Modelling of the frictional behaviour of the snake skin
335 covered by anisotropic surface nanostructures. *Sci Rep* **6**, 23539.
336 (doi:10.1038/srep23539)

337 43. Dunning J, Patil A, D’Alba L, Bond AL, Debruyn G, Dhinojwala A, Shawkey M, Jenni L.
338 2023 How woodcocks produce the most brilliant white plumage patches among the birds.
339 *J R Soc Interface* **20**, 20220920. (doi:10.1098/rsif.2022.0920)

340 44. Burresi M, Cortese L, Pattelli L, Kolle M, Vukusic P, Wiersma DS, Steiner U, Vignolini
341 S. 2014 Bright-White Beetle Scales Optimise Multiple Scattering of Light. *Scientific
342 Reports* **4**, 6075. (doi:10.1038/srep06075)

343 45. Wilts BD *et al.* 2018 Evolutionary-Optimized Photonic Network Structure in White
344 Beetle Wing Scales. *Adv Mater* **30**, e1702057. (doi:10.1002/adma.201702057)

345

346 **Acknowledgments**

347 The authors acknowledge useful discussions as well as kind help and support in the lab
348 by Patrick Weiser, Cornelia Pichler, and Weibin Wu. We thank Alfred Wallner and Philippe
349 Wolf for providing the moulted snake skins used for this study. Furthermore, we acknowledge

350 the kind support of Lourance Klose, Tyrone Ping, Yannick Francioli, Daniel Kane (London
351 Zoo), and Nathanel Maury who provided photos of various snakes shown in Figure 1 and the
352 Supplemental.

353 **Funding**

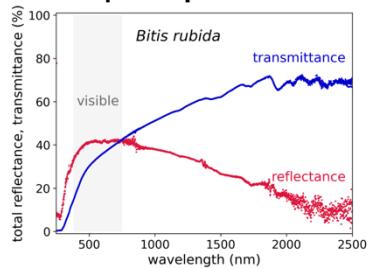
354 This study was supported by the Karlsruhe Nano Micro Facility (KNMF,
355 www.kit.edu/knmf). We acknowledge financial support by the Ministry of Science, Research
356 and the Arts of Baden-Württemberg as part of the sustainability financing of the projects of the
357 Excellence Initiative II. and through the “Ideenwettbewerb Biotechnologie — Von der Natur
358 lernen”, Helmholtz Association (MTET Topic 1, 38.01.05) as well as by the German Research
359 Foundation (grant HO2237/12-1).

360 **Data Availability**

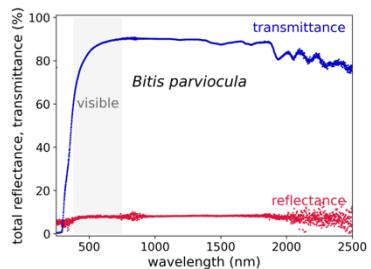
361 All photos, SEM and AFM images as well as all optical spectra are available on Dryad
362 Digital Repository <https://doi.org/10.5061/dryad.x95x69pw5> Reviewer link:
363 http://datadryad.org/share/BaGuR_ol0juY8RSvPyx8Pe1MmKKQ9eDS6tgkFcg5kR8

364

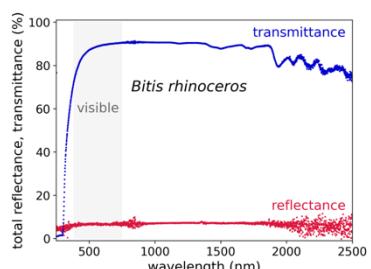
365 Figures


(A) *Bitis rubida*

Ventral scales

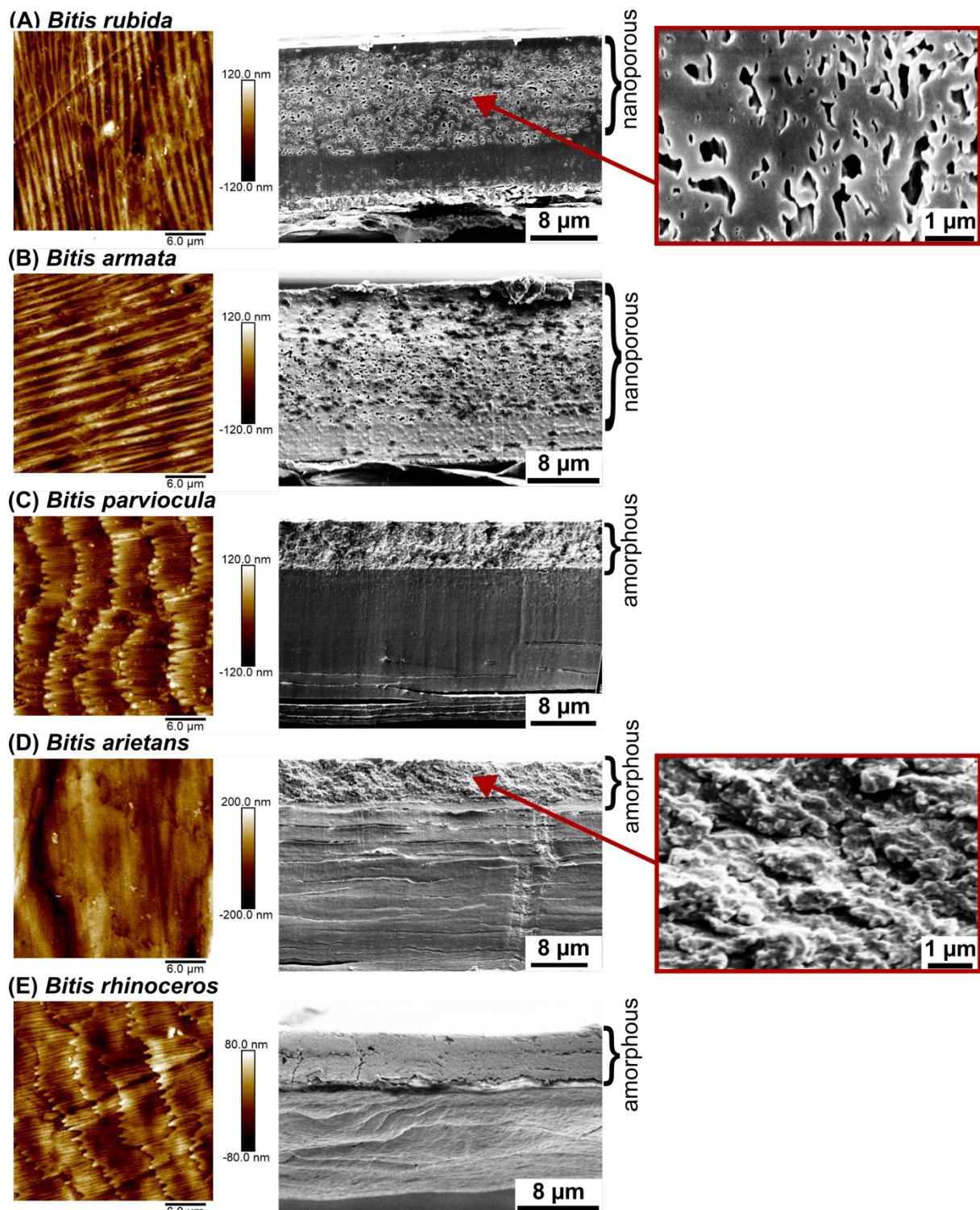

Optical spectra


(B) *Bitis armata*


(C) *Bitis parviocula*

(D) *Bitis arietans*

(E) *Bitis rhinoceros*



366

367 **Figure 1:** Photographs of the examined snake species of the genus *Bitis* (left), their ventral
 368 scales (middle), and respective optical spectra (right) of *B. rubida* (A); *B. armata* (B); *B.*
 369 *parviocula* (C); *B. arietans* (D) and *B. rhinoceros* (E). The white venters of *B. rubida*, *B.*
 370 *armata*, and *B. parviocula* are partly visible in the photographs. The ventral colours of all

371 snakes are shown and discussed in the Supplemental. All ventral scales were taken from the
372 ventral side of moulted skin and placed on white paper with a print of a university logo (scale
373 bar 10 mm). The printout cannot be read through the scales of *B. rubida* and *B. armata* but is
374 easily spotted through the transparent or translucent scales of *B. parviocula*, *B. arietans*, and
375 *B. rhinoceros*. The optical response of the ventral scales of *B. rubida*, *B. armata*, *B. rhinoceros*,
376 *B. arietans*, and *B. parviocula* is recorded for wavelengths between 250 nm and 2500 nm (right
377 panel). A total reflectance up to 40% and 30% is observed for the white ventral scales of *B.*
378 *rubida* and *B. armata*, respectively. The total reflectance is largest in the visible range (gray
379 area). However, it gradually decreases for larger wavelengths and finally reduces to 10% for
380 2500 nm. In opposite to that, the transparent or translucent ventral scales of *B. rhinoceros*, *B.*
381 *arietans*, and *B. parviocula* feature an almost constant, low total reflection of 8% over the entire
382 spectrum of consideration. The respective photos of the snakes shown on the left panel are
383 copyrighted by Lourance Klose (*B. rubida*, *B. armata*), Daniel Kane, (*B. parviocula*), Tyrone
384 Ping (*B. arietans*), and Yannick Francioli (*B. rhinoceros*).

385

388 **Figure 2:** Microstructure of the ventral scales of the five examined *Bitis* species. AFM and
 389 SEM images show the surface topography (left) and cross-sections (right) of snake scales of
 390 (A) *B. rubida*; (B) *B. armata*; (C) *B. parviocula*; (D) *B. arietans*, and (E) *B. rhinoceros*. A ridge-
 391 like surface structure is observed on *B. rubida* and *B. armata*. Microfibril-like structures are
 392 found on the ventral scales of *B. parviocula* and *B. rhinoceros*. Numerous pits are detected on

393 the ventral scales of *B. arietans*. In the cross-section images of scales of *B. rubida* and *B.*
394 *armata* a spongy structure of nanopores is observed underneath the external surface of the
395 white scales while an amorphous structure without pores is found underneath the transparent
396 or translucent scales of *B. parviocula*, *B. arietans*, and *B. rhinoceros*.

397