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Abstract

Suffix arrays [62] are one of the most fundamental text indices that form the basis for fast
substring search in DNA or other text corpora, text compression and many other string
algorithms. Their construction, also referred to as suffix sorting, consists in determining
the lexicographic order of all suffixes of a text. With the rapid growing availability of
genomic sequence and increasing amount of textual data in today’s information age,
scalable constructions of suffix arrays become of tremendous importance. To this end,
we implement and evaluate a recursive distributed memory suffix array algorithm, called
Difference Cover modulo 𝑋 (DCX), that leverages the combinatorial structure of difference
covers to efficiently sort the suffixes of the text. Our implementation adapts the sequential
DCX algorithm [46] and is a generalization to larger difference covers of the distributed
DC3 implementation by Kulla and Sanders [52]. Furthermore, we propose a new load-
balancing method for compressed input representations of overlapping strings. In our
experimental evaluation on up to 6144 cores, we show that distributed DCX is scalable, fast
and still space-efficient, requiring 20 bytes per input and only 14.2 bytes for larger inputs
(92.16 GB). On 3 out of 4 real world instances, we outperform the current state-of-the-art
achieving speedups of up to 3.2×, while being only 1.15× slower on a DNA data set for
6144 cores. Although requiring more time on DNA data, our algorithm offers a good
time-space trade-off, enabling it to handle much larger text inputs. Moreover, we are able
to process texts 3× as large as our competitor using the same amount of RAM and compute
resources.
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Zusammenfassung

Suffixarrays [62] sind einer der grundlegendsten Textindizes, die die Grundlage für die
schnelle Teilzeichensuche in DNA oder anderen Textkorpora, die Textkompression und
viele andere String-Algorithmen bilden. Ihre Konstruktion, die auch als Suffixsortierung be-
zeichnet wird, besteht in der Bestimmung der lexikographischen Reihenfolge aller Suffixe
eines Textes. Mit der schnell wachsenden Verfügbarkeit von genomischen Sequenzen und
der zunehmenden Menge an Textdaten im heutigen Informationszeitalter sind skalierbare
Konstruktionen von Suffixarrays von enormer Bedeutung. Zu diesem Zweck implementie-
ren und evaluieren wir einen rekursiven Suffixarray-Algorithmus mit verteiltem Speicher,
Difference Cover modulo 𝑋 (DCX), der die kombinatorische Struktur des Difference Cover
nutzt, um die Suffixe des Textes effizient zu sortieren. Unsere Implementierung passt den
sequentiellen DCX-Algorithmus [46] an und ist eine Verallgemeinerung der verteilten
DC3-Implementierung von Kulla und Sanders [52] auf größere Difference Cover. Darüber
hinaus schlagen wir eine neue Lastverteilungsmethode für komprimierte Eingabedarstel-
lungen von überlappenden Zeichenketten vor. In unserer experimentellen Evaluierung auf
bis zu 6144 Kernen zeigen wir, dass verteiltes DCX skalierbar, schnell und dennoch spei-
chereffizient ist. Es benötigt 20 Byte pro Eingabe und nur 14,2 Byte für größere Eingaben
(92,16 GB). Bei 3 von 4 realen Instanzen übertreffen wir den aktuellen Stand der Technik
und erreichen Beschleunigungen von bis zu 3,2×, während wir bei einem DNA-Datensatz
für 6144 Kerne nur 1,15× langsamer sind. Obwohl unser Algorithmus bei DNA-Daten
mehr Zeit benötigt, bietet er ein guten Kompromiss zwischen Zeit und Platz, das es ihm
ermöglicht, viel größere Texteingaben zu verarbeiten. Darüber hinaus sind wir in der Lage,
Texte zu verarbeiten, die 3× so groß sind wie die unseres Konkurrenten, wobei wir die
gleiche Menge an RAM und Rechenressourcen verwenden.
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1. Introduction

The suffix array [62] is one of the most popular data structures for text indexing and string
algorithms. It stores the permutation of all suffix positions in sorted lexicographic order.
Although, the total length of all suffixes is quadratic in the text size, optimal construction
in linear time requiring only constant working space in addition to the suffix array are
possible [38, 60]. Suffix array construction algorithms typically exploit the fact that the
suffixes overlap, differentiating them from the related problem of sorting variable-sized
strings.

There are numerous applications of suffix arrays in efficient string processing. Enhanced
with the longest common prefix array they serve as a space-efficient replacement of suffix-

trees [2], one of themost powerful full-text indices. Using suffix arrays, efficient localization
of patterns in unstructured text is possible in time proportional to the pattern length
as opposed to the text length [3]. In text compression, suffix arrays allow to compute
the Burrows-Wheeler transform [22], which is the backbone of many compressed full-
text indices [29, 35]. Further, they are widely applied to solve a variety of real-world
applications in computational biology [61, 78] such as DNA-sequencing [37, 92].

The ever increasing amount of textual data in today’s information age creates a need for
scalable text processing algorithms. Many of which use the suffix array as building block.
Due to technical advances, the availability of sequence genomic data is growing rapidly
[89]. In 2020, all public source code repositories on GitHub were archived and requires
more than 21 TB to store1. A recent dataset of December 20242 created by CommonCrawl,
a free open repository of web crawl data, contains about 2.64 billion web pages of 394 TiB
uncompressed content.
Suffix array construction algorithms have been well studied in the sequential setting

[9, 12, 30, 42, 46, 81], in shared-memory [56, 57, 79], in external-memory [25, 43, 46] and
to a somewhat smaller degree in GPU [20, 26] and in distributed [31, 32, 52] settings.
Sequential and shared-memory approaches are limited by the CPU power and RAM size
of a single machine. Similarly for algorithms running on the GPU. External memory
algorithms often have long running times due to mostly sequential computations and
limited I/O bandwidth. Distributed memory algorithms overcome these limitations in
scalability by utilizing multiple compute nodes connected over a network. Here, the
bottleneck lies in the inevitable communication-overhead to coordinate the compute nodes.
Communication-overhead slows down distributed algorithm for smaller input sizes in
comparison with sequential or shared-memory algorithms. Since the RAM of each compute
node is limited as well, memory-efficiency plays an important role in designing scalable

1https://archiveprogram.github.com/arctic-vault/, last accessed 2025-01-26.
2https://commoncrawl.org/blog/december-2024-crawl-archive-now-available, last accessed 2025-01-
26.
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1. Introduction

algorithms. Halving the memory peak of a distributed algorithm means that inputs of
double the size can be processed utilizing the same amount of resources. Current state-of-
the-art implementations of distributed suffix array algorithms require around 30×-60× the
input size as working space [31, 32].

Difference Cover modulo 𝑋 (DCX) is a recursive linear time algorithm based on difference

cover samples, a sample of suffixes chosen according to a special combinatorial structure
called difference covers. It recursively computes the suffix array of the samples and uses
their ranks to efficiently sort all suffixes. The 𝑋 in the algorithms name refers to the size of
the congruence class ring underlying the difference cover. Part of the algorithm requires
an efficient string sorting routine for fixed-length substrings of size 𝑋 . In the distributed
setting, prefixes of length 𝑋 or simply 𝑋 -prefixes of all suffixes have to be materialized, i.e.
converted to an uncompressed format, to be able to exchange them between the processing
elements (PEs). Using differences covers with larger 𝑋 , increases the amount of work for
the sorting and merging routines, but decreases the text size in the recursive calls.

1.1. Contribution

In this thesis, we develop a distributed suffix array construction algorithm. It builds
on the recursive linear time algorithm DCX [46] and generalizes the distributed DC3
implementation of Kulla and Sanders [52] to difference covers with larger 𝑋 .

Furthermore, we implemented a variety of optimizations to make DCX faster and more
space-efficient in distributedmemory. We adapt the discardingmechanism from an external
prefix doubling algorithm [25] to discard suffix that are not required anymore in subsequent
recursions. To reduce the memory peak caused by materializing 𝑋 -prefixes, we implement
the methods proposed for space-efficient sorting [55, 68], which we call bucketing. In this
technique, the strings are partitioned into buckets, which are materialized and sorted one at
a time. We combine bucketing with a new randomized chunking scheme for load-balancing
overlapping strings in compressed format. Further, we evaluate comparison-based and
string sorting algorithms for sorting 𝑋 -prefixes in the distributed setting.
Finally, we perform an extensive evaluation of our algorithm and compare our best

configuration of DCX with the current state-of-the-art distributed suffix array algorithm
PSAC [32]. In our experiments, we show that our algorithm exhibits good scaling behavior
up to 6144 PEs (128 compute nodes). It outperforms our competitor on 3 out of 4 real
world inputs for more than 768 PEs (16 compute nodes) with speedups up between 2.2×
and 3.2× (for 6144 PEs), while being competitive on a DNA dataset (1.5× slower for 768
PEs, 1.15× slower for 6144 PEs). Moreover, we are able to process inputs 3× as large as the
other algorithms.

1.2. Outline

This thesis is structured as follows. In Chapter 2, we introduce relevant definitions
and notations used throughout this thesis and discuss related work on suffix sorting in
Chapter 3. Chapter 4 lays the necessary foundation on comparison-based and string

2



1.2. Outline

sorting that form core building blocks of our DCX implementation. Our main work is
presented in Chapter 5, explaining DCX in-depth and algorithmic improvements thereof.
Then, we present our experimental results in Chapter 6. Finally, we conclude this thesis
and point out possible future work in Chapter 7.

3



2. Preliminaries

In this chapter, we introduce basic definitions and notations in Section 2.1. Section 2.2
specifies the parallel distributed memory model and collective communication operations
we are using.

2.1. Definitions and Notations

The input to our algorithms is a text 𝑇 consisting of 𝑛 characters on a finite alphabet Σ of
size 𝜎 . To refer to the 𝑖-th character, we use 𝑇 [𝑖] for 0 ≤ 𝑖 < 𝑛. By 𝑇 [𝑖, 𝑗] we denote the
text in the closed interval of the 𝑖-th and 𝑗-th character for 𝑖 ≤ 𝑗 . Analogously, 𝑇 [𝑖, 𝑗) is
the text in the half-open interval of 𝑖 and 𝑗 . We call 𝑇 [0, 𝑘) the 𝑘-prefix of 𝑇 for 0 ≤ 𝑗 < 𝑛.
The 𝑖-th suffix of 𝑇 is denoted by 𝑆𝑖 = 𝑇 [𝑖, 𝑛 − 1]. We assume that 𝑇 [𝑛 − 1] is a sentinel
character $ ∉ Σ with $ < 𝑧 for all 𝑧 ∈ Σ. By this assumption, the suffixes of the text are
prefix free, meaning that no suffix is a prefix of another suffix.
The suffix array SA stores the lexicographic ordering of all suffixes of 𝑇 . In particular,

SA[𝑖] is the index of the 𝑖-th smallest suffix of 𝑇 . Given a sequence of elements 𝑈 on a
total order, we define the rank of an element 𝑥 ∈ 𝑈 as 𝑟𝑎𝑛𝑘 (𝑥) = |{𝑦 | 𝑦 < 𝑥,𝑦 ∈ 𝑈 }|. In
a sorted sequence of unique elements, 𝑟𝑎𝑛𝑘 (𝑥) is the position of 𝑥 in the sorted sequence.
The inverse suffix array ISA of 𝑇 contains the ranks of each suffix in a lexicographic
ordering, i.e. ISA[SA[𝑖]] = 𝑖 . We denote a set of strings by S and the distinguishing prefix
size of S by 𝐷 (S) or just 𝐷 , i.e. the total number of characters that have to be inspected
in order to establish the lexicographic ordering of S. Given two strings 𝑠1 and 𝑠2, let
LCP(𝑠1, 𝑠2) denote their longest common prefix. For a sorted set of strings S, we define
the LCP-array as H(S) = [⊥, ℎ1, ℎ2, . . . ℎ |S|−1], where ℎ𝑖 = LCP(𝑠𝑖−1, 𝑠𝑖) for 1 ≤ 𝑖 ≤ |S|,
and the sum of LCPs by L(S) = ∑|S|−1

𝑖=1 ℎ𝑖 . We denote the concatenation of two strings 𝑠1
and 𝑠2 by 𝑠1 ⊙ 𝑠2. Figure 2.1 shows the suffix array, the LCP-array and the distinguishing
prefixes of the text 𝑇 = banana$

In our distributed setting, we number the processing elements (PEs) from 0 to 𝑝 − 1.
Each PE receives a local subarray 𝑇𝑖 of the input text 𝑇 , such that the concatenation of 𝑇𝑖
is equal to 𝑇 and the input is well-balanced, i.e. 𝑇𝑖 ∈ Θ(𝑛/𝑝). Our suffix array algorithm is
recursive in nature. For brevity, we refer to the recursion level simply as level. The initial
recursive call starts at level 0.

2.2. Model of Computation

A common abstraction of communication in distributed memory algorithms is the single-
ported message passing model. In this model, a distributed memory machine consists of 𝑝

4



2.2. Model of Computation
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Figure 2.1.: Suffix array of the text 𝑇 = banana$ with LCP-array. The distinguishing
prefixes are colored in red.

random access machines, called processing elements (PEs), connected by a communication
network. Each PE executes the same program, has a unique rank 𝑖 ∈ [0, 𝑝) and knows
the total number of PEs 𝑝 . The PEs communicate by exchanging point-to-point messages.
However, each PE can only send and receive at most one message at the same time. The
cost of communication is assumed to follow a linear model [33], where sending a message
of𝑚 machine words takes 𝛼 + 𝛽𝑚 time. Here, 𝛼 defines the message startup overhead and
𝛽 the time to communicate one machine word with 𝛼 ≫ 𝛽 . For simplicity, we assume that
a machine word corresponds to one data element.
Collective operations are high-level communication primitives between all PEs based

on low-level point-to-point message exchanges. They are important building blocks for
distributed algorithms and are well studied from a theoretical and practical perspective. In
the following, we give a brief overview of the most common collective operations.

Broadcast. A single PE – called the root – replicates the same message𝑚 to all PEs. This
primitive is often combined with other collective operations to share the state of a variable
or the final result of a computation with all PEs.

Gather. The gather operations allows to collect messages𝑚𝑖 from each PE 𝑖 on the root.
After completion, the root received a vector of messages sorted by the PE number 𝑖 . Gather
enables the root to perform local computations using values from all PEs. Following it up
with broadcast, it shares a set of messages𝑚𝑖 with all PEs, which is called allgather. The
inverse operation of gather is scatter. Given a set of messages𝑚𝑖 on the root, scatter sends
message𝑚𝑖 to the 𝑖-th PE.

Reduction. A reduction computes the result of
⊕𝑝−1

𝑖=0 𝑚𝑖 for an associative operator ⊕ and
message𝑚𝑖 from PE 𝑖 . Usually, the elements are either integers or vectors of integers and
operators are addition, multiplication, minimum, maximum, logical AND or logical OR. A
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gather operation is equivalent to a reduction with the concatenation operator. Combining
a reduction with a broadcast is called allreduce.

Prefix-Sum. Given messages𝑚𝑖 for each PE 𝑖 and an associative operator ⊕, the prefix-
sum or scan calculates the result

⊕ 𝑗

𝑖=0𝑚𝑖 on PE 𝑗 . When leaving out the element𝑚 𝑗 in
the sum, the operation is called exclusive prefix-sum.

Alltoall. The alltoall operation is used for simultaneous data exchange between all PEs.
Each PE 𝑖 sends message𝑚𝑖, 𝑗 to PE 𝑗 . It can be thought of as the transposition of a matrix,
where the 𝑖-th row consists of the messages to be sent from PE 𝑖 and the 𝑗-th column of
the messages that PE 𝑗 should receive.

Complexity of Collective Operations. Broadcast, gather, reduction and prefix-sum can be
implemented in optimal communication time O(𝛼 log𝑝 + 𝛽𝑙), where 𝑙 is the number of
messages involved in the operation. A lower bound for latency in broadcast is Ω(𝛼 log𝑝),
since the number of PEs that receive𝑚 can at most double with every round of commu-
nication. Similar arguments can be made for the other operations. The lower bound on
communication Ω(𝛽𝑙) follows from the restriction, that only a single message can be send
and received by a PE at the same time. Two-tree algorithms implement these collective
operations combining two pipelined binary trees to better use the available bandwidth
while achieving optimal communication time [85].

To implement the alltoall operation with 𝑝 equal sized messages of length 𝑙 , the 1-factor
algorithm [84, p. 414] can be used. It requires O(𝛼𝑝 + 𝛽𝑝𝑙) time and performs 𝑝 − 1 rounds
of direct message exchanges. In case of small message sizes 𝑙 , an algorithm based on
hypercube communication may perform better [84, p. 415]. By communicating data in
only log𝑝 rounds, it has a lower latency, but uses a higher communication volume and
has complexity of O(𝛼 log𝑝 + 𝛽𝑝𝑙 log𝑝). In particular in suffix sorting, we oftentimes
require irregular alltoall exchanges, where a message𝑚𝑖, 𝑗 can have arbitrary length |𝑚𝑖, 𝑗 |.
Performing two successive uniform alltoall exchanges, the irregular alltoall operation
can be realized using the two-phase algorithm [84, p. 417]. Each message 𝑚𝑖, 𝑗 is split
into 𝑝 equally sized messages𝑚𝑘

𝑖, 𝑗 for 𝑘 ∈ [0, 𝑝), which are send indirectly via PE 𝑘 and
reconstructed on PE 𝑗 . Overall, the two-phase algorithm requires O(𝛼𝑝 + 𝛽ℎ) time, where
ℎ = max𝑘{

∑
𝑖 𝑛𝑖, 𝑗 ,

∑
𝑗 𝑛𝑖, 𝑗 } is the so-called bottleneck communication volume.
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3. Related Work

There exists plenty of work on suffix array construction algorithms in the sequential
setting [9, 12, 30, 42, 46, 81], shared-memory [56, 57, 79], external-memory [25, 43, 46] and
to a somewhat lesser extend in GPU [20, 26] and in distributed memory settings [31, 32, 52]
. However, algorithms in the extended settings usually have a sequential counterpart. For
the scope of this thesis, we will focus on the most important sequential (Section 3.1) and
distributed algorithms (Section 3.2). A more comprehensive overview can be found in
most recent surveys [12, 14, 81]. See Figure 3.1 for a timeline of sequential suffix array
algorithms.

3.1. Sequential Suffix Sorting

Despite the large number of algorithms, they can be categorized into three basic sorting
principles: prefix doubling, induced copying and recursion.

Prefix Doubling. The original suffix array construction algorithm by Manber and My-
ers [62] is based on prefix doubling [47]. All prefix doubling algorithms share a common
core [31] that we describe in the following . Let 𝑇 be a text of size 𝑛.

1. Set 𝑘 = 0 and for each suffix 𝑆𝑖 create a rank tuple ⟨𝑖, 𝑟 ⟩, where 𝑟 is the rank in the
sorting of suffixes by their first character 𝑇 [𝑖].

2. If the ranks are unique, sort the rank tuples by 𝑟 . Now, the first component corre-
sponds to the SA of 𝑇 . Otherwise, continue.

3. Construct rank triples ⟨𝑖, 𝑟 , 𝑟 ′⟩ based on the rank tuple ⟨𝑖, 𝑟 ⟩ and the rank 𝑟 ′ of the
tuple with index 𝑖 + 2𝑘 (or 0 if 𝑖 + 2𝑘 ≥ 𝑛).

4. Determine new rank tuples by sorting the rank triples by ⟨𝑟, 𝑟 ′⟩. Increase 𝑘 by one
and continue with Step 2.

Prefix doubling algorithms successively determine the ranks of 𝑇 [𝑖, 𝑖 + 2𝑘) by reusing the
rank information from the previous iteration, instead of applying string sorting directly.
Once all ranks are unique, the SA can be extracted from the indices 𝑖 in the rank tuples.
Each sorting step takes O(𝑛) with integer sorting and at most O(log𝑛) times prefixes
have to be doubled, resulting in O(𝑛 log𝑛) complexity. The fastest currently know suffix
array construction algorithm in distributed memory [32] is based on prefix doubling. In
Section 3.2, we give a detailed description of the algorithm.
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1990

1999

2000
2002
2003
2004
2005
2006
2007
2008
2009
2011

2016

2017

2021
Prefix
Doubling Induced Copying Recursion

[63]
original

[58]
qsufsort

[87]
bpr

[22]
BWT

[88]
1/2 copy

[42]
A/B copy

[66]
deep-shallow

[65]
chains

[70]
DivSufSort

[64]
cache aware

[21]
diffcover

[70, 77]
SAIS/SADS

[74]
SACA-K

[60]
𝑂 (1) space

[38]
𝑂 (1) space

[27]
𝑂 (𝑛) tree

[46]
DC3

[49]
mod2 split

[41]
mod2

[51]
L/S split

[71]
succinct

[48]
fixed Σ

[75]
𝑂 (𝑛 lg |Σ | ) [4]

SFE-coding

[9]
GSACA

[39]
libSAIS

Figure 3.1.: Timeline of sequential suffix array construction with algorithms that share
techniques are marked with an arrow. Figure based on [12, 54, 81]. The
three techniques are shown as columns and algorithms that combine multiple
techniques are crossing the borders. Suffix array construction algorithms with
linear running time are highlighted in dark gray. If an implementation is
publicly available, the algorithm is also marked in brown.

Induced-Copying. Induced-copying algorithms operate by sorting a small subset of suf-
fixes and then use this subset to induce the order of the remaining suffixes. All suffixes
are classified by using one of two classification schemes [42, 77], with those requiring
manual sorting placed into a special class. Then, the order of all non-special suffixes can
be induced based on their class, their first character, preceding and succeeding special
class suffixes. The induction process typically involves only two passes over the text,
with each pass requiring the comparison of just one or two characters at each position.
Induced-copying algorithms are often combined with a recursive approach, achieving
linear time for the construction of the suffix array and requiring only constant working
space in addition to the space for the suffix array [38, 60]. The currently fastest sequential
and shared-memory implementation of a suffix array algorithm Libsais [44, 76, 90, 93] is
based on the inducing principle.
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Recursive Algorithms. The last principle is the well know divide-and-conquer method, in
which subproblems of decreasing sizes are solved using recursion. Two strings 𝑥 and 𝑦
are formed from the input text 𝑇 , such that if SA𝑥 is computed, SA𝑦 can be constructed
efficiently and finally, SA can be computed from both suffix arrays in linear time. The
string 𝑥 consists of substrings of 𝑇 that can be sorted with integer sorting (linear time) to
determine their ranks. If not all ranks are unique, the algorithm continues recursively on
𝑥 until all ranks are unique. SA𝑦 can be inferred using the rank information from SA𝑥 and
SA is usually constructed using some merging routine. Kärkkäinen et al. [46] proposed the
first linear time suffix array construction algorithm using purely recursion. This algorithm
forms the basis for our distributed memory version presented in this thesis. It already
has been considered in distributed memory [11, 16, 52], but there is still more room for
engineering as we will discuss in Section 5.

3.2. Distributed Suffix Sorting

In this section, we explain related work on the DCX algorithm in distributed memory
(Section 3.2.1) and current state-of-the-art distributed suffix array algorithms, with which
we will compare our algorithm in the experimental evaluation (Section 6). The first
algorithm PSAC is a prefix doubling algorithm consisting of two variants (Section 3.2.2 and
Section 3.2.3). Then, we present another prefix doubling algorithm that uses a discarding
scheme we also include in DCX (Section 3.2.4). The last algorithm is a distributed version of
the sequential suffix array algorithm DivSufSort based on the inducing principle (Section
3.2.5).

3.2.1. Difference Cover Modulo𝑋

There is already some work on the Difference Cover Modulo 𝑋 (DCX) algorithm in the
distributed setting. Kulla and Sanders showed the scalability of the DC3 in distributed
memory [52]. Bingmann implemented a distributed version of DC3, DC7 and DC131,
which however is restricted to inputs up to 4 GB due to the use of 32 bit integers to
address memory. Metwally et al. implemented DC3 for the AWS and Azure cloud2 [69]
and compared an optimized version of DC3 to another distributed algorithm Futamura-
Aluru-Kurtz (FAK) [34]. Their experiments indicate that FAK performs better in practice,
although DC3 has better theoretical guarantees. To the best of our knowledge, the only
distributed DCX implementation that considers larger values of 𝑋 (up to 133), is part of
the recent indexing and search system FEMTO [28].

3.2.2. PSAC Using Global Sorting

PSAC is currenlty the fastest suffix array construction algorithm in distributed memory
[32]. As such, it is the main competitor in our experimental evaluation of our algorithm.
PSAC is able to optionally compute the LCP-array alongside the suffix array at the cost
1https://github.com/bingmann/pDCX/
2https://github.com/aametwally/cloudSACA
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Figure 3.2.: Example execution of PSAC1 from original paper [32].

of higher running time, but we are only interested in the suffix array construction part.
Internally, PSAC uses two versions of prefix doubling, which we call PSAC1 and PSAC2.
In this part, we give a detailed description of the first and in the following Section 3.2.3 of
the second version.

PSAC1 follows the prefix doubling sorting principle, successively sorting the suffixes by
𝑇 [𝑖, 𝑖 + ℎ), which the authors call ℎ-prefix, doubling ℎ in each step. Suffixes sorted by their
ℎ-prefix are in ℎ-order and elements with the same rank are said to be in the same ℎ-group.
The authors use three arrays 𝑆𝐴ℎ , 𝐵 and 𝐵2 to organize their data. 𝑆𝐴ℎ keeps track of the
global indices of suffixes in ℎ-order. If all suffix ranks are unique, 𝑆𝐴ℎ contains the suffix
array of the input text. In an ℎ-order, the array 𝐵 is aligned with 𝑆𝐴ℎ and stores the ranks
of the ℎ-groups by 𝐵 [𝑖] = 𝑖 , for the first position of a group and 𝐵 [ 𝑗] = 𝑖 , for all elements
of that same group. 𝐵2 contains the shifted ranks required for constructing the rank triples
in Step 3, i.e. 𝐵2 [𝑖] = 𝐵 [𝑖 + ℎ] (or 0, if 𝑖 + ℎ ≥ 𝑛).
During the algorithm, all data including input, output and working data is distributed

equally among all PEs. Therefore, each PE has ⌊𝑛
𝑝
⌋ or ⌈𝑛

𝑝
⌉ elements. For simplicity, we

assume that 𝑝 divides 𝑛. The authors use their own parallel implementation of sample sort
with regular sampling for all sorting routines. Figure 3.2 shows an example execution of
PSAC1.

Termination. As in Step 2 of prefix doubling, the algorithm terminates once all suffix
ranks in 𝐵 are unique. Sorting ⟨𝑆𝐴ℎ [𝑖], 𝐵 [𝑖]⟩ by the second component yields the SA in
the first component.
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Tuple Sorting. Analogously to Step 1 and Step 3 in prefix doubling, rank tuples ⟨𝑖, 𝐵 [𝑖]⟩
are sorted by 𝐵 [𝑖] and rank triples ⟨𝑖, 𝐵 [𝑖], 𝐵2 [𝑖]⟩ are sorted by ⟨𝐵 [𝑖], 𝐵2 [𝑖]⟩. The separate
arrays 𝑆𝐴ℎ , 𝐵 and 𝐵2 (or 𝑆𝐴ℎ and 𝐵) are zipped into a vector of triples (or tuples) before
sorting and afterwards are unzipped again into separate vectors.

Initialization. In Step 1 of prefix doubling, instead of initializing the ranks with the 1-
order, the algorithm computes the 𝑘-order by sorting, skipping several prefix doubling
iterations. The elements to be sorted are called 𝑘-mers and are the 𝑘-prefixes of all suffixes.
They choose 𝑘 depending on the alphabet size 𝜎 and the number of bits in a machine word
𝑙 by

𝑘 =

⌊
𝑙

log2(𝜎)

⌋
to be able to pack the 𝑘-prefix into a single machine word. The ranks of the 𝑘-mers are
computed in the rebucketing step.

Rebucketing. After determining the ℎ-order of the suffixes by sorting (Step 1 and Step 4
of prefix doubling), the array 𝐵 has to be filled with the corresponding ranks. In a first pass,
the start of anℎ-group is set to its own index 𝑖 whenever 𝐵 [𝑖−1] ≠ 𝐵 [𝑖] or 𝐵2 [𝑖−1] ≠ 𝐵2 [𝑖],
otherwise to 0. In the initialization step, only 𝐵 is considered in the comparison. Now, the
first elements of each ℎ-group have the correct rank. Then, a prefix-scan with the max
operation is performed to set the remaining ranks.

SA to ISA. In the next step, the array 𝐵 is brought back into text-order to align the ranks
of each suffix with its position. By the data distribution, it is easy to determine the target
processor of the element with index 𝑖 by ⌊𝑖 𝑝

𝑛
⌋. Elements are bucketed according to their

target processor and send with the alltoall collective. Then, the text-order is achieved by
locally reassigning the elements according to their 𝑆𝐴ℎ index.

Shifting. The array 𝐵2 is obtained by shifting 𝐵 by ℎ positions. Each PE has at most
two PEs, from which it has to send data, and two from, which it has to receive data.
This is a straight forward communication pattern and is realized by two point-to-point
communications.

Complexity. Since the algorithm performs O(log𝑛) rounds and uses only scans and
sorting routines in each step, the overall complexity is given by O(𝑇𝑠𝑜𝑟𝑡 (𝑛, 𝑝) log𝑛), where
𝑇𝑠𝑜𝑟𝑡 (𝑛, 𝑝) is the time complexity of the underlying distributed sorting algorithm on 𝑛
elements using 𝑝 PEs.

Memory Consumption. The highest main memory is required when the triple vector
consisting of entries of 𝑆𝐴ℎ , 𝐵 and 𝐵2 is sorted. To store the triple vector, 3 words are
required for each position. Additionally, for alltoall MPI communication, receive buffers
of the same size have to be allocated. Therefore, in total the algorithm requires 6 words
for each of the 𝑛

𝑝
entries on a PE. Assuming a words size of 8 byte, the algorithm requires

at least 48 bytes additional per input character.
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3.2.3. PSAC With Avoiding Global Sorting

On many real world inputs, a large fraction of ℎ-groups become unique (singleton) after
only few iterations. A significant overhead can be avoided by only sorting the non-
singleton ℎ-groups instead of globally sorting all together. To improve on PSAC1, the
authors propose an other prefix doubling version PSAC2. Since PSAC2 has a higher
memory usage due to two additional array, they still use PSAC1 for the initial 𝑘-mer sort
and the first few iterations. Once the number of non-singleton groups is smaller than 𝜀𝑛,
for some tuning parameter 𝜀, they switch to PSAC2, which we describe in the following.
To organize the data, the authors use five arrays, 𝑆𝐴ℎ , 𝐵, 𝐼𝑆𝐴ℎ𝑊 and𝑀 distributed in

the same block layout as before. 𝑆𝐴ℎ and 𝐵 have the same meaning as in PSAC1. 𝐼𝑆𝐴ℎ [𝑖]
contains the current ℎ-group rank of the suffix 𝑆𝑖 . The array𝑊 keeps track of the start
indices of each non-singleton group and 𝑀 holds memory for tuples that are used to
exchange ranks of the ℎ-order. PSAC2 receives 𝑆𝐴ℎ , 𝐵, 𝐼𝑆𝐴ℎ for the current prefix length
ℎ as input from PSAC1.

Determine non-singletonℎ-groups. First, the algorithm determines all positions of non-
singletonℎ-groups using the local property of 𝐵. Either an element is not the representative
of its ℎ-group, 𝐵 [𝑖] ≠ 𝑖 , or the element is a representative with at least one more element
in the same group, 𝐵 [𝑖 + 1] = 𝑖 . This check can be performed in a single local scan. Each
PE 𝑗 with 𝑗 + 1 < 𝑝 receives the first element of PE 𝑗 + 1 via point-to-point communication
to be able to check the second condition for the last element as well.

Exchange Shifted Ranks. In order to apply prefix doubling to a non-singleton ℎ-group
with global indices 𝐺 , we require the rank of the corresponding suffix shifted by ℎ. An
element 𝑖 ∈ 𝐺 corresponds to the suffix with index 𝑆𝐴ℎ [𝑖] , thus the index of the shifted
suffix is at position 𝑆𝐴ℎ [𝑖] + ℎ. The rank information is contained in 𝐼𝑆𝐴ℎ [𝑆𝐴ℎ [𝑖] + ℎ].
This location might not be available locally and communication is necessary. Instead
of sending separate messages, the algorithm exchanges the requested ranks using two
alltoall calls. For the first call, requests in the form of ⟨𝑆𝐴ℎ [𝑖] +ℎ, 𝑖⟩ for each non-singleton
position 𝑖 ∈𝑊 are stored in the array𝑀 . These requests are bucketed by their target PE⌊𝑝
𝑛
(𝑆𝐴ℎ [𝑖] + ℎ)

⌋
and communicated using an alltoall call. Now, each PE overwrites the

first values in the received tuples ⟨𝑖, 𝑗⟩ with ⟨𝐼𝑆𝐴ℎ [𝑖], 𝑗⟩, which corresponds to 𝐵2 [𝑖] in
PSAC1. Finally, the second alltoall call sends the data back to its origin.

Bucket Sorting. After receiving the rank information in the array𝑀 , each non-singleton
ℎ-group has to be sorted by 𝐼𝑆𝐴ℎ [𝑖]. However, an ℎ-group might span more than one
processor. To handle overlapping ℎ-groups, first, all ℎ-groups, which are local on a PE
are sorted. Then, each PE with overlapping ℎ-groups participates in a parallel sort with
one or both of its neighbors, inducing the 2ℎ-order of the suffix array. Here, the authors
split the MPI communicator into a sub-communicator for each parallel sorting routine.
The ranks of the 2ℎ-order are determined as before with the rebucketing routine. During
rebucketing, a new array𝑊𝑛𝑒𝑤 replaces𝑊 , containing those indices of𝑊 , which remain
non-singleton.
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Update ISA. Finally, the 𝐼𝑆𝐴ℎ must be updated with the newly determined 2ℎ-group
ranks. Similarly to the exchange of shifted ranks, the array 𝑀 is reused to send tuples
⟨𝑆𝐴ℎ [𝑖], 𝐵 [𝑖]⟩ for each 𝑖 ∈𝑊 to the target PE

⌊𝑝
𝑛
𝑆𝐴ℎ [𝑖]

⌋
with another alltoall communica-

tion. The receiving PE now updates the local 𝐼𝑆𝐴ℎ by 𝐼𝑆𝐴ℎ [𝑆𝐴ℎ [𝑖]] = 𝐵 [𝑖].

3.2.4. Distributed Prefix Doubling with Discarding

Fischer and Kurpicz [31] proposed another distributed prefix doubling algorithm adapting a
discarding mechanism introduced by Dementiev et al. [25]. There are two main difference
to PSAC1. First, to exchange the shifted ranks (Step 3 of prefix doubling), they sort the
rank tuples such that required ranks are next to each other (if they exits). Sorting the
global indices 𝑖 by (𝑖 mod ℎ, 𝑖 div ℎ) yields the desired property. Secondly, this allows to
ignore rank tuples that are not required anymore, since required ranks are not spatially
separated. A suffix can be discarded if it is unique and is not required to determine ranks
of non-unique suffixes. The second condition occurs if the left neighbor of the suffix is
unique as well. In other words, for each sequence of adjacent unique ranks, we only have
to keep the first element of that sequence. Discarding can be implemented with a single
scan and point-to-point communication between adjacent PEs to handle missing elements
at the edges. To avoid interference of smaller discarded suffix with the update of ranks,
the authors always set a suffix to the highest possible rank it could potentially obtain.
This discarding strategy significantly reduces the overhead of globally sorting all rank
tuples on all PEs. Since there is no theoretical difference to PSAC1, prefix doubling with
discarding has the same complexity of O(𝑇𝑠𝑜𝑟𝑡 (𝑛, 𝑝) log𝑛).

3.2.5. Distributed DivSufSort

In the same paper [31], Fischer and Kurpicz also present a distributed variant of DivSuf-
Sort [30, 70]. We will state lemmas without proof and refer to the paper for more details.
First, we introduce some notation used by the authors. Given a text 𝑇 of size 𝑛, let 𝑇 ′

denote the consecutive slice of size 𝑛′ = Θ( 𝑛
𝑝
) local on a PE. 𝑆′𝑗 denotes the 𝑗-th suffix in

𝑇 ′ with respect to the whole text.

Classification of Suffixes. The authors use a classification scheme with two classes origi-
nally introduced by Itoh and Tanaka [42].

𝐶− = {𝑖 ∈ [0, 𝑛) | 𝑆𝑖 > 𝑆𝑖+1}
𝐶+ = {𝑖 ∈ [0, 𝑛) | 𝑆𝑖 < 𝑆𝑖+1}

A suffix 𝑆𝑖 is represented by its starting position 𝑖 in the text 𝑇 . We say “a suffix 𝑆𝑖 is in
𝐶” if 𝑖 ∈ 𝐶 for some class 𝐶 . Consecutive suffixes that differ in their class form sub-classes

and are later used to identify fine-grained intervals in the SA. We are interested in the
suffix before the change.
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𝐶−▷ = {𝑖 ∈ 𝐶− | 𝑖 + 1 ∈ 𝐶+} ∪ {𝑛 − 1}
𝐶+▷ = {𝑖 ∈ 𝐶+ | 𝑖 + 1 ∈ 𝐶−}

Notice that both sub-classes have at most 𝑛2 elements. Suffixes that are followed by the
same class are also required and are denoted by:

𝐶−⊗ = 𝐶− \𝐶−▷ and 𝐶+⊗ = 𝐶+ \𝐶+▷ .

Further, it will be necessary to filter a (sub-)class 𝐶 by the first one or two characters. Let
𝛼, 𝛽 ∈ Σ, then:

𝐶𝛼 = {𝑖 ∈ 𝐶 | 𝑇 [𝑖] = 𝛼}
𝐶𝛼𝛽 = {𝑖 ∈ 𝐶𝛼 | 𝑇 [𝑖 + 1] = 𝛽}

Let −→𝐶 denote the starting positions of a class𝐶 in lexicographic order. The key element of
the algorithm is that the suffix array can be expressed using the introduced sub-classes.

Lemma 1 (Observation 1. in [31]). We can express the SA as follows:

𝑆𝐴 =
−−→
𝐶−⊗
00

−−→
𝐶−▷
00

−−→
𝐶+▷
00

−−→
𝐶+⊗
00

−−→
𝐶−⊗
01 . . .

−−−−−−→
𝐶−⊗
𝜎−1𝜎−1

−−−−−−→
𝐶−▷
𝜎−1𝜎−1

−−−−−−→
𝐶+▷
𝜎−1𝜎−1

−−−−−−→
𝐶+⊗
𝜎−1𝜎−1

General Overview. Using this classification, the suffix array can be computed in three
steps.

1. Compute 𝐶+▷ and the sizes of 𝐶𝛼𝛽 for all 𝛼, 𝛽 ∈ Σ and (sub-)classes 𝐶 locally for 𝑇 ′.
Aggregate the results over all PEs to get the sizes for 𝑇 .

2. Sort 𝐶+▷ lexicographically using a distributed string sorting algorithm to compute
−−→
𝐶+▷.

3. Induce all other suffixes using only
−−→
𝐶+▷ and 𝑇 , without any sorting.

Lemma 2 (Observation 2. in [31]). For all 𝑖 ∈ [1, 𝑛)

a) 𝑖 − 1 ∈ 𝐶+⊗ ⇔ 𝑖 ∈ 𝐶+
and 𝑇 [𝑖 − 1] ≤ 𝑇 [𝑖],

b) 𝑖 − 1 ∈ 𝐶+▷ ⇔ either 𝑖 = 𝑛 or 𝑖 ∈ 𝐶+
and 𝑇 [𝑖 − 1] > 𝑇 [𝑖],

c) 𝑖 − 1 ∈ 𝐶−⊗ ⇔ 𝑖 ∈ 𝐶−
and 𝑇 [𝑖 − 1] ≥ 𝑇 [𝑖],

d) 𝑖 − 1 ∈ 𝐶+▷ ⇔ 𝑖 ∈ 𝐶−
and 𝑇 [𝑖 − 1] < 𝑇 [𝑖].

Lemma 3 (Observation 3. in [31]). Let 𝑖 ∈ [0, 𝑛 − 1). We know that 𝑛 − 1 ∈ 𝐶−. If
𝑇 [𝑖] > 𝑇 [𝑖 + 1], then 𝑖 ∈ 𝐶− and if 𝑇 [𝑖] < 𝑇 [𝑖 + 1], then 𝑖 ∈ 𝐶+. Last, if 𝑇 [𝑖] = 𝑇 [𝑖 + 1]
then 𝑖 ∈ 𝐶− ⇔ 𝑖 + 1 ∈ 𝐶−.
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3.2. Distributed Suffix Sorting

Step 1: Identifying Suffixes in𝐶−▷. To determine the (sub-)class of a suffix 𝑆𝑖 in Step 1,
it is sufficient to examine the class 𝐶+ or 𝐶− of 𝑆𝑖−1 and the characters 𝑇 [𝑖 − 1] and 𝑇 [𝑖]
(see Lemma 2). Using Lemma 3, the class membership of 𝐶+ and 𝐶− for each suffix can be
determined.
In the sequential setting, this step can be implemented with a simple right to left scan.

However, in the distributed setting we cannot simply scan 𝑇 ′ from right to left, since the
class of the last suffix in𝑇 ′ in only know for PE 𝑝 − 1. To resolve this problem, the authors
determine the classes in two right to left scans and one broadcast operation per PE. In the
first scan, the first suffix is determined that satisfies 𝑇 [𝑖] > 𝑇 [𝑖 + 1] for 𝑖 < 𝑛′ − 1. We can
conclude that this suffix is in 𝐶− without the knowledge of the class of its right neighbor.
Using Lemma 3, all suffixes 𝑆′𝑗 with 𝑗 < 𝑖 can be classified. Now, each PE communicates
the class of 𝑆′0 to all other PEs, if the class is known, otherwise it communicates unknown.
The latter case occurs if no suffix in 𝑇 ′ can be determined definitely, i.e. all characters in
𝑇 ′ are the same. To determine the classes of the remaining suffix, the class of the right
neighboring suffix 𝑆′0 can be used, if it is known. If not, the first PE 𝑗 with 𝑗 > 𝑖 , on which
the class of the first suffix is know, is selected. With the class information of 𝑗 and the first
character of the first suffix, the remaining types can be concluded using the last part of
Lemma 2. Notice that in this case for all 𝑘 with 𝑖 < 𝑘 < 𝑗 , the local texts 𝑇 ′ consists of a
single character. The authors claim that such cases do not occur in practice. Alongside
the two scans, 𝐶+▷ and the sizes of the other sub-classes can be determined without an
overhead in running time.

Step 2: Sorting Suffixes in𝐶+▷. For sorting the suffixes in 𝐶+▷, we require the substrings
between two adjacent elements of 𝐶+▷ in text-order. Given 𝑖 ∈ 𝐶+▷ the next adjacent
element is 𝑛𝑒𝑥𝑡 (𝑖) = min{ 𝑗 > 𝑖 | 𝑗 ∈ 𝐶+▷ ∪ {𝑛}}. A 𝐶+▷-ending substring is defined as
𝑇 +▷
𝑖 = 𝑇 [𝑖,min{𝑛𝑒𝑥𝑡 (𝑖) + 2, 𝑛}). The two additional characters are necessary to correctly
sort𝐶+▷. Now, all𝐶+▷-ending substring are sorted using distributed string sorting. In their
implementation, the authors employ sample sort and use multikey radix sort to locally sort
the strings. Computing

−−→
𝐶+▷ can be viewed as another suffix array construction problem

on the ranks of the 𝐶+▷-ending substring. For this purpose, the prefix doubling algorithm
described earlier in Section 3.2.4 is used. The algorithm relies on indices in the range from
0 to𝑚, where𝑚 is text length. Thus, before prefix doubling they transform the ranks to
the correct range. Finally, to obtain

−−→
𝐶+▷ they sort the rank tuples ⟨𝑖, 𝑟 ⟩ by 𝑟 , where 𝑖 ∈ 𝐶+▷

and 𝑟 is the corresponding entry in the computed suffix array. The first component now
contains

−−→
𝐶+▷.

Step 3: Inducing the Suffix Array. Algorithm 1 summarizes the inducing step. All PEs work
on their own slice of the sub-classes. However, the concatenation ⊙ in Line 3 and Line 14
apply to the global array. The global text 𝑇 has to be accessed by all PEs. Therefore, in
Line 8 and Line 17 the first characters necessary in the next iteration are communicated
between the PEs. To facilitate localizing the required characters, the author distribute the
text 𝑇 such that 𝑇 [𝑖 ⌈𝑛

𝑝
⌉,min{(𝑖 + 1) ⌈𝑛

𝑝
⌉, 𝑛}) is located on PE. Now, the 𝑖-th character can

be easily localized using division and modulo computations.
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Algorithm 1: Inducing Step DivSufSort
1 for 𝛼 = 𝜎 − 1 down to 0 do
2 for 𝛽 = 𝜎 − 1 down to 𝛼 do // 𝛼 > 𝛽 ⇒ 𝐶+

𝛼𝛽
= ∅

3 for 𝑖 ∈
−−→
𝐶+▷
𝛼𝛽

⊙ 𝐶+⊗
𝛼𝛽

in reverse order do
4 if 𝑖 > 0 and 𝑇 [𝑖 − 1] ≤ 𝛼 then // Lemma 2 a)

5 𝐶+⊗
𝑇 [𝑖−1]𝛼 .pushfront(𝑖 − 1)

6 else if 𝑖 > 0 then // Lemma 2 b)

7 𝐶+▷
𝑇 [𝑖−1]𝛼 .pushfront(𝑖 − 1)

8 communicate() // 𝑇 [𝑖 − 1] for next step

9

10 𝐶−⊗
𝑇 [𝑛−1]0.pushback(𝑛 − 1) // handle last suffix

11
12 for 𝛼 = 0 to 𝜎 − 1 do
13 for 𝛽 = 0 to 𝛼 do // 𝛼 < 𝛽 ⇒ 𝐶−

𝛼𝛽
= ∅

14 for 𝑖 ∈ 𝐶−⊗
𝛼𝛽

⊙ 𝐶−▷
𝛼𝛽

in reverse order do
15 if 𝑖 > 0 and 𝑇 [𝑖 − 1] ≥ 𝛼 then // Lemma 2 c)

16 𝐶−⊗
𝑇 [𝑖−1]𝛼 .pushback(𝑖 − 1)

17 communicate() // 𝑇 [𝑖 − 1] for next step

18

First,
−−→
𝐶+⊗ and

−−→
𝐶−▷ are induced in a right to left scan in reverse lexicographic order (see

loop starting at Line 1). Not all sub-classes have to be traversed, since they are empty
by definition. Each filtered sub-class is filled by repeated application of Lemma 2 a) and
Lemma 2 b). The last suffix is added before continuing with the second inducing step (Line
10). Similarly to the first inducing step, the sub-class 𝐶−⊗ can be induced in a left to right
scan in lexicographic order (see loop starting at Line 12) with application of Lemma 2 c).

There is a special case that has to be handled separately. A run of length 𝑟 is a sequence
of 𝑟 characters in𝑇 that are all the same. The algorithm as described above, cannot induce
the class of 3-runs or longer runs. This would require to induce in the same array that is
currently traversed (Line 3 and Line 14). To resolve this, the runs of the same characters
are unrolled from right to left until one run ends. Using the length of each run and the SA
positions, these special cases can be resolved.

Memory Consumption. Let𝑤 be the size of a word in bytes. The authors use𝑤 = 5 and
can process text up to 1 TB. The maximum main memory is required during the sorting of
the suffixes in 𝐶+▷. When new ranks are computed in the sorting, the suffixes starting
position are sorted together with two ranks, requiring 3 words per considered suffix. There
are at most 𝑛/2 suffix of class 𝐶+▷. Taking into account that we also require space for the
receive buffers, the total memory required is 3𝑤𝑛 bytes. Further, 2𝜎2𝑤𝑝 bytes are required
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3.2. Distributed Suffix Sorting

to store the sizes of the sub-classes. With equal distribution of the data, this results in a
maximum of 3𝑤𝑛/𝑝 + 2𝜎2𝑤 bytes per PE in addition to the input text.
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4. Building Blocks

Distributed sorting routines form core building blocks in our DCX implementation. We
have to repeatedly sort sequence of numbers, sequence of strings of length𝑋 and a mixture
of both types of sequence. Conventional sorting assumes atomic elements, which means
elements can be compared and swapped in constant time. However, this is not the case
if we consider the lexicographic sorting of strings. Here, it is important to exploit the
structure of the keys and avoid repeated comparison. Specialized string sorting algorithms
can be used for that purpose. Since𝑋 is rather small (≤ 133) and fixed during the algorithm,
comparison-based or atomic sorting can be applied as well to sort the 𝑋 -length strings. We
want to evaluate and compare both types sorting. In the following, we give an introduction
to distributed atomic sorting in Section 4.1 and distributed string sorting in Section 4.2.1.

4.1. Distributed Atomic Sorting

There is a wide variety of distributed atomic sorting algorithms. For a more comprehensive
overview of distributed sorters, we refer to [5]. The various algorithms offer a trade-off
between latency and communication volume. Low latency makes them more efficient for
small sized inputs, while low communication volume is more beneficial for large inputs.
We briefly introduce some distributed sorting algorithms that we use as building blocks
in our algorithm. Table 4.1 shows the latency and communication volume complexities
of the presented algorithms. (All)-gather-merge, simply collects and sorts all data one a
single PE.

Sample Sort. Sample Sort [18] consists of three phases.

1. A sorted set of 𝑝 − 1 splitter elements is selected that partitions the keys into 𝑝
buckets.

2. Each PE sends the 𝑖-th bucket to PE 𝑖 .

3. The elements are sorted within each bucket. Alternatively, one can also use a 𝑘-way
merging procedure.

To select the splitter elements from the 𝑛 input elements, a sample of 𝑝𝑠 ≤ 𝑛 elements is
chosen uniformly at random. The parameter 𝑠 is the so-called oversampling ratio. This
sample is sorted, and the elements with the ranks 𝑠, 2𝑠, . . . (𝑝 − 1)𝑠 are chosen as splitters.
The sorting of the samples is another distributed sorting problem, which can be handled
by using a different distributed sorter or by gathering the samples on a single PE and
sorting them locally. Using the latter option, the algorithm is efficient for a minimum size
of 𝑛 ∈ Ω(𝑝2/log𝑝), i.e. the isoefficiency function is Ω(𝑝2/log𝑝) [53].
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4.1. Distributed Atomic Sorting

Table 4.1.: Complexity of parallel sorting algorithms [7]. Implicit O(·). 𝑘 = 𝑟
√
𝑝 , where 𝑟 is

the number of levels used in AMS.
Algorithm Latency [𝛼] Comm. Vol. [𝛽]
(All)-gather-merge log𝑝 𝑛

Sample Sort ≥ 𝑝 ≥ 𝑛/𝑝
AMS 𝑘 log𝑘 𝑝 𝑛

𝑝
log𝑘 𝑝

Rquick log2 𝑝 𝑛
𝑝
log𝑝

Adaptive Multi-Level Sample Sort (AMS-sort) [6, 7]. Sample sort suffers from a latency
bottleneck, since every PE receives at least 𝑝 − 1 splitters. Instead, AMS divides PEs into
groups of size 𝑝′, only exchanges elements between groups, and proceeds recursively
in 𝑘 levels. Using only 𝑟 = 𝑝/𝑝′ splitters, the authors improve the isoeffiency function
to Ω(𝑝1+1/𝑘/log𝑝). The parameter 𝑘 is a trade-off between asymptotic scalability and
communication overhead from data exchange operations. This approach is based on
previous work of Gerbessiotis and Valiant [36], who developed a multi-level variant of
sample sort in the bulk-synchronous parallel model. The authors of AMS improve the
original idea in various ways. They developed a fast work inefficient sorting algorithm
to sort the samples, advanced data delivery algorithms and a scalable adaptation of the
idea of overpartitioning [59]. Using overpartitioning for achieving imbalance of 𝜀, reduces
sample size required for a good load-balance from O(1/𝜀2) to O(1/𝜀). In this method,
𝑘𝑝 − 1 splitters are selected from 𝑘𝑝𝑠 samples. The resulting 𝑘𝑝 buckets are then assigned
to the PEs in a load-balanced way. Given an upper bound 𝐿 on the number of elements
per PE, the array of buckets sizes is scanned and they skip to the next PE-group when the
total load would exceed 𝐿. An optimal value of 𝐿 can be determined using a binary search.

Rquick [7]. Rquick is a parallel quicksort implementation that uses the hypercube de-
sign pattern (see Algorithm 2). Such algorithms use communication in a conceptional
hypercube of dimension 𝑑 such that 𝑝 = 2𝑑 to exchange messages between PEs. While
iterating through the 𝑗-th dimensions of the hypercube, the communication partner of
PE 𝑖 is determined by 𝑖 ⊕ 2 𝑗 . The topology allows an efficient implementation of basic
communication primitives such as all-gather or all-reduce and routing data for random
start or destination nodes [24] requires only O(𝛼 log𝑝) startup overhead overall. Initially,
to avoid skewed data distribution, Rquick randomly redistributes the data and locally
sorts the elements. In the 𝑗-th hypercube iteration, a splitter element 𝑠 is calculated using
a communication efficient median approximation. Each PE locally partitions the data
according to 𝑠 into 𝑆< and 𝑆>=. The communication partner with the 0-bit at the position
𝑗 receives and merges the elements smaller than 𝑠 and his partner the elements larger or
equal than 𝑠 . In addition, the authors use a low-overhead tie-breaking scheme to make
the algorithm robust against repeated keys. Rquick closes the gap between very small
and very large inputs, outperforming competitors on small inputs for 23 to 214 elements
per core. This can be useful, for example, when sorting a small sample of elements to
determine splitter elements in sample sort.
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Algorithm 2: Hypercube Algorithm Design Pattern
1 local computation on PE 𝑖
2 for 0 ≤ 𝑗 < 𝑝 do
3 send message𝑚 to PE 𝑖 ⊕ 2 𝑗
4 receive message𝑚′ from PE 𝑖 ⊕ 2 𝑗
5 perform local computation using𝑚 and𝑚′

4.2. Distributed String Sorting

In our suffix sorting algorithm, (short) strings of length𝑋 have to be sorted as a subroutine.
We implemented our own distributed string sorting routine, which builds on sequential
string sorting (Section 4.2.1), efficient 𝑘-way merging of strings using LCP-aware Loser
Trees (Section 4.2.2) as well as LCP-compression (Section 4.2.3) and distinguishing prefix
approximation (Section 4.2.4), techniques to reduce the communication volume of the
exchanged strings.

4.2.1. Sequential String Sorting

We give a brief introduction to the sequential string sorting algorithms we incorporated
into our implementations. Bingmann [12] provides an overview of the most important
sequential sorting algorithms, including Multikey Quicksort, MSD Radix Sort, Burstsort,
LCP-Mergesort and Insertion Sort. We will focus on the first two, since they performed
the best in Bingmann’s experimental evaluation. Both algorithms can optionally compute
the LCP arrays of the strings during the sorting.

Multikey Quicksort. Bentley and Sedgewick [10] adapted Quick Sort for string data. Let
S be the set of input strings with a common prefix of ℎ. The algorithm uses the character
𝑥 = 𝑠 [ℎ] of a pivot string 𝑠 ∈ S to split S into S<, S= and S> based on comparison with
𝑠′[ℎ] for 𝑠′ ∈ S. Each partition is sorted recursively, with the exception of S=, if 𝑥 = $ is
the terminating character. The common prefix of the strings in S= is increased by one,
avoiding comparing the characters found to be equal with 𝑥 . In the base case, Insertion
Sort is used for constant size inputs. Multikey Quicksort has an expected execution time
of O(𝐷 + 𝑛 log𝑛), where 𝐷 is the distinguishing prefix of S and 𝑛 the number of input
strings.

MSD Radix Sort. Again, consider a set of input strings S with a common prefix ℎ. Most
Significant Digit (MSD) Radix Sort produces 𝜎 subproblems by partitioning S based on
𝑠 [ℎ] for 𝑠 ∈ S intoS𝑥 for 𝑥 ∈ Σ, which are sorted recursively with a common prefix of ℎ+1.
Paige and Tarjan [80] presented the first O(𝐷 + 𝜎) radix sort algorithm. There is much
research on practical implementations of radix sort. McIlroy, Bostic, and McIlroy [67] were
the first to engineer variants of radix sort and to propose concrete practical considerations.
Ng and Kakehi [72] extended radix sort with a caching variant. To avoid cache misses, they
propose to fetch 𝑧 characters at once from a string, instead of a single character. The cached
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chars are stored in buffer aligned with the string pointer array. Kärkkäinen and Rantala
[45] presented an extensive experimental study of radix sorter variants and developed the
fastest practical radix string sorters. They incorporated caching optimizations, adaptive
16-bit radix sorts, and optimizations of inner loops taking advantage modern processors’
super-scalar accelerations and memory latency hiding. Various high quality string sorting
algorithms are implemented by Rantala and are available in a public repository [82].

4.2.2. LCP-Merging

In distributed sample sort, each PE receives 𝑝 buckets of sorted strings that need to
be merged. This 𝑝-way merging procedure can be solved using Loser Trees [50, 83]. If
additionally the LCP-values of the strings are know, Loser Trees can be enhanced with
LCP-values to save character comparisons in the merging process. The so-called LCP-

aware Loser Tree [15] adapt a 2-way LCP-aware merging procedure proposed by [73] to
𝑘-way merging of strings with LCP-values. In the following, we describe the LCP-Compare
function used to defined 2-way LCP-aware merging, 𝑘-way merging with Loser Trees and
their extensions to LCP-aware Loser Trees.

Binary LCP-Compare [73]. Consider the comparison of two strings 𝑠1 and 𝑠2. Additionally,
we know their LCP-values with another string 𝑝 where 𝑝 ≤ 𝑠1 and 𝑝 ≤ 𝑠2. We denote their
LCP-values by ℎ1 = LCP(𝑝, 𝑠1) , ℎ2 = LCP(𝑝, 𝑠2) and the output LCP of the comparison by
ℎ′ = LCP(𝑠1, 𝑠2). There are three cases to distinguish:

1. ℎ𝑎 = ℎ𝑏 : Then, 𝑠1 and 𝑠2 share a common prefix of length ℎ = ℎ𝑎 and we compare
the two strings character-by-character starting at the positions (ℎ + 1), saving ℎ
character comparisons. We set ℎ′ to ℎ plus the number of extra comparisons.

2. ℎ𝑎 < ℎ𝑏 : Thus, 𝑠1 and 𝑠2 differ at position 𝑙 = ℎ + 1. From 𝑝 ≤ 𝑠1 and 𝑝 [𝑙] = 𝑠2 [𝑙] <
𝑠1 [𝑙] follows 𝑠2 < 𝑠1 without comparing additional characters. We set ℎ′ to ℎ𝑎 .

3. ℎ𝑎 > ℎ𝑏 : The same argument as in case 2 can be applied symmetrically and we get
𝑠1 < 𝑠2 and set ℎ′ to ℎ𝑏 .

Using binary LCP-Compare, we can define a LCP-aware 2-way merging routine. The
above strings 𝑠1 and 𝑠2 take the role of the next candidates of the two streams and 𝑝 the
role of the last element that was written to the output stream. In the beginning, 𝑝 is the
empty string. Say 𝑠1 is the smaller element and 𝑠′1 the next string in its corresponding
stream. The LCP-values for the next comparison are given by ℎ′1 = LCP(𝑠1, 𝑠′1), which is
know from the LCP-array, and ℎ′2 = ℎ′ = LCP(𝑠1, 𝑠2).

𝑘-way Merging with Loser Trees [50, 83]. In a Loser Tree, the next elements of the 𝑘 input
streams are considered as 𝑘 players participating in a tournament organized in a binary
tree. The winner of a game is determined by binary comparison. Each leaf in the binary
tree corresponds to one of the 𝑘 players and each inner node represents a game between
the two children nodes. The winner advances to the parent node and the loser is stored in
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the inner node. After log2 𝑘 rounds and a total of 𝑘 − 1 games, the overall winner is the
smallest element among the 𝑘 elements.

In the 𝑘-way merging routine, first an initial round on all nodes is played bottom up, the
winner can be written to the output stream and the next element from the corresponding
input stream takes its place. Now, only the log2 𝑘 games along the root-to-leaf path, in
which the winner participated, have to be replayed. This procedure is repeated until all
input streams are empty. Empty streams are replaced by sentinels larger than all the other
elements, to avoid corner case. We can assume 𝑘 to be a power of two, by filling up empty
streams as needed. Thus, we can assume the binary tree to be perfect and represent it
implicitly in an array. Determining the parent corresponds to division by two: ⌊𝑖/2⌋. The
root is stored at 𝑖 = 1 (using 1-indexed arrays). Overall, to merge all 𝑛 elements, 𝑘 − 1
comparison are needed for the initial round and (𝑛 − 1) log2 𝑘 for replaying the games of
the remaining elements.

𝑘-way LCP-Merging [15]. We now explain how to extent 𝑘-way merging with LCP-values
to save character comparisons. Binary comparisons are performed with the LCP-Compare
function. Therefore, the input streams now additionally contain the corresponding LCP-
arrays to the sorted sequence of strings. Games played between leaf nodes use the LCP-
values directly from the LCP-array. For inner nodes, where 𝑠1 was the loser string in a game
with 𝑠2, we store the output LCP ℎ = LCP(𝑠1, 𝑠2) alongside the loser string. The winner
𝑠2 advances up the tree and uses the LCP-value ℎ in the next round. When replaying
games on a root-to-leaf path, the requirements for LCP-Compare are fulfilled. Since the
winner string𝑤 was also the winner on each game played on the path, each loser string
on that path 𝑠 stores LCP(𝑤, 𝑠𝑖) and 𝑤 takes the role of 𝑝 as in the 2-way LCP-aware
merging procedure. Figure 4.1 shows a LCP-aware Loser Tree with eight input streams.
The following theorem bounds the maximum number of required comparisons.

Theorem1 (Complexity of LCP-𝑘-way-merging [15]). LetS0 be themerged output sequence

of the𝑘 input sequencesS1,S2, . . .S𝑘 . A LCP-aware Loser Tree needs at mostΔ𝐿+|S0 | log𝑘+𝑘
character comparisons, where Δ𝐿 = L(S0) −

∑𝐾
𝑘=1 L(S𝑘) is the sum of increments to LCP

array entries.

4.2.3. LCP-Compression

LCP-compression [17] is a technique to reduce the communication volume when exchang-
ing a sorted set of strings S. The idea is to send each common prefix of S only once and
reconstruct the original string using the LCP-values. Let H(S) = [⊥, ℎ1, ℎ2, . . . ℎ |S|−1] be
the LCP-array of S. The character 𝑠𝑖 [ℎ𝑖] for 1 ≤ 𝑖 ≤ |S| is the first character, in which 𝑠𝑖
and 𝑠𝑖−1 differ. Thus, we only have to send the characters 𝑠′𝑖 = 𝑠𝑖 [ℎ𝑖, |𝑠𝑖 |). We set 𝑠′0 = 𝑠0,
since the first string has no preceding string. The compressed set of strings of S is

S′ = [𝑠′0, 𝑠′1, 𝑠′2, . . . , 𝑠′|S|−1] .

We can reconstruct S from S′ and H(S) in a left to right scan. The first string 𝑠0 is
the same in both strings. Every subsequent string 𝑠𝑖 is obtained by copying the first ℎ𝑖
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(𝑤,ℎ)

(𝑦2, ℎ2 )
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Figure 4.1.: LCP-aware Loser Tree with eight input streams.

characters of the preceding string and concatenating it with the compressed string 𝑠′𝑖 , i.e.
𝑠𝑖 = 𝑠𝑖−1 [0, ℎ𝑖) ⊙ 𝑠′𝑖 .

Compression and decompression perform just one iteration over the data and copies
each character at most once. Thus, LCP-compression takes linear time complexity. The
compression sends

∑|S|−1
𝑖=1 ℎ𝑖 less characters than a direct exchange, but requires to send

the LCP-array H(S) alongside the compressed strings S′. Additionally, there is trade-off
between time spent on the compression/decompression algorithm and the time saved by
the reduced communication volume.

4.2.4. Distinguishing Prefix Approximation

When sorting a set of strings S, it is sufficient to examine the distinguishing prefixes of
each string to determine their sorted order. Only these prefixes of the strings have to be
communicated between the PEs. Determining the distinguishing prefix is equivalent to
checking whether there are any duplicates of it. Apart from communicating the entire
prefix, there is no known deterministic solution. However, we can use randomization. We
compute fingerprints by hashing the considered prefixes. Unique prefixes are identified
by unique fingerprints. False positives may lead us to miss distinct prefixes, which have
the same fingerprint by pure chance. In this case, we would send more characters than
necessary, but we preserve correctness.
Approximating distinguishing prefixes is desirable. It reduces the time spent on com-

puting the distinguishing prefix, while still decreasing the communication volume. An
efficient approximation in distributed memory based on prefix doubling is described in
[86]. During the algorithm, a candidate set C𝑖 of all strings S𝑖 on PE 𝑖 is maintained whose
distinguishing prefix has not yet been determined. Initially, C𝑖 contains all strings in S𝑖
and the current prefix length 𝑙 is set to a small starting value. The algorithm works in
rounds.

1. Local Processing. Compute the fingerprints of the 𝑙-prefixes in the candidate set
C𝑖 , locally sort the hash values and remove duplicates.

23



4. Building Blocks

2. Exchange. Send the hash values ℎ in the range (𝑘 − 1) (𝑚/𝑝) ≤ ℎ < 𝑘 (𝑚/𝑝) to PE
𝑘 , where𝑚 is the maximum value of the hash function.

3. Duplicate Detection. Locally determine duplicates of the received hash values by
sorting or merging the incoming fingerprints. Send a bit array to each PE, where the
𝑗-th bit indicates whether the 𝑗-th received fingerprint of the sending PE is unique.

4. Local Postprocessing. Store 𝑙 as the length of the distinguishing prefix for unique
candidates and remove them from C𝑖 . Set 𝑙 to 2 · 𝑙 and continue with Step 1 until the
candidate set is empty.
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Difference Cover modulo 𝑋 (DCX) was the first linear time suffix array construction algo-
rithm [46]. The key idea is to recursively compute the suffix array of sample suffixes with
a useful mathematical structure. Using the ranks of the sample suffixes, a comparison
function can be defined that allows to sort all suffixes efficiently.
This chapter is structured as follows. First, we explain the sequential DC3 algorithm

with a detailed example execution (Section 5.1), we introduce difference covers (Section
5.2), a combinatorial structure underlying DC3 that allows to define a generalized variant
called DCX (Section 5.3). Next, we present our main algorithm, the distributed version
of DCX (Section 5.4). In the following sections, we describe discarding (Section 5.5),
bucketing (Section 5.6) and chunking (Section 5.7), algorithmic techniques that aim to
improve distributed DCX in running time and memory consumption. Then, we explain
further optimizations regarding string sorting and packing (Section 5.8). Lastly, we give
details about string containers, data types and practical considerations when implementing
bucketing (Section 5.9).

5.1. Example Execution of DC3 Algorithm

Our description of DC3 and DCX closely follows Kärkkäinen et al. [46]. We begin with a
detailed example execution of DC3 on the following text. The text is padded with three
sentinel characters to account for samples that extend beyond the text boundary.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
a b b c a b b c c a b $ $ $

Step 0: Construct Samples. We denote the set of periodic positions for 𝑘 = 0, 1, 2 by

𝑃𝑘 = {𝑖 ∈ [0, 𝑛] | 𝑖 mod 3 = 𝑘}.

Let 𝐶 = 𝑃1 ∪ 𝑃2 be the set of sample positions and 𝑆𝐶 the sample suffixes with starting
positions 𝐶 .

Example.

𝑃1 = {1, 4, 7, 10}, 𝑃2 = {2, 5, 8, 11}, 𝐶 = {1, 2, 4, 5, 7, 8, 10, 11}.
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5. Suffix Sorting using Difference Covers

Step 1: Sort Sample Suffixes. In this step, we want to determine the ranks of the sample
suffixes 𝑆𝐶 . We require a helper string, which characters consist of triples [𝑥 𝑦 𝑧] for
𝑘 = 1, 2

𝑅𝑘 =
⊙
𝑖∈𝑃𝑘

[𝑇 [𝑖] 𝑇 [𝑖 + 1] 𝑇 [𝑖 + 2]],

where
⊙

is the concatenation operator. Let 𝑅 = 𝑅1 ⊙ 𝑅2. Notice that the set of suffixes of
𝑅 corresponds to the set of sample suffixes 𝑆𝐶 . By sorting the suffixes of 𝑅, we also get the
order of the sample suffixes.

Example.

𝑅 = [bbc] [abb] [cca] [b$$] [bca] [bbc] [cab] [$$$]
To be able to work with an integer alphabet, we do not directly sort the suffixes of 𝑅.

Instead, we radix sort the triples of 𝑅 and replace each with its rank to obtain 𝑅′.
Example.

triple $$$ abb b$$ bbc bbc bca cab cca

rank 0 1 2 3 3 4 5 6

𝑅′ = (3, 1, 6, 2, 4, 3, 5, 0).
If all ranks of 𝑅′ are unique, we have already determined the sample suffix ranks. This

occurs, if the sample suffixes are distinguishable by their first three characters. Otherwise,
we call DC3 recursively on 𝑅′, to obtain the suffix array of 𝑆𝐴𝑅′ . Inverting the permutation
𝑆𝐴𝑅′ , we get the ranks of each sample suffix, i.e. the inverse suffix array 𝐼𝑆𝐴𝑅′ .

𝑆𝐴𝑅′ = (7, 1, 3, 0, 5, 4, 6, 2), 𝐼𝑆𝐴𝑅′ = (3, 1, 7, 2, 5, 4, 6, 0).
Now, we know the order of all sample suffixes and still have to determine the ranks for

all suffixes. Let 𝑟𝑎𝑛𝑘 (𝑆𝑖) denote the rank of a sample suffix in 𝑆𝐶 . We set 𝑟𝑎𝑛𝑘 (𝑆𝑖) = 0 for
padding positions and leave 𝑟𝑎𝑛𝑘 (𝑆𝑖) undefined for non-sample positions.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
𝑇 a b b c a b b c c a b $ $ $

𝑟𝑎𝑛𝑘𝑠 (𝑆𝑖) ⊥ 3 4 ⊥ 1 3 ⊥ 6 5 ⊥ 2 0 0 0

Step 2: Sort Non-Sample Suffixes. To sort the non-sample suffixes 𝑆𝐵0 , we can use the
following observation:

𝑆𝑖 ≤ 𝑆 𝑗 ⇔ (𝑇 [𝑖], 𝑟𝑎𝑛𝑘 (𝑆𝑖+1) ≤ (𝑇 [ 𝑗], 𝑟𝑎𝑛𝑘 (𝑆 𝑗+1), 𝑖, 𝑗 ∈ 𝐵0.
When we compare the suffixes 𝑆𝑖 and 𝑆 𝑗 character-by-character we can stop and use

𝑟𝑎𝑛𝑘 (·) once both positions correspond to sample positions. This occurs after the first step,
since non-samples positions are in 𝑃0, and 𝑃1 are sample-positions. Again, radix sort is
used to sort the tuples. The choice of samples can be generalized to use so-called difference
cover samples as we will later see in Section 5.3.
Example. 𝑆9 < 𝑆0 ⇔ (a, 𝑆10) < (a, 𝑆1) ⇔ (a, 2) < (a, 3).
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Step 3: Merge Sample and Non-Sample Suffixes. Using standard 2-way merging on the
two sorted sets, we obtain the suffix array of 𝑇 . With a similar argument as in Step 2, we
can define a comparison function for a suffix 𝑆𝑖 ∈ 𝑆𝐶 and 𝑆 𝑗 ∈ 𝑆𝑃0 by distinguishing two
cases:

𝑖 ∈ 𝑃1 : 𝑆𝑖 ≤ 𝑆 𝑗 ⇔ (𝑇 [𝑖], 𝑟𝑎𝑛𝑘 (𝑆𝑖+1)) ≤ (𝑇 [ 𝑗], 𝑟𝑎𝑛𝑘 (𝑆 𝑗+1))
𝑖 ∈ 𝑃2 : 𝑆𝑖 ≤ 𝑆 𝑗 ⇔ (𝑇 [𝑖],𝑇 [𝑖 + 1], 𝑟𝑎𝑛𝑘 (𝑆𝑖+2)) ≤ (𝑇 [ 𝑗],𝑇 [ 𝑗 + 1], 𝑟𝑎𝑛𝑘 (𝑆 𝑗+2)) .

In the first case, 𝑖 + 1 ∈ 𝑃2 and 𝑗 + 1 ∈ 𝑃1, thus, the ranks are well defined. In the second
case, 𝑖 + 1 ∈ 𝑃0 and 𝑗 + 1 ∈ 𝑃1, consequently we have to compare an additional character.
After two steps we have 𝑖 + 2 ∈ 𝑃1 and 𝑗 + 2 ∈ 𝑃2 and we can use the rank information of
the sample suffixes.
Example. 𝑆0 < 𝑆4 ⇔ (a, 𝑆1) ≤ (a, 𝑆5) ⇔ (a, 3) ≤ (a, 5) and 𝑆8 < 𝑆3 ⇔ (c, a, 𝑆10) ≤

(c, a, 𝑆5) ⇔ (c, a, 2) ≤ (c, a, 3).

Complexity. On each level the algorithm takes linear time, as radix sort is used for sorting
routines. Overall, we obtain linear complexity by applying the Master Theorem to the
recurrence 𝑇 (𝑛) = 𝑇 (2𝑛/3) + O(𝑛).

5.2. Difference Cover Samples

The sample used in DC3 is a special case of a difference cover. Here, we introduce some
basic definitions and properties of difference covers. In the next section, we describe the
generalized DCX algorithm that works with any difference cover.

Definition 1. A set 𝐷𝑋 ⊆ [0, 𝑋 ) is a difference cover modulo 𝑋 if

{(𝑖 − 𝑗) mod 𝑋 | 𝑖, 𝑗 ∈ 𝐷𝑋 } = [0, 𝑋 ).

We call 𝑋 the period length and denote the reduction ratio of 𝐷𝑋 by 𝜆 = |𝐷𝑋 |/𝑋 . In the
generalized version of DCX, 𝜆 will be the reduction ratio of the recursive subproblem.
Table 5.1 shows a list difference covers up to 𝑋 = 133 and their corresponding value of 𝜆.

Clearly,
√
𝑋 is a lower bound on the size of any difference cover 𝐷𝑋 . Otherwise, there

are to few of pairs of integers to produce [0, 𝑋 ). Furthermore, for any 𝑋 , a difference cover
𝐷𝑋 of size at most

√
1.5𝑋 + 6 can be computed in O(

√
𝑋 ) time [23].

Example. 𝐷7 = {1, 2, 4} is a minimal difference cover for 𝑋 = 7.

0 ≡ 1 − 1, 1 ≡ 2 − 1, 2 ≡ 4 − 2, 3 ≡ 4 − 1, 4 ≡ 1 − 4, 5 ≡ 2 − 4, 6 ≡ 1 − 2.

A smaller difference cover cannot exists, since
√
7 ≈ 2.645 . . . is the lower bound.

Definition 2. Any index 𝑖 ∈ [0, 𝑛] can be written uniquely as 𝑖 = 𝑋 ·𝑚 + 𝑑 for𝑚 ≤ 𝑛 and
𝑑 ∈ [0, 𝑋 ). We call𝑚 the period and 𝑑 the phase of 𝑖 .

Example. Let 𝑋 = 7 and 𝑖 = 18 = 7 · 2 + 4. Then, the period of 𝑖 is 2 and the phase is 4.
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|𝐷𝑋 | Ring 𝐷𝑋 𝜆

2 Z3 {1, 2} 0.667
3 Z7 {1, 2, 4} 0.429
4 Z13 {1, 2, 4, 10} 0.308
5 Z21 {1, 2, 7, 9, 19} 0.238
6 Z31 {1, 2, 4, 9, 13, 19} 0.194
7 Z39 {1, 2, 17, 21, 23, 28, 31} 0.179
8 Z57 {1, 2, 10, 12, 15, 36, 40, 52} 0.140
9 Z73 {1, 2, 4, 8, 16, 32, 37, 55, 64} 0.123
10 Z91 {1, 2, 8, 17, 28, 57, 61, 69, 71, 74} 0.110
11 Z95 {1, 2, 6, 9, 19, 21, 30, 32, 46, 62, 68} 0.116
12 Z133 {1, 2, 33, 43, 45, 49, 52, 60, 73, 78, 98, 112} 0.090

Table 5.1.: Table of difference covers 𝐷𝑋 for 𝑋 = 2, 3 . . . , 12 and their corresponding value
of the reduction ratio 𝜆.

Definition 3. Given a difference cover 𝐷𝑋 , a difference cover sample is a𝑋 -periodic sample
of 𝐷𝑋

𝐶 = {𝑖 ∈ [0, 𝑛] | 𝑖 mod 𝑋 ∈ 𝐷𝑋 }.

Example. Let 𝑛 = 18, 𝑋 = 7 and 𝐷7 = {1, 2, 4}, then

𝐶 = {1, 2, 4, 8, 9, 11, 18}

An important property of difference covers that we later require to define the comparison
function for sorting all suffixes is given by the following Lemma.

Lemma 4 (Lemma 1 in [46]). If 𝐷𝑋 is a difference cover modulo𝑋 , and 𝑖 and 𝑗 are integers,
there exists 𝑙 ∈ [0, 𝑋 ) such that (𝑖 + 𝑙) mod 𝑋 and ( 𝑗 + 𝑙) mod 𝑋 are in 𝐷𝑋 .

Proof. Since 𝐷𝑋 is a difference cover, by definition, there exists 𝑖′, 𝑗 ′ ∈ 𝐷𝑋 , such that
(𝑖 − 𝑗) ≡ (𝑖′ − 𝑗 ′) mod 𝑋 . We define 𝑙 = (𝑖′ − 𝑖) mod 𝑋 . Then

𝑖 + 𝑙 ≡ 𝑖 + (𝑖′ − 𝑖) ≡ 𝑖′ ∈ 𝐷𝑋 mod 𝑋
𝑗 + 𝑙 ≡ 𝑖′ − (𝑖 − 𝑗) ≡ 𝑖′ − (𝑖′ − 𝑗 ′) ≡ 𝑗 ′ ∈ 𝐷𝑋 mod 𝑋

□

Example. Let𝐷7 = {1, 2, 4},𝑋 = 7 and 𝑖 = 4, 𝑗 = 5. Then 4+4 ≡ 1 ∈ 𝐷7 and 5+4 ≡ 2 ∈ 𝐷7.
Hence 𝑙 = 4 in this case.

5.3. The General DCX Algorithm

DC3 uses difference cover samples based on 𝐷3 = {1, 2} over the ring Z3 to sort all suffixes.
The generalized DCX algorithm works similar in principle and can use any difference
cover 𝐷𝑋 .
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Step 0: Construct Samples. For 𝑘 ∈ [0, 𝑋 ), we denote the set of periodic positions by

𝑃𝑘 = {𝑖 ∈ [0, 𝑛] | 𝑖 mod 𝑋 = 𝑘}.

Let 𝐷𝑋 = [0, 𝑋 ) \ 𝐷𝑋 be the elements not contained in the difference cover 𝐷𝑋 . Sample
positions are now defined as 𝐶 =

⋃
𝑘∈𝐷𝑋

𝑃𝑘 and non-sample positions as 𝐶 = [0, 𝑛] \𝐶 .

Step 1: Sort Sample Suffixes. To determine the ranks of the sample suffixes 𝑆𝐶 , we define
the helper strings with characters consisting of 𝑋 -tuples for 𝑘 ∈ 𝐷𝑋

𝑅𝑘 =
⊙
𝑖∈𝑃𝑘

[𝑇 [𝑖] 𝑇 [𝑖 + 1] . . . ,𝑇 [𝑖 + 𝑋 − 1]],

and let 𝑅 =
⊙

𝑖∈𝐷𝑋
𝑅𝑖 . Recall, that the suffixes of 𝑅 correspond to the sample suffixes 𝑆𝐶 .

Thus, sorting the suffixes of 𝑅 we get the order of the sample suffixes. Similar to DC3, we
sort the 𝑋 -tuples, replace them by their ranks and recursively continue with 𝑅′ if not all
ranks are unique. Note that the underlying alphabet Σ changes to [0, 𝑀] in a recursive
step where𝑀 is the largest rank in 𝑅′. We define 𝑟𝑎𝑛𝑘 (𝑆𝑖) as before.

Step 2: Sort Non-Sample Suffixes. We sort each 𝑆𝑃𝑘 for 𝑘 ∈ 𝐷𝑋 separately. A similar
observation to the one in Step 2 of DC3 (Section 5.1) can be made.

𝑆𝑖 ≤ 𝑆 𝑗 ⇔ (𝑇 [𝑖, 𝑖 + 𝑙), 𝑟𝑎𝑛𝑘 (𝑆𝑖+𝑙 ) ≤ (𝑇 [ 𝑗, 𝑗 + 𝑙), 𝑟𝑎𝑛𝑘 (𝑆 𝑗+𝑙 ).

When comparing two suffixes 𝑆𝑖, 𝑆 𝑗 with 𝑖, 𝑗 ∈ 𝑃𝑘 , we compare character-by-character
until the current position is a sample suffix. By Lemma 4, this takes 𝑙 ∈ [0, 𝑋 ) steps.
We could apply a 𝑋 -way merging routine with a Θ(𝑋 )-comparison function, directly
generalizing DC3. This would result in O(𝑛𝑋 log𝑋 ) complexity. However, there is better
way, which only requires O(𝑛𝑋 ) time.

Step 3: Sort by First𝑋 Characters. We separate the sample suffixes 𝑆𝐶 into 𝑆𝑃𝑘 for 𝑘 ∈ 𝐷𝑋 ,
keeping each set sorted. All the sets 𝑆𝑃𝑘 for 𝑘 ∈ [0, 𝑋 ) are now in different sorted sequences.
In the next step, we concatenated these sequence and stably sort them by their first 𝑋
characters. Let 𝑆𝛼 denote the set of suffixes starting with 𝛼 ∈ Σ𝑋 and 𝑆𝛼

𝑃𝑘
= 𝑆𝛼 ∩ 𝑆𝑃𝑘 . After

the sorting, the sequence is grouped into sets 𝑆𝛼 , which in turn are grouped into subgroups
𝑆𝑃𝑘 , 𝑘 ∈ [0, 𝑋 ). For 𝑋 = 3, the situation could look like this:

𝑆aaa
𝑃0

𝑆aaa
𝑃1

𝑆aaa
𝑃2

𝑆aab
𝑃0

𝑆aab
𝑃1

𝑆aab
𝑃2

𝑆aac
𝑃0

· · ·

Step 4: Merge Sample and Non-Sample Suffixes. Notice, that by the sorting we only have
to reorder suffixes within each group 𝑆𝛼 . We merge the subgroups in each 𝑆𝛼 , 𝛼 ∈ Σ𝑋 using
a comparison-based 𝑋 -way merging routine. This completes the sorting. To compare the
suffix 𝑆𝑖 with 𝑆 𝑗 , we compare the ranks 𝑟𝑎𝑛𝑘 (𝑆𝑖+𝑙 ), 𝑟𝑎𝑛𝑘 (𝑆 𝑗+𝑙 ), where 𝑙 ∈ [0, 𝑋 ) such that
(𝑖 + 𝑙) mod 𝑋 and ( 𝑗 + 𝑙) mod 𝑋 are both in 𝐷𝑋 (Lemma 4).
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Complexity. Similar to DC3, we obtain a recurrence 𝑇 (𝑛,𝑋 ) = 𝑇 (𝜆𝑛) + O(𝑛𝑋 ) where
𝜆 = |𝐷𝑋 |/𝑋 . The work on a level is dominated by radix sorting the 𝑋 -tuple. Applying the
Master Theorem results in O(𝑛𝑋 ) complexity.

The Choice of the Period Length𝑋 . DCX allows flexibility in the choice of the difference
cover 𝐷𝑋 and 𝑋 . Larger values of 𝑋 achieve a greater reduction of the subproblem, but
increase the work of the sorting routines. In practice, the best choice of 𝑋 depends on
characteristic of the input and the concrete implementation.

5.4. The Distributed DCX Algorithm

Distributed DCX is a straightforward generalization of the distributed DC3 algorithm by
Kulla and Sanders [52]. It works similarly to the sequential DCX algorithm. However, in
the last step, instead of merging multiple sorted sequences, it globally sorts all samples
and non-samples together. Distributed 𝑘-way merging requires us to partition the sorted
sequence among the PEs, such that after local merging the global sequence is sorted. This
is similar to how in distributed sorting a single sequence is partitioned. Thus, the simpler
globally sorting is the preferred choice in the distributed setting.
Algorithm 3 shows a high-level pseudocode for the algorithm. As a running example

we compute the SA of the following text using distributed DC3 with 𝐷3 = {1, 2} and three
PEs. We indicate the distribution of the data between the PEs with extra white spaces and
bars.

PE 0 PE 1 PE 2
b a a a b a a b a a a b $ $ $

input text 𝑇 with padding

Phase 1: Sorting of the Difference Cover Sample (Line 2 - Line 3). In the first phase of the
algorithm, the difference cover samples 𝑆 are sorted. Sorting the samples requires access to
parts that are not local to a PE. Thus, we explicitly materialize a sample with global index
𝑖 together with the next 𝑋 characters 𝑇 [𝑖, 𝑖 + 𝑋 ). Each PE 𝑗 materializes the difference
cover samples of their local input text 𝑇𝑗 . The last samples on PE 𝑗 < 𝑝 − 1 might overlap
with the local text on PE 𝑗 + 1. To handle this, PE 𝑗 + 1 sends its first 𝑋 − 1 characters to
PE 𝑗 . The samples of the last PE 𝑗 = 𝑝 − 1 can reach beyond the input text. Therefore,
at the beginning of a level, the last PE appends 𝑋 copies of the character $ to the input
text. These padding characters will not be part of the final suffix array. In the example, we
indicate characters from neighboring PEs in gray.
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PE 0 PE 1 PE 2
𝑖 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
𝑇 b a a a b a a a a b a a a b a b $ $ $

input text 𝑇 with shifts and padding

𝑖 1 2 4 5 7 8 10 11
𝑆 aaa aab baa aab baa aaa ab$ b$$

materialize difference cover samples 𝑆

𝑖 1 8 2 5 10 11 4 7
𝑆 aaa aaa aab aab ab$ b$$ baa baa

difference cover samples 𝑆 in lexicographic order

Table 5.2.: Example Phase 1 of distributed DCX.

Phase 2: Naming the Sample Ranks (Line 4). Now, the samples are replaced with their
rank. The rank entries in the array 𝑃 can be expressed in terms of the following sum:

Δ𝑖 = 𝑆 [𝑖] ≠ 𝑆 [𝑖 + 1] for 0 ≤ 𝑖 < |𝑆 | − 1

𝑃 [𝑖] =
𝑖−1∑︁
𝑗=0

Δ 𝑗 for 0 ≤ 𝑖 < |𝑆 |.

Each PE locally determines Δ𝑖 by comparing the 𝑋 -prefixes of consecutive samples. This
requires another communication with the next PE (if 𝑗 < 𝑝 − 1) to compare the last entry.
Afterwards, we compute the local ranks using a local scan on Δ𝑖 . Let 𝑒 𝑗 be the local sum
of Δ𝑖 on PE 𝑗 . To correctly obtain the global ranks, we shift each rank by 𝑜 𝑗 , the result of
the global scan operation on 𝑒 𝑗 . In the example, shifted samples are marked in gray and 𝑒 𝑗
is marked in bold.

PE 0 PE 1 PE 2
𝑆 aaa aaa aab aab aab ab$ b$$ baa baa baa

Δ𝑖 0 1 0 1 1 1 0
local ranks 0 0 1 1 0 1 2 3 0 0 0
𝑜 𝑗 0 1 4
𝑃 0 0 1 1 2 3 4 4

computing the sample ranks in 𝑃

Table 5.3.: Example Phase 2 of distributed DCX.
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Phase 3: Recursively Compute Unique Ranks (Line 5 - Line 10). If the last rank in 𝑃 is |𝑆 | − 1,
all ranks are unique. This is communicated via a broadcast operation from the last PE.
Otherwise, we determine the unique sample ranks by recursion. We sort the ranks by
their global index 𝑖 using (𝑖 mod 𝑋, 𝑖 div 𝑋 ) as the comparison function. This partitions
the samples into blocks 𝐴0, 𝐴1, . . . , 𝐴 |𝐷𝑋 |−1 where the 𝑘-th block contains the ranks of the
𝑘-th difference cover element (𝑖 mod 𝑋 ) sorted by their global index (𝑖 div 𝑋 ). Recursively
calling DCX on the reordered sample ranks yields the suffix array 𝑆𝐴′ of the sample suffixes.
Line 7 pairs up the new ranks (0, 1, . . . |𝑆 | − 1) with the original global indices of the sample
suffixes. Finally, we bring the sample ranks back into text-order (Line 9 - Line 10).

The index transformation is realized by the MapBack function (Line 21 - Line 27). Any
global sample index 𝑖 = 𝑋 ·𝑚 +𝑑 is uniquely determined by its period𝑚 and its phase 𝑑 . In
the loop, we determine into which block𝐴𝑘 the index 𝑖 belongs and thus the corresponding
phase 𝑑 = 𝐷𝐶 [𝑘]. The period𝑚 is the local index 𝑖 in 𝐴𝑘 .

PE 0 PE 1 PE 2
𝑖 1 4 7 10 2 5 8 11
𝑃 0 4 4 2 1 1 0 3

𝑃 sorted by (𝑖 mod 𝑋, 𝑖 div 𝑋 )

𝑆𝐴′ 6 0 5 4 3 7 2 1
phase(𝑆𝐴′) 2 1 2 2 1 2 1 1
period(𝑆𝐴′) 2 0 1 0 3 3 2 1
MapBack(𝑆𝐴′) 8 1 5 2 10 11 7 4
𝑃 0 1 2 3 4 5 6 7

map back 𝑆𝐴′, |𝐴0 | = |𝐴1 | = 4

𝑖 1 2 4 5 7 8 10 11
𝑃 1 3 7 2 6 0 4 5

𝑃 with unique sample ranks in text-order

Table 5.4.: Example Phase 3 of distributed DCX.

Phase 4: Globally Sort All Suffixes (Line 11 - Line 14). In the last phase, we globally sort
all suffixes using the sample ranks we determined in Phase 3. The comparison function
is stated in Line 31 - Line 36. Because of Lemma 4, it is sufficient to compare 𝑙 ∈ [0, 𝑋 )
characters and then access the corresponding ranks at positions 𝑟1, 𝑟2 ∈ [0, |𝐷𝑋 |) to realize
the comparison. The constants 𝑙, 𝑟1 and 𝑟2 only depend on the underlying difference
cover and the remainder of the global indices 𝑖 mod 𝑋 and 𝑗 mod 𝑋 . Therefore, we can
precompute this information in a lookup-table.
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Similar to Phase 1, we make the information required for comparing two suffixes locally
available to each PE by materializing substrings of the text and ranks. The text is shifted
in the same way as in Phase 1. For shifting the ranks, PE 𝑖 < 𝑝 − 1 receives the first
|𝐷𝑋 | − 1 locally stored ranks of PE 𝑖 + 1. The last PE uses |𝐷𝑋 | − 1 dummy ranks ⊥ instead.
Dummy ranks are never accessed since the 𝑋 -prefixes at the end of the text contain a
unique number of $ characters. To compare one suffix with global index 𝑖 , we store the
next 𝑋 − 1 characters 𝑇 [𝑖, 𝑖 + 𝑋 − 1) and the next |𝐷𝑋 | ranks 𝑅 [F(𝑖), F(𝑖) + |𝐷𝑋 |) for a
transformed index F(𝑖). The last character of the 𝑋 -prefix is not needed, since 𝑙 < 𝑋 .

The transformation F(𝑖) works as follows. We know that every block of |𝐷𝑋 | consecutive
ranks in 𝑅 corresponds to the difference cover samples of every block of 𝑋 consecutive
characters in 𝑇 . To map from the 𝑋 -blocks to the |𝐷𝑋 |-blocks, we determine the period by
𝑖 div 𝑋 and compute the position of the first rank in this period by |𝐷𝑋 | · (𝑖 div 𝑋 ). Now,
we have to offset this position by a constant 𝑑 ∈ [0, |𝐷𝑋 |) to jump to the rank of the next
difference cover sample to the right of 𝑖 . The constant 𝑑 only depends on the underlying
difference cover and the phase of 𝑖 and can be precomputed in a lookup-table as well.
Finally, we extract the global indices from the sorted sequence𝑀 , which compose the

suffix array 𝑆𝐴 of the input text.

PE 0 PE 1 PE 2
𝑗 0 1 2 3 4 5 6 7 8 9
𝑅 1 3 7 2 2 6 0 4 4 5 ⊥ ⊥

shifted sample ranks 𝑅 with dummy rank

𝑖 0 1 2 3 4 5 6 7 8 9 10 11
2 · (𝑖 div 3) 0 0 0 2 2 2 4 4 4 6 6 6
𝐿𝑇1 [𝑖 mod 3] 0 0 1 0 0 1 0 0 1 0 0 1
𝐹 (𝑖) 0 0 1 2 2 3 4 4 5 6 6 7
𝑇 b a a a b a a b a a a b

𝑇 [𝑖, 𝑖 + 2) ba aa aa ab ba aa ab ba aa aa ab b$

𝑅 [𝐹 (𝑖), 𝐹 (𝑖) + 1] (1, 3) (1, 3) (3, 7) (7, 2) (7, 2) (2, 6) (6, 0) (6, 0) (0, 4) (4, 5) (4, 5) (⊥, ⊥)

materializing characters and ranks of𝑀

𝑖 8 1 9 5 2 10 6 3 11 7 0 4
𝑇 [𝑖, 𝑖 + 2] aa aa aa aa aa ab ab ab b$ ba ba ba

𝑅 [𝐹 (𝑖), 𝐹 (𝑖) + 1] (0, 4) (1, 3) (4, 5) (2, 6) (3, 7) (4, 5) (6, 0) (7, 2) (⊥, ⊥) (6, 0) (1, 3) (7, 2)

sorting all suffixes in𝑀

Computing the Lookup-Tables. Lookup-table 𝐿𝑇1 stores the offset used when mapping
a suffix in a 𝑋 -block to the corresponding sample rank in the |𝐷𝑋 |-blocks of the same
period. Let 𝐷 be a bit array of length 𝑋 with 𝐷 [𝑖] = 1 if 𝑖 ∈ |𝐷𝑋 | and 0 otherwise. 𝐿𝑇1 is
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0 1 2
0 (1, 0, 0) (1, 0, 1) (2, 1, 1)
1 (1, 1, 0) (0, 0, 0) (0, 0, 0)
2 (2, 1, 1) (0, 0, 0) (0, 0, 0)

lookup-table 𝐿𝑇2 with constants (𝑙, 𝑟1, 𝑟2)

𝑖 𝑗 𝑙 𝑟1 𝑟2 𝑇 [𝑖, 𝑖 + 𝑙) 𝑇 [ 𝑗, 𝑗 + 𝑙) 𝑅 [𝐹 (𝑖), 𝐹 (𝑖) + 1] [𝑟1] 𝑅 [𝐹 (𝑖), 𝐹 (𝑖) + 1] [𝑟2]
6 3 1 0 0 a a 6 7
2 6 2 1 1 aa ab 7 0
8 1 0 0 0 - - 0 1

example comparison function

Table 5.5.: Example Phase 4 of distributed DCX.

the exclusive prefix sum of 𝐷 , i.e. 𝐿𝑇1 [𝑖] = 𝐿𝑇1 [𝑖 − 1] + 𝐷 [𝑖 − 1] for 𝑖 > 0 and 𝐿𝑇1 [0] = 0.
This holds, since we have to skip over a rank entry, once we pass a sample suffix in the
𝑋 -block. The second lookup-table 𝐿𝑇2 contains the constant 𝑙 , such that 𝑖 + 𝑙 ∈ 𝐷𝑋 and
𝑗 + 𝑙 ∈ 𝐷𝑋 for 𝑖, 𝑗 ∈ [0, 𝑋 ) and the rank positions 𝑟1 and 𝑟2 in the |𝐷𝑋 | materialized ranks
of suffix 𝑆𝑖 and 𝑆 𝑗 . The constant 𝑙 can be computed as follows. Set 𝑙 = 0 and increment 𝑙
until 𝐷 [(𝑖 + 𝑙) mod 𝑋 ] = 𝐷 [( 𝑗 + 𝑙) mod 𝑋 ] = 1. The value of 𝑟1 and 𝑟2 are the exclusive
prefix sum of the entries we traverse in 𝐷 , by the same reasoning as before.

Data Distribution. We assume that at the beginning the input text𝑇 is distributed equally
among the PEs. Each PE 𝑗 holds a consecutive slice 𝑇𝑗 of size Θ(𝑛/𝑝). The distribution of
the data may change depending on the distributed sorter used. There is no guarantee for a
minimal number of elements on a PE. In fact, a PE might have no elements after sorting.
To perform the shifts of ranks and characters between adjacent PEs, we require at least
𝑋 − 1 local elements. Thus, whenever the smallest data size of all PEs is smaller than 4×
the average size, we balance the data using an alltoall communication. When the total
size of the recursive string is smaller than 2𝑝𝑋 , we gather all characters on a single PE
and use a sequential suffix sorting algorithm to avoid corner cases. We could also balance
with respect to the largest number of elements on a PE after sorting. However, many
distributed sorters, like for example AMS, guarantee a configurable imbalance, which is
why did not include this step in our implementation.

Memory Consumption. Memory-efficiency is vital in the design of scalable algorithms
to be able to handle large inputs. Here, we give a detailed analysis of the total memory
consumption of distributed DCX (Algorithm 3). Let𝑤𝑐,𝑤𝑟 ,𝑤𝑋 denote the number of bytes
required to store an input character, a rank/index and an entry in lookup-tables. In a
recursive call,𝑤𝑐 depends on the largest rank given in Line 4. We may assume that𝑤𝑐,𝑤𝑟
and 𝑤𝑋 are constant and on deeper levels 𝑤𝑐 = 𝑤𝑟 . The difference cover has a size of
O(|𝐷𝑋 |) = O(

√
𝑋 ) (see Section 5.2). Let 𝜆 = |𝐷𝑋 |/𝑋 be the reduction ratio of the text size
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Algorithm 3: Distributed DCX.
1 Function DCX(𝑇):
2 𝑆 = ⟨(𝑇 [𝑖, 𝑖 + 𝑋 ), 𝑖) | 𝑖 ∈ [0, 𝑛), 𝑖 mod 𝑋 ∈ 𝐷𝑋 ⟩ // generate DC-samples

3 sort 𝑆 by the first component // lexicographic-order

4 𝑃 = 𝑁𝑎𝑚𝑒 (𝑆) // compute sample ranks

5 if names in 𝑃 are not unique then
6 sort 𝑃 by (𝑖 mod 𝑋, 𝑖 div 𝑋 )
7 𝑆𝐴′ = 𝐷𝐶𝑋 (⟨𝑐 | (𝑐, 𝑖) ∈ 𝑃⟩) // recursively compute 𝑆𝐴′

8 𝑃 = ⟨(𝑖, MapBack(𝑆𝐴′[𝑖]) | 0 ≤ 𝑖 < |𝑆𝐴′|⟩ // new sample ranks

9 sort 𝑃 by the second component // text-order

10 𝑅 = ⟨𝑟 | (𝑖, 𝑟 ) ∈ 𝑃⟩
11 𝑀 = ⟨(𝑇 [𝑖, 𝑖 + 𝑋 − 1), 𝑅 [F(𝑖), F(𝑖) + |𝐷𝑋 |), 𝑖) | 𝑖 ∈ [0, 𝑛)⟩
12 sort𝑀 by Cmp // sort all suffixes

13 𝑆𝐴 = ⟨𝑖 | (𝑇 ′, 𝑅′, 𝑖) ∈ 𝑀⟩ // extract SA

14 return 𝑆𝐴

15 Function Name(⟨(𝑎1, 𝑏1), . . . , (𝑎𝑘 , 𝑏𝑘)⟩):
16 𝑥 = 1
17 for 𝑖 = 1 to 𝑘 do
18 output tuple (𝑥, 𝑏𝑖)
19 if 𝑎𝑖−1 ≠ 𝑎𝑖 then // compare X-prefix

20 𝑥 + +

21 Function MapBack(𝑖):
// 𝐴0, 𝐴1, . . . , 𝐴 |𝐷𝑋 |−1 blocks of samples in 𝑃

22 𝐵 = ⟨0, |𝐴0 |, |𝐴0 | + |𝐴1 |, . . . ,
∑|𝐷𝑥 |−1
𝑘=0 𝐴𝑘⟩

23 for 0 ≤ 𝑘 < |𝐷𝑋 | do
24 if 𝑖 < 𝐵 [𝑘 + 1] then // determine block

25 𝑑 = 𝐷𝐶 [𝑘] // phase of 𝑖

26 𝑚 = 𝑖 − 𝐵 [𝑘] // period of 𝑖

27 return 𝑋 ·𝑚 + 𝑑

28 Function F(𝑖):
29 𝑑 = 𝐿𝑇1 [𝑖 mod 𝑋 ]
30 return ( |𝐷𝑋 | · (𝑖 div 𝑋 )) + 𝑑 // position in 𝑅

31 Function Cmp((𝑇1, 𝑅1, 𝑖), (𝑇2, 𝑅2, 𝑗)):
32 𝑙, 𝑟1, 𝑟2 = 𝐿𝑇2 [𝑖 mod 𝑋, 𝑗 mod 𝑋 ]
33 for 0 ≤ 𝑘 < 𝑙 do
34 if 𝑇1 [𝑘] ≠ 𝑇2 [𝑘] then // compare 𝑋 − 1-prefix
35 return 𝑇1 [𝑘] < 𝑇2 [𝑘]

36 return 𝑅1 [𝑟1] < 𝑅2 [𝑟2] // compare sample ranks
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per level and | |𝐴| | the memory consumption of the object 𝐴. For now, we fix a level 𝑟 ≥ 0.
Counting the size of the vectors is straightforward. The vectors 𝑆, 𝑃, 𝑆𝐴′ and 𝑅 have one
entry per difference cover sample, while𝑀 and 𝑆𝐴 have an entry for each input character.

• | |𝑆 | | = 𝜆𝑟+1𝑛 · (𝑋𝑤𝑐 +𝑤𝑟 )

• | |𝑃 | | = 𝜆𝑟+1𝑛 · 2𝑤𝑟

• | |𝑆𝐴′| | = 𝜆𝑟+1𝑛 ·𝑤𝑟

• | |𝑅 | | = 𝜆𝑟+1𝑛 ·𝑤𝑟

• | |𝑀 | | = 𝜆𝑟𝑛·((𝑋−1)·𝑤𝑐+(|𝐷𝑋 |+1)·𝑤𝑟 )

• | |𝑆𝐴| | = 𝜆𝑟𝑛 ·𝑤𝑟

• | |𝐿𝑇1 | | = 𝑋 ·𝑤𝑋

• | |𝐿𝑇2 | | = 𝑋 2 · 3𝑤𝑋

Now, we highlight local memory peaks in the pseudocode. We deallocate vectors as
soon as they are not required anymore. The memory of lookup-tables is negligible, thus
we ignore them in the following. In sorting routines, we require an additional receive
buffer for communication of the same size as the container to be sorted.

• Line 3: | |𝑆 | | + receive buffer

• Line 4: | |𝑆 | | + | |𝑃 | |

• Line 6: | |𝑃 | | + receive buffer

• Line 7: | |𝑆𝐴′| | + | |𝑃 | |

• Line 10: | |𝑃 | | + receive buffer

• Line 12: | |𝑀 | | + receive buffer

• Line 13: | |𝑀 | | + | |𝑆𝐴| |

The maximum memory peak occurs in Line 12 when sorting all suffixes

2𝜆𝑟𝑛 · ((𝑋 − 1) ·𝑤𝑐 + (|𝐷𝑋 | + 1) ·𝑤𝑟 ) ∈ O(𝑛𝑋 ) .

In addition to the memory consumption stated above, we have to store the inputs to the
recursive calls. Therefore, on level 𝑟 we use

𝑟∑︁
𝑖=1

𝑤𝑟𝜆
𝑟𝑛 = 𝑤𝑟𝑛

(
1 − 𝜆𝑟+1
1 − 𝜆 − 1

)
≤ 𝑤𝑟𝑛

1
1 − 𝜆 ∈ O(𝑛)

additional bytes. Here, we used 1
1−𝜆 ≤ 1

1−(2/3) = 3. The overall memory complexity is given
by

O (𝑛𝑋 ) .
In practice, we use 1-byte input characters, 5-byte integers for indices/ranks (see Section

5.9.2) and difference covers up to 𝑋 = 133. To reduce the memory footprint of distributed
DCX, we adapt a space-efficient sorting technique [55, 68] (see Section 5.6) and use random
redistribution of chunks of the data (see Section 5.7).

Complexity. In distributed DCX, we only use linear scans, sorting routines, alltoall data
exchanges and communication between adjacent PEs. Thus, the time complexity on a
fixed level is dominated by the sorting of all suffixes (Line 12). The following recurrence
describes the overall time complexity:

𝑇 (𝑛, 𝑝, 𝑋 ) = 𝑇 (𝜆𝑛, 𝑝, 𝑋 ) + O(𝑇𝑠𝑜𝑟𝑡 (𝑛, 𝑝, 𝑋 )),
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where 𝜆 = |𝐷𝑋 |/𝑋 is the reduction ratio of the text size. We will assume that the size of the
local data 𝑛′ is always distributed equally among the PEs, i.e. 𝑛′ ∈ Θ(𝑛/𝑝). For simplicity,
we use the sorting complexity of sample sort for 𝑇𝑠𝑜𝑟𝑡 (𝑛, 𝑝), which is given by:

𝑇𝑠𝑜𝑟𝑡 (𝑛, 𝑝) = O
(
𝑛

𝑝
log 𝑛

𝑝
+ 𝛼𝑝 + 𝛽𝑛

𝑝

)
.

The three parts come from sorting the local data of size O(𝑛/𝑝) and the complexity of
an irregular alltoall communication O(𝛼𝑝 + 𝛽ℎ) with ℎ ∈ O(𝑛/𝑝). We may assume that
a comparison of an element of 𝑀 costs O(𝑋 ) and that the total size of the data to be
exchanged is in O(𝑛𝑋 ) (see memory analysis). Therefore, the sorting complexity of 𝑀
becomes:

𝑇𝑠𝑜𝑟𝑡 (𝑛, 𝑝, 𝑋 ) = O
(
𝑛𝑋

𝑝
log 𝑛

𝑝
+ 𝛼𝑝 + 𝛽𝑛𝑋

𝑝

)
.

Let 𝑟 ≤ ⌈log1/𝜆 𝑛⌋ denote the number of levels. We unroll the recurrence and plug-in the
formula for 𝑇𝑠𝑜𝑟𝑡 (𝑛, 𝑝, 𝑋 ) for a sufficiently large constant 𝐶 > 0:

𝑇 (𝑛, 𝑝, 𝑋 ) ≤ 𝐶
𝑟−1∑︁
𝑖=0

𝑇𝑠𝑜𝑟𝑡 (𝜆𝑖𝑛, 𝑝, 𝑋 )

= 𝐶

𝑟−1∑︁
𝑖=0

(
𝜆𝑖𝑛𝑋

𝑝
log2

𝜆𝑖𝑛

𝑝
+ 𝛼𝑝 + 𝛽 𝜆

𝑖𝑛𝑋

𝑝

)
≤ 𝐶

[
1

1 − 𝜆
𝑛𝑋

𝑝
log2

𝑛

𝑝
+ 𝛼 ⌈log1/𝜆 𝑛⌉𝑝 + 𝛽

1
1 − 𝜆

𝑛𝑋

𝑝

]
∈ O

(
𝑛𝑋

𝑝
log 𝑛

𝑝
+ 𝛼 log𝑛

log𝑋 𝑝 + 𝛽
𝑛𝑋

𝑝

)
.

In the last step, we used that 1
1−𝜆 ≤ 1

1−(2/3) = 3 and 1/𝜆 = 𝑋/|𝐷𝑋 | ∈ O(
√
𝑋 ).

5.5. Discarding

Discarding is a technique originally proposed by Dementiev et al. [25] to improve the
I/O efficiency of an external memory prefix doubling suffix array algorithm. Fischer
and Kurpicz [31] successfully included this technique in their distributed prefix doubling
implementation. It is based on the observation that after a prefix doubling iteration some
suffixes with unique rank can be discarded from the next iteration. A rank 𝑟 is not required
in the next iteration if (a) 𝑟 is unique and (b) 𝑟 is not needed to determine a non-unique
rank. Condition (b) occurs if the previous rank 𝑟 ′ of 𝑟 in text-order is unique as well.
When comparing suffixes character-by-character, the comparison result will at the latest
be determined on the previous character 𝑟 ′ and we never have to examine 𝑟 . Globally, this
property implies that, from any group of consecutive unique ranks, we only have to keep
the first rank.
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Example. Consider the example in Table 5.6. We want to determine the ranks of the string
1 2 3 1 4 5 6 7. Inverting the permutation of unique ranks yields the suffix array. Since the
suffix 1 2 3 1 4 5 6 7 and 1 4 5 6 7 are the only suffixes that are not uniquely determined
by their first character, we only have to decide on the relative order of those two suffixes.
The characters 3, 5, 6 and 7 are unique and are not the first element of a group of unique
characters. Thus, the reduced text is 1 2 1 4. Looking at the rank array of both text, we
see that the relative order of unique ranks has not changed. The non-unique ranks can be
determined only from the ranks of the reduced text. The suffix 1 2 1 4 is smaller than the
suffix 1 4, thus the first suffix has a lower rank (rank 1) than the second suffix (rank 2).

↓ ↓
text 1 2 3 1 4 5 6 7

reduced text 1 2 1 4

ranks reduced text 1 3 2 4
ranks text 1 3 4 2 5 6 7 8

Table 5.6.: Example of discarding. Unique ranks are colored in red and unique ranks that
are required to determine not-unique ranks are marked with an arrow.

Discarding in Phase 3 of DCX. We can modify Phase 3 of DCX (Line 5 - Line 10) to include
discarding. Recall, that the goal of Phase 3 is to recursively compute the unique ranks of
the difference cover samples. The general idea is to compute the suffix array 𝑆𝐴𝑑 of the
reduced text and to use the ranks of the inverse suffix array 𝐼𝑆𝐴𝑑 as a tie-breaker when
determining the relative order of the non-unique ranks.

Algorithm 4 outlines the procedure. We sort the ranks 𝑃 by (𝑖 mod 𝑋, 𝑖 div 𝑋 ) as before
(Line 1). In one scan over the ranks 𝑃𝑟 , we construct a boolean mask 𝐵 that is true, if the
𝑖-th rank cannot be discarded, false otherwise (Line 2 - Line 5). We then construct the
reduced string 𝑇𝑑 and recursively compute the corresponding suffix array 𝑆𝐴𝑑 of it (Line
6 - Line 7). Since we require the ranks 𝑅𝑑 of the reduced string 𝑇𝑑 , we invert the suffix
array 𝑆𝐴𝑑 by pairing it with 0, 1, . . . , |𝑆𝐴𝑑 | − 1 and sorting it by the second component
(Line 8 - Line 9). Now, we construct a vector of triples 𝑅𝑅𝐼 , where the first component is
the rank 𝑟 from the naming procedure 𝑃 , the second the rank of the reduced string 𝑟 ′, if
the current position was not discarded, and in the last component the global index 𝑖 of the
difference cover sample (Line 11 - Line 17). We sort 𝑅𝑅𝐼 by the first two components. To
determine the relative order of ranks that were not unique before, 𝑟 ′ serves as a tie-breaker.
After the sorting, the last component of 𝑅𝑅𝐼 contains the suffix array of the difference
cover samples. We zip the suffix array indices in 𝑅𝑅𝐼 with new ranks 0, 1, . . . |𝑃 | − 1 and
rearrange them into text-order such that the first component contains the unique ranks of
the samples (Line 18 - Line 19). Table 5.7 shows a larger example of discarding in Phase 3.

Discarding has a slight overhead compared to the normal Phase 3, but is more efficient
if many ranks can be discarded. In our implementation, we first determine the size of the
reduced string and decide based on a threshold whether to use the discarding procedure.
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5.6. Space-Efficient Sorting Using Bucketing

↓ ↓ ↓
𝑃 4 3 6 7 5 0 1 7 9 8 2 1
𝑖 1 4 7 10 13 16 2 5 8 11 14 17

𝑃 sorted by (𝑖 mod 𝑋, 𝑖 div 𝑋 )

𝐵 1 0 0 1 1 0 1 1 1 0 0 1
𝑇𝑑 4 7 5 1 7 9 1
𝑆𝐴𝑑 6 3 0 2 1 4 5
𝑅𝑑 2 4 3 1 5 6 0

computing the ranks 𝑅𝑑 of the reduced text 𝑇𝑟

𝑅𝑅𝐼

𝑟 0 1 1 2 3 4 5 6 7 7 8 9
𝑟 ′ ⊥ 0 1 ⊥ ⊥ 2 3 ⊥ 4 5 ⊥ 6

𝑖 16 17 2 14 4 1 13 7 10 5 11 8
𝑃 0 1 2 3 4 5 6 7 8 9 10 11

compute unique sample ranks in 𝑃 by sorting 𝑅𝑅𝐼 by (𝑟, 𝑟 ′)

𝑖 1 2 4 5 7 10 11 13 14 16 17
𝑃 5 2 4 9 7 8 10 6 3 0 1

𝑃 with unique sample ranks in text-order

Table 5.7.: Example of discarding in Phase 3. Unique ranks are colored in red and unique
ranks that are required to determine not-unique ranks are marked with an
arrow. Unused tie-break ranks 𝑟 ′ are colored in gray.

5.6. Space-Efficient Sorting Using Bucketing

A severe disadvantage of distributed DCX is its high memory consumption of O(𝑛𝑋 ). In
the sequential setting, the 𝑋 -prefixes can be represented space-efficiently by a pointer
to the starting position of the suffix. However, in distributed memory, it is necessary to
materialize multiple characters and ranks for each suffix. A simple idea to reduce the
memory overhead, is to partition the suffixes into buckets using global splitter elements,
and process one bucket at a time. Using 𝑞 buckets, we can reduce the memory overhead of
materialization by a factor of 𝑞. This space-efficient sorting technique, we call bucketing,
was proposed in previous work on distributed string sorting [55, 68].

In the following, we describe this general technique, which we use as a building block
in our distributed variant of DCX. The space-efficient representation in our setting is a
sequence of elements 𝑄 . Each element is represented by its starting position in the array
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5. Suffix Sorting using Difference Covers

Algorithm 4: Distributed DCX Phase 3 with Discarding.
1 sort 𝑃 by (𝑖 mod 𝑋, 𝑖 div 𝑋 )
2 𝑃𝑟 = ⟨𝑐 | (𝑐, 𝑖) ∈ 𝑃⟩ // extract sample-ranks

3 𝐵 = ⟨𝑃𝑟 [0] is not unique⟩ // bitmask of positions to keep

4 for 1 ≤ 𝑘 < |𝑃𝑟 | do
5 𝐵 [𝑖] = not (𝑃𝑟 [𝑖] and 𝑃𝑟 [𝑖 − 1] unique)
6 𝑇𝑑 = ⟨𝑃𝑟 [𝑖] | 0 ≤ 𝑖 < |𝑃𝑟 | ∈ 𝑃 if 𝐵 [𝑖]⟩ // reduced text

7 𝑆𝐴𝑑 = 𝐷𝐶𝑋 (𝑇𝑑) // recursively compute 𝑆𝐴𝑑
8 𝑃𝑑 = ⟨(𝑖, 𝑆𝐴𝑑 [𝑖] | 0 ≤ 𝑖 < |𝑆𝐴𝑑 |⟩
9 sort 𝑃𝑑 by the second component // ranks in text-order

10 𝑅𝑑 = ⟨𝑟 | (𝑟, 𝑖) ∈ 𝑃𝑑⟩ // extract tie-break ranks

11 𝑘 = 0
12 𝑅𝑅𝐼 = ⟨⟩ // (sample rank, tie-break rank, global index)

13 for 0 ≤ 𝑗 < |𝑃 | do
14 (𝑟, 𝑖) = 𝑃 [ 𝑗] // sample ranks and global index

15 𝑟 ′ = 𝑅𝑑 [𝑘 + +] if 𝐵 [ 𝑗] else ⊥ // tie-break-rank, if exists

16 𝑅𝑅𝐼 [ 𝑗] = (𝑟, 𝑟 ′, 𝑖)
17 sort 𝑅𝑅𝐼 by the first two components
18 𝑃 = ⟨( 𝑗, 𝑖) | 0 ≤ 𝑗 < |𝑅𝑅𝐼 |, (𝑟, 𝑟 ′, 𝑖) = 𝑅𝑅𝐼 [ 𝑗]⟩
19 sort 𝑃 by the second component // sample ranks in text-order

and a length attribute. For example, in Phase 1 of DCX, the elements to be sorted are the
𝑋 -prefixes of the difference cover samples. Algorithm 5 outlines the procedure.

Bucketing. In the first step, we determine global splitter elements −∞ = 𝑠0 < 𝑠1 < · · · <
𝑠𝑞−1. One way to do this is by sampling𝑚 elements uniformly at random, globally sort
them, select every ⌊𝑚/𝑞⌋-th element as a splitter and communicate the splitters to all PEs.
This induces a partition of the elements 𝑄 into 𝑞 buckets 𝑄𝑘 = {𝑥 ∈ 𝑄 | 𝑠𝑘 < 𝑥 ≤ 𝑠𝑘+1}
for 𝑘 ∈ [0, 𝑞). Ideally, the bucket sizes are of similar size |𝑄𝑘 | ≈ 𝑛/𝑞 and the elements
within each bucket are distributed equally among the PEs. In our experiments, we can
empirically confirm the first assumption. However, the second does not necessarily hold.
We counteract this with a new load-balancing technique called chunking (see Section 5.7).

Now, we execute 𝑞 global sorting steps. In each step, we materialize the current bucket
𝑄𝑘 , globally sort the elements, store the order of elements (in our case the starting positions
in the array) into 𝐵𝑘 . Finally, we append the elements of 𝐵𝑘 into a single vector and record
its bucket size into 𝑆 . Later, we require the bucket sizes 𝑆 to identify the regions 𝐵𝑘 in 𝐵.
After 𝑞 sorting steps, 𝐵 is not yet globally sorted and has to be rearranged between the
PEs. Locally on a PE 𝑗 ∈ [0, 𝑝), the vector 𝐵 consists of up to 𝑞 regions, 𝐵 𝑗0, 𝐵

𝑗

1 . . . 𝐵
𝑗

𝑞−1. Let
𝐵′
𝑘
= 𝐵0

𝑘
⊙ 𝐵1

𝑘
⊙ · · · ⊙ 𝐵𝑝−1

𝑘
for 𝑘 ∈ [0, 𝑞) be the sorted bucket of the 𝑘-th sorting step. The

sorted sequence is given by 𝐵′0 ⊙ 𝐵′1 ⊙ · · · ⊙ 𝐵′𝑞−1. Table 5.8 shows an example of bucketing
of 3-prefixes with 3 buckets and 3 PEs.
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5.6. Space-Efficient Sorting Using Bucketing

PE 0 PE 1 PE 2
𝑖 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
𝑇 b a a a b a a a a b a a a b a b $ $ $

input text 𝑇 with padding and shifts

𝑄1 (1, aaa) (2, aab) (5, aab) (8, aaa) (9, aab)
𝑄2 (3, aba) (6, aba) (10, ab$)
𝑄3 (0, baa) (4, baa) (7, baa) (11, b$$)

partition of 3-prefixes into buckets 𝑄1, 𝑄2, 𝑄3 induced by splitters 𝑠1 = ab$, 𝑠2 = b$$

𝐵1 1 8 2 5 9
𝐵2 10 3 6
𝐵3 11 0 4 7

order 𝐵1, 𝐵2, 𝐵3 of 3-prefixes in 𝑄1, 𝑄2, 𝑄3 after sorting

1 8 2 5 9 10 3 6 11 0 4 7

order of 3-prefixes after rearranging

Table 5.8.: Example bucketing of 3-prefixes with 3 PEs and 3 buckets.

Rearranging the Buckets. Equally rearranging the buckets can be done with two alltoall
communications and some local reordering afterwards. We use the local array 𝐵 directly
as the send buffer and compute the send counts of PE 𝑗 ∈ [0, 𝑝) in a left to right scan over
the buckets 𝐵 𝑗0, 𝐵

𝑗

1, . . . 𝐵
𝑗

𝑞−1. Let 𝑔𝑘 =
∑
𝑗<𝑝 |𝐵

𝑗

𝑘
| the global size of bucket 𝑘 ∈ [0, 𝑞) and let

𝑡 𝑗 ∈ {⌊𝑛/𝑝⌋, ⌈𝑛/𝑝⌉} be the target size of the receive buffer on PE 𝑗 . Initially, we set the
current target PE 𝑟 to 0. Then, we iterate over the buckets 𝐵 𝑗

𝑘
from left to right. Bucket 𝐵 𝑗

𝑘

on PE 𝑗 is processed as follows.

1. Set the remaining bucket size 𝑧 to |𝐵 𝑗
𝑘
|.

2. Compute the global index 𝑖 of the first entry of 𝐵 𝑗
𝑘
via prefix sums

𝑖 = 𝑔0 + 𝑔1 + · · · + 𝑔𝑘−1 + |𝐵0
𝑘
| + |𝐵2

𝑘
| + . . . |𝐵 𝑗−1

𝑘
|.

3. If 𝑟 < 𝑝 and 𝑧 > 0, increment the send counts of PE 𝑟 by

𝑥 = min(𝑦, 𝑧),
where 𝑦 = max(𝑡 ′𝑟 − 𝑖, 0) and 𝑡 ′𝑟 = 𝑡0 + 𝑡1 + · · · + 𝑡𝑟 .

Update 𝑧 = 𝑧 − 𝑥 , 𝑖 = 𝑖 + 𝑥 .

4. Increment 𝑟 if 𝑧 > 0 and continue with Step 3. until 𝑟 = 𝑝 or 𝑧 = 0.
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5. Suffix Sorting using Difference Covers

Algorithm 5: Bucketing Technique
1 Function Bucketing(𝑄,𝑞):
2 determine global splitter elements −∞ = 𝑠0 < 𝑠1 < · · · < 𝑠𝑞−1
3 𝐵 = ⟨⟩
4 𝑆 = ⟨⟩
5 for 0 ≤ 𝑘 < 𝑞 do
6 materialize elements 𝑥 ∈ 𝑄 with 𝑠𝑘 < 𝑥 ≤ 𝑠𝑘+1 into 𝑄𝑘
7 globally sort 𝑄𝑘
8 store order of 𝑄𝑘 into 𝐵𝑘
9 append 𝐵𝑘 to 𝐵

10 append |𝐵𝑘 | to 𝑆
11 return Rearrange (𝐵, 𝑆)

In Step 2., 𝑔0 + 𝑔1 + · · · + 𝑔𝑘−1 is the global index of the bucket 𝑘 in the sorted order of
buckets and |𝐵0

𝑘
| + |𝐵2

𝑘
| + . . . |𝐵 𝑗−1

𝑘
| offsets the index to the beginning of 𝐵 𝑗

𝑘
. Then, in Step

3., we clamp 𝑧 with the remaining capacity of elements 𝑦 on target PE r, and update 𝑧 and
the global index 𝑖 accordingly. If 𝑧 = 0 in Step 4, we do not increment 𝑟 , since PE 𝑟 might
receives some elements of the next block 𝑘 + 1.

Now, we exchange 𝐵 using an irregular alltoall communication with the computed send
counts. However, the SA entries do not arrive in sorted order, since the received elements
on a PE are sorted by the sending PE first. Let’s examine a fixed PE, where 𝐶 𝑗

𝑘
is the

received part of the bucket 𝐵 𝑗
𝑘
of the sending PE 𝑗 . For 3 PEs with 3 Buckets, the situation

looks as follows:

𝐶0
0 𝐶0

1 𝐶0
2 𝐶1

0 𝐶1
1 𝐶1

2 𝐶2
0 𝐶2

1 𝐶2
2

Depending on the choice of 𝑞 and the bucket sizes, many𝐶 𝑗

𝑘
might be empty. To reorder

the receiver buffer, we allocate another buffer into which we copy the parts 𝐶 𝑗

𝑘
by bucket

number 𝑘 and then by PE number 𝑗 . In addition to 𝐶 𝑗

𝑘
, each PE sends |𝐶 𝑗

𝑘
| in another

𝐶0
0 𝐶1

0 𝐶2
0 𝐶0

1 𝐶1
1 𝐶2

1 𝐶0
2 𝐶1

2 𝐶2
2

alltoall communication to be able to identify the regions in the receive buffer.

Bucketing in Phase 1 and Phase 2. To apply bucketing in Phase 1, we have to interleave the
sorting with the naming procedure of Phase 2. We require the 𝑋 -prefix of the difference
cover samples in text-order and compare adjacent elements to determine Δ 𝑗 = 𝑆 [ 𝑗] ≠

𝑆 [ 𝑗 + 1], 𝑗 ∈ [0, |𝑆 | − 1). Instead of storing the order of the 𝑋 -prefixes, like in the general
formulation, we compute Δ 𝑗 within the current bucket. Since we only access adjacent
elements in the sorting, we can process each bucket separately. It is only necessary to
keep track of the last 𝑋 -prefix of the previous bucket to compare it with the first element
of the current bucket. This requires a single point-to-point communication between the
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first and the last PE. After the rearranging procedure, the ranks are computed as before
based on Δ 𝑗 .

In addition to the input text, we store the ranks and indices of the sample suffixes in 𝑃 ,
one fully materialized bucket of 𝑋 -prefixes with an index, and a receive buffer for sorting
a bucket of 𝑋 -prefixes. In total, this yields a memory consumption of

2𝜆𝑟+1𝑛(𝑤𝑟 + (𝑋𝑤𝑐 +𝑤𝑟 )/𝑞).

Depending on the choice of 𝑋 and 𝑞, the alltoall communication, which requires a receive
buffer for 𝑃 , might take more memory than the bucketing

4𝜆𝑟+1𝑛𝑤𝑟 .

Bucketing in Phase 4. Bucketing can be directly applied to sorting the vector𝑀 in Phase
4. However, in this case, the space-efficient representation consists of two arrays, the text
𝑇 and the sample ranks 𝑅, to materialize the triple consisting of a (𝑋 − 1)-prefix of the
suffix, a |𝐷𝑥 |-prefix of sample ranks and the global suffix starting position. After sorting a
bucket, we extract the starting position of the suffix, which corresponds to the final SA
entry.

We store the rank vector 𝑅, the full suffix array 𝑆𝐴 and one fully materialized bucket of
triples with a receive buffer of the same size. This requires

𝜆𝑟+1𝑛𝑤𝑟 + 𝜆𝑟𝑛𝑤𝑟 + 2(𝜆𝑟𝑛 · ((𝑋 − 1) ·𝑤𝑐 + (|𝐷𝑋 | + 1) ·𝑤𝑟 ))/𝑞
=𝜆𝑟𝑛(𝑤𝑟 (1 + 𝜆) + 2((𝑋 − 1) ·𝑤𝑐 + (|𝐷𝑋 | + 1) ·𝑤𝑟 )/𝑞)

of memory in addition to the text. Rearranging the suffix array in the last step requires

2𝜆𝑟𝑛𝑤𝑟

memory.

5.7. Chunking

If we take a sufficiently large sample to determine the global splitter elements, the bucket
sizes |𝐵𝑘 |, 𝑘 ∈ [0, 𝑞), are approximately of the same size 𝑛/𝑞. However, the suffixes within
a bucket might not be distributed equally among the PEs due to the input text. For example,
consider a text in which the suffixes are already in lexicographic order with 𝑞 < 𝑝 buckets.
In this setting, the first PE has to materialize 𝑛/𝑝 elements when processing the first bucket,
while the last PE materializes no elements. This results in poor load-balancing and in high
memory consumption. In our experiments, we observe imbalances between 170% and
376% caused by this effect on real world texts of 15.36 GB using 768 PEs and 128 buckets.

A standard technique to deal with this problems is to randomly redistribute the elements
to be sorted. Yet, this is not directly possible for suffixes stored in a space-efficient
manner, since the compressed representations overlap. Therefore, we propose to randomly
redistribute whole chunks of the text instead of single elements.
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5. Suffix Sorting using Difference Covers

Let 𝑌 ′ be the local array that stores the elements 𝑌 in a space-efficient way. Formally,
each PE divides its local array into 𝐶 chunks of consecutive data

𝑌 ′ = 𝑋1 ∪ 𝑋2 ∪ · · · ∪ 𝑋𝐶 .

Each element 𝑥 ∈ 𝑌 belongs to exactly one chunk. Depending on the elements, the chunks
have to overlap to be able to materialize the elements at the edge of the chunk. For example,
when using chunking in Phase 4 of DCX, there is an overlap 𝑋 − 2 characters for the
𝑋 − 1-prefixes of suffixes and an overlap of |𝐷𝑋 | − 1 ranks for the |𝐷𝑋 |-tuple of ranks.
Each chunk is send to a PE uniformly at random. We concatenate the local chunks into a
single send buffer and exchange them in an alltoall communication. Table 5.9 shows an
example of random redistribution with none-overlapping chunks.

PE 0 PE 1 PE 2
𝑌 ′ 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10 𝑋11 𝑋12
target PE 2 1 1 3 1 3 2 2 2 3 1 1
send buffer 𝑋2 𝑋3 𝑋1 𝑋4 𝑋5 𝑋7 𝑋8 𝑋6 𝑋11 𝑋12 𝑋9 𝑋10

PE 0 PE 1 PE 2
receive buffer 𝑋2 𝑋3 𝑋5 𝑋11 𝑋12 𝑋1 𝑋7 𝑋8 𝑋9 𝑋4 𝑋6 𝑋10

Table 5.9.: Example random redistribution with none-overlapping chunks. Send/receive
buffers are sorted by sending/receiving PE and then by their original order.

In addition to the information required to reconstruct an element, we also send book-
keeping information. We send the size of a chunk, to identify each chunk in the receive
buffer. Further, we send the global index of the start of the chunk to be able to identify the
elements in the global array.

In a sorting step of bucketing, a PE iterates over all received chunks instead of its local
array and materializes all elements of the current bucket. Here, a suffix is not identified by
its global index, but by its local position in the chunk and global starting position of the
chunk. Other than that, bucketing works the same as described before.

Additionally, we proved the following theorem on the probabilistic guarantees of random
chunk redistribution. The proof can be found in Appendix A.1 and in [40].

Theorem 2 (Random Chunk Redistribution [40]). When redistributing chunks of size 𝑐

uniformly at random across 𝑝 PEs, with 𝑞 buckets each containing 𝑛/𝑞 elements, the expected

number of elements from a single bucket received by a PE is 𝑛/(𝑝𝑞). Furthermore, the

probability that any PE receives 2𝑛/(𝑝𝑞) or more elements from the same bucket is at most

1/𝑝𝛾 for 𝑛 ≥ 8𝑐 (𝛾 + 2)𝑝𝑞 ln(𝑝)/3 and 𝛾 > 0.

5.8. Further Optimizations

In distributed DCX, we require distributed sorting in various parts of the algorithm. There
are three types of sequence that are sorted.
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1. Tuples of integers to sort ranks and global indices (Line 6, Line 9).

2. 𝑋 -prefixes of suffixes paired with a global index to sort the sample suffixes (Line 3).

3. Tuples of the 𝑋 -prefixes of suffixes, 𝐷 rank entries and a global index to sort all
suffixes (Line 12).

All types of data can be sorted with comparison-based sorters. Alternatively, for Type 2
and Type 3 it might be beneficial to consider using string sorting, to exploit the structure
of the keys. A third option is to pack the characters of the 𝑋 -prefix of Type 2 and Type 3
into computer words to accelearate comparison-based sorting. We will discuss the string
sorting and packing optimization in Section 5.8.1 and Section 5.8.2

5.8.1. Incorporating String Sorting

Specialized algorithms for the problem of string sorting have been shown to be more effi-
cient than comparison-based sorting algorithms [12]. Usually it is assumed that the input
strings have arbitrary length. However, in distributed DCX we sort short strings of con-
stant size (Line 3 and Line 12). A natural questions is whether in this case straightforward
atomic sorting or string sorting technique performs better.

To answer this question, we implemented our own prototypical version of (single-level)
sample sort, where local sorting is performed with highly-tuned sequential string sorters
[13] and 𝑘-way merging uses LCP-aware Loser Trees [15]. Optionally, LCP-compression
and prefix doubling optimization can be activated to reduce the communication volume of
exchanged characters [17].

Globally sorting all suffixes in Line 12 is a hybrid between string sorting and comparison-
based sorting, since the order of equal 𝑋 -prefix is determined by comparing the sample
ranks. We implemented two ways to incorporate this tie-breaking mechanism into string
sorting.

Tie-Breaking Afterwards. A simple way to perform tie-breaking is to run two separate
sorting phases. First, the 𝑋 -prefixes are sorted using string sample sort and then each
interval of equal 𝑋 -prefixes is sorted by their sample ranks. To avoid intervals that span
over multiple processes, we send equal strings to the same PE. This can lead to severe
imbalances between the PEs, which we also observed on real data in our preliminary
testing. Alternatively, overlapping intervals can be sorted using multiple parallel sorting
processes similar to how the authors of PSAC [32] perform bucket sorting for each ℎ-group
in parallel. However, we chose to include the tie-breaking process directly into string
sample sort.

Tie-Breaking in String Sample Sort. In this variant, we already perform tie-breaking after
local sorting and use the full comparison function when computing splitter elements and
partitioning the elements. We perform one final round of local tie-breaking after 𝑘-way
merging, since Loser Trees do not directly support a tie-breaking mechanism.
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5. Suffix Sorting using Difference Covers

5.8.2. Packing

Packing is an optimization proposed by Flick et al. [32] for distributed prefix doubling
exploiting small-sized alphabets. In the first prefix doubling iteration, instead of sorting
the suffixes by the first character, they sort them by the first 𝑘 characters and pack 𝑘
characters into a single 64-bit word, where 𝑘 is as large as possible. For example, DNA data
uses only 4 characters. Another character is required to encode the padding. Therefore,
a single character can be encoded with 3-bits and prefix doubling can be started with a
prefix length of 𝑘 = 21.
In the DCX algorithm, packing can be utilized when sorting the 𝑋 -prefixes. However,

we can only exploit the small alphabet on level 0, because on deeper levels the characters
are ranks that have much greater range. There are three ways we can benefit from packing.

Cheaper Comparison. Usually, each character is stored in a single byte and string compar-
ison are done byte-by-byte. However, if we pack multiple characters into 16, 32 or 64-bit
words, we can compare multiple characters at once with a single machine instruction.
For example, consider DC21 with the usual alphabet size of 8-bit per character. The 21
characters can be packed into three 64-bit words, reducing the maximum number of
comparison from 21 to 3. This slightly increase the memory usage to 24 bytes instead of
21 bytes per 𝑋 -prefix to be sorted.

Less Memory. If the alphabet can be encoded with less than 8-bits, we can store the
𝑋 -prefixes utilizing less memory. A 4-bit alphabet can be stored using only half of the
bytes. This can also be combined with packing into larger words, taking advantage of
cheaper comparisons.

More Unique Ranks. Instead of packing 𝑋 characters into less bytes, we can also pack
more characters than necessary. This preserves correctness and yields more unique ranks
in the naming phase, which allows us to discard more ranks in Phase 3. Consider for
example DC21 with 4-bits per character. We can pack 32 characters into two 64-bit words,
which takes 16 bytes, instead of the 21 bytes without packing. Additionally, it only takes
two machine instructions to compare all characters.

5.9. Implementation Details

5.9.1. Static String Containers

Generally strings are assumed to have different sizes and are stored with a pointer to a
character array containing the concatenated set of strings. In DCX, the size of the 𝑋 -prefix
is fixed and know at compile time. Thus, we can simply statically allocate containers to
store 𝑋 -prefixes. This facilitates exchanging strings in MPI, since we can treat strings
as atomic objects. Additionally, we can directly sort 𝑋 -prefixes using comparison-based
sorters like AMS.
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5.9.2. Smaller Data Types for Ranks

Another optimization is to choose smaller data types to store ranks and indices. This
reduces the memory consumption and the total amount of bytes that have to be communi-
cated between PEs. Instead of using 64-bit words, like for example PSAC [32], we use a
40-bit integer that requires 37.5% less memory. The 40-bit integer is implemented as a pair
of 32-bit and 8-bit integer. This allows us to process texts of sizes up to 1 TB.

One can take this one step further and choose the smallest data type that can still fit the
largest rank computed in the naming phase. Using template programming in C++, this
can be realized at the cost of longer compilation times. The largest rank depends on the
alphabet size of the input and the period length 𝑋 used. For example, consider a DNA
dataset with 4 characters and DC3. Then, there are at most 43 = 26 = 64 unique ranks on
level 1 and at most 643 = 218 = 262144 unique ranks on level 2. Therefore, on level 1 we
could use 8-bit integers and on level 2 possibly 16-bit integers, if less ranks are present, or
32-bit integers. However, this optimization works only for small 𝑋 and small alphabets.
The improvements in running time we observed were small. Since we generally, use larger
period lengths 𝑋 , we deactivated this optimization.

5.9.3. Bucketing

Here, we want to outline three details we found important when implementing bucketing
space-efficiently for Phase 4 of DCX.

Estimating the Output Size. As a result of the 𝑘-th sorting step in bucketing we get the
SA entries 𝐵𝑘 of the suffixes in the current bucket. These entries are stored into a single
vector 𝐵. We can not exactly know |𝐵 | after bucketing in advance, since |𝐵𝑘 | depends on
the imbalance that the distributed sorter introduces. To avoid unnecessary reallocation
and too much wasted memory, we allocate (𝑛/𝑝) · 1.03 entries for 𝐵 locally on each PE. In
practice, the imbalance of 𝐵 is close to the average size 𝑛/𝑝 . This is because usually the
imbalances of 𝐵𝑘 cancel each other out when using a sufficiently large number of buckets.
Distributed sorter usually try to keep the imbalance low or can give imbalance guarantees
like AMS. Should the preallocated space be not enough during bucketing, we allocate just
enough memory to store the next bucket. Otherwise, the default vector reallocation policy
would double the vector capacity.

Mapping the Bucket IDs. In the 𝑘-th sorting step, we have to efficiently determine the
suffixes to be materialized. To avoid repeated comparison of suffixes with the splitters, we
do the comparisons once before bucketing to determine the bucket sizes and the mapping
of suffixes to buckets IDs and use binary search to find the bucket for each suffix. A
straightforward approach to store the mapping is to concatenate the suffix-IDs of the 𝑘-th
bucket for 0 ≤ 𝑘 < 𝑞 into a single vector 𝐶1. When materializing the 𝑘-th bucket, we scan
the part of𝐶1 belonging to the current bucket. This however, requires𝑤𝑟 ·𝑛 = 5𝑛 additional
bytes. Instead, we store the mapping in a vector with 𝐶2 [𝑖] = 𝑏𝑖 , where 0 ≤ 𝑖 < 𝑛 and 𝑏𝑖 is
the bucket-ID of suffix 𝑖 . In the 𝑘-th materialization step, we scan the complete vector 𝐶2
and materialize all entries 𝑖 with 𝐶2 [𝑖] = 𝑘 . This variant only requires 𝑛 additional bytes,
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if we assume 𝑞 < 256. In our implementation, we use 2𝑛 bytes and allow 𝑞 < 216 = 65536.
The downside is that 𝐶2 has to be scanned 𝑞 times.

Storing the Suffix-IDs in-place. Increasing the number of buckets 𝑞, the previous method
using 𝐶2 spends significant amount of time in materializing the suffixes. However, we
can store the suffix-IDs within the SA entries of 𝐵 and use the same method we described
for 𝐶1. In the beginning, 𝐵 is equivalent to the aforementioned vector 𝐶1. Suffixes are
materialized as if we would use 𝐶1. After materializing the 𝑘-th bucket, we can use the
space previously occupied by the suffix-IDs of bucket 𝑘 to store the SA entries.

One has to make sure that the SA entries never overwrite the suffix-IDs of later buckets.
First of all, we allocate 𝐵 with 25% extra space instead of 3%. The first 25% of 𝐵 are
empty and serve as an extra buffer between the SA entries and suffix-IDs. Secondly, this
techniques assumes that the distribution of 𝑄𝑘 across the PEs is well-balanced before
and after sorting. Consider for example the extreme case, in which all elements of 𝑄𝑘
are located on a single PE 𝑗 . The PEs 𝑖 ≠ 𝑗 do not free any suffix-IDs, but all PEs write
approximately 𝑛/𝑝𝑞 SA entries into 𝐵. As mentioned earlier, the distributed sorter used
can usually guarantee a small imbalance after sorting. Using our Chunking technique, we
can guarantee a good balance before sorting with high probability. Should the regions
overlap, we have to restart bucketing and use the previous method as a fallback. In our
experiments, we never had to use the fallback method when we use 104 chunks per PE.

When combining Chunking with the in-place storage management, we do not store the
suffix-ID to identify a suffix, but its chunk-ID and its local position in its chunk. We pack
both numbers into the first and second 20 bits respectively of the 40-bit integer that is
used to store a SA entry. This limits us to use at most 220 = 1048576 chunks and elements
per chunk, which is reasonable for the input sizes we process. For more flexibility in the
configuration of chunking, this packing could be improved by selecting the number of bits
used for the number of chunks and the chunk size at run time.

5.10. Suffix Array Checking Algorithm

To ensure the correctness our algorithms, a fast distributed suffix array checker is required.
A straightforward comparison of suffixes in suffix array order is infeasible, since each
comparison requires linear time in the worst case. However, there is simple sequential
algorithm that only requires scans and sorting routines. We adapt it to the distributed
setting. It is based on the following lemma.

Lemma 5 ([21, 25]). An array SA[0, 𝑛) is the suffix array of a text 𝑇 if and only if the
following conditions are satisfied:

1. SA contains a permutation of [0, 𝑛).

2. ∀𝑖, 𝑗 : 𝑟𝑖 ≤ 𝑟 𝑗 ⇔ (𝑇 [𝑖], 𝑟𝑖+1) ≤ (𝑇 [ 𝑗], 𝑟 𝑗+1) where 𝑟𝑖 denotes the rank of the suffix 𝑆𝑖
according to the suffix array.

Proof. Clearly, both conditions are necessary. We show that they are also sufficient. By
way of contradiction, assume there exists a pair 𝑖 ≠ 𝑗 that violates the second condition.
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That is 𝑟𝑖 < 𝑟 𝑗 , but (𝑇 [𝑖], 𝑟𝑖+1) > (𝑇 [ 𝑗], 𝑟 𝑗+1). If𝑇 [𝑖] > 𝑇 [ 𝑗] holds, this contradicts the fact
𝑆𝑖 < 𝑆 𝑗 . Otherwise, 𝑇 [𝑖] = 𝑇 [ 𝑗] and 𝑟𝑖+1 > 𝑟 𝑗+1. Since the first characters are equal and
suffix are prefix-free 𝑆𝑖 < 𝑆 𝑗 ⇔ 𝑆𝑖+1 < 𝑆 𝑗+1, which is a contradiction to 𝑟𝑖+1 > 𝑟 𝑗+1. □

Distributed Checker. Now, we describe how to implement the checker in distributed
memory. Algorithm 6 shows the pseudocode for the distributed checker. To check the
first condition, we create a vector 𝑃 of tuples ⟨𝑖, 𝑆𝐴[𝑖]⟩ for 𝑖 ∈ [0, 𝑛), sort it by the second
component and check that the second component is equal to ⟨0, 1, . . . , 𝑛 − 1⟩ (Line 2 - Line
5). Each PE builds a slice of 𝑃 based on its local array SA. Converting from a local index 𝑖
of a distributed array 𝑋 to a global index is done by adding the result of 𝑒𝑥𝑠𝑐𝑎𝑛( |𝑋 |) to 𝑖 .

Now, we check the second condition. The first component of 𝑃 contains the ranks 𝑅 =

⟨𝑟0, 𝑟1, . . . 𝑟𝑛−1⟩ of each suffix, i.e. the ISA. First, we build a vector𝑉 of triples ⟨𝑟𝑖, 𝑟𝑖+1,𝑇 [𝑖]⟩
for 𝑖 ∈ [0, 𝑛). We make all required data available to each PE by aligning 𝑅 and 𝑇 between
the PEs and shift the first element of PE 𝑖 + 1 < 𝑝 to PE 𝑖 . Secondly, we sort 𝑉 by the first
component and check that 𝑉 is sorted lexicographically by (𝑐, 𝑟2), where (𝑟1, 𝑟2, 𝑐) ∈ 𝑉
(Line 7 - Line 11). For the final check, we require the last triple of PE 𝑖 − 1 (if 𝑖 > 0) and
the first triple of PE 𝑖 + 1 (if 𝑖 < 𝑝 − 1) to check triples at the edges.
A straightforward implementation requires in addition to the input text 𝑇 and SA 2

bytes and 4 machine words per input character to store to store 𝑉 and a receive buffer for
𝑉 . Assuming 5 bytes per machine word, the checker requires 22 bytes additional bytes per
input character.

Algorithm 6: Distributed Suffix Array Checking.
1 Function SA_Check(𝑇, 𝑆𝐴):
2 𝑃 = ⟨(𝑖, 𝑆𝐴[𝑖]) | 0 ≤ 𝑖 < 𝑛⟩ // zip 𝑆𝐴 entries with ranks

3 sort 𝑃 by the second component
4 𝐽 = ⟨ 𝑗 | (𝑟, 𝑗) ∈ 𝑃⟩
5 check 𝐽 = ⟨0, 1, 2, . . . 𝑛 − 1⟩ // check if 𝑆𝐴 is a permutation

6
7 𝑅 = ⟨𝑟 | (𝑟, 𝑗) ∈ 𝑃⟩ // 𝑅 [𝑖] = 𝑟𝑖
8 𝑉 = ⟨(𝑅 [𝑖], 𝑅 [𝑖 + 1],𝑇 [𝑖]) | 0 ≤ 𝑖 < 𝑛 − 1⟩
9 sort 𝑉 by the first component

10 check that 𝑉 is sorted by:
11 (𝑐, 𝑟2) where (𝑟1, 𝑟2, 𝑐) ∈ 𝑉 // check second condition
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In this chapter, we conduct an experimental evaluation of our distributed DCX imple-
mentation. We explain our experimental setup in Section 6.1. Then, we show our results
consisting of two parts. First in Section 6.2, we evaluate the influence of various configu-
rations of distributed DCX on time and memory usage. Second in Section 6.3, we compare
our best configuration with the current state-of-the-art distributed suffix array algorithm.

6.1. Experimental Setup

We implemented distributed DCX in C++20 using MPI for interprocess communication and
the (zero-overhead) MPI Wrapper KaMPIng

1 [91]. Our code is compiled with IntelMPI

2021.11 and gcc 12.2.0 using the optimization flags -O3 -march=native. The implemen-
tation is available in a public repository2. In addition, we set the following environment
variables for lowering the memory footprint of MPI [1].

// size of forward cells

export I_MPI_SHM_CELL_FWD_NUM=0

// total number of extended cells per computational node

export I_MPI_SHM_CELL_EXT_NUM_TOTAL=0

// size of backward cells

export I_MPI_SHM_CELL_BWD_SIZE=65536

// number of backward cells per rank

export I_MPI_SHM_CELL_BWD_NUM=64

// disable Intel MPI custom allocator of private memory

export I_MPI_MALLOC=0

// disable Intel MPI custom allocator of shared memory

export I_MPI_SHM_HEAP_VSIZE=0

Machine. We perform our experiments on up to 128 compute nodes of SuperMUC-NG.
Each node consists of an Intel Skylake Xeon Platinum 8174 processor with 48 cores and
96GB of main memory. The nodes are connected with an OmniPath network of 100 Gbit/s.
1https://github.com/kamping-site/kamping
2https://github.com/HaagManuel/distributed_suffix_sorting
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We also run a sequential and shared-memory suffix array algorithm. The RAM of a
single node of SuperMUC-NG limits their application to inputs up to 10 GB. To process
larger inputs, we use a second machine, we refer to as machine B. It has an AMD EPYC
9684X 96-Core processor clocked at 3.715 GHz with 2 Threads per core, 1.5 TB RAM, L1,
L2 and L3 caches of 3 MiB, 96 MiB and 1.1 GiB respectively.

Inputs. To evaluate our algorithms, we use four real-world instances. The inputs consist
of fixed-sized prefixes of these text.

• CommonCrawl (CC).WET files that only contain the plain text of crawled web
pages. HTML code, images and other media are excluded. Additionally, we removed
meta information added by the CommonCrawl corpus. The files can be downloaded
here: https://data.commoncrawl.org/crawl-data/CC-MAIN-2019-09/index.html

• DNA Data (DNA). FASTQ files from the 1000 Genomes project, where we only kept
the raw sequence consisting of the letters A, C, G and T. The data can be accessed
here: https://www.internationalgenome.org/

• Protein Data (Protein). FASTA files from the Universal Protein Resource. We
removed all lines not containing sequence data. The files can be downloaded here:
https://ftp.uniprot.org/pub/databases/uniprot/current_release/uniparc/fasta/

active/

• Wikipedia (Wiki). Current version of each article on Wikipedia in multiple lan-
guages stored in XML-format. The files are available at https://dumps.wikimedia.
org/mirrors.html.

Table 6.1 shows basic LCP statistics and Table 6.2 quantiles of the LCP-values of our
inputs. Higher LCP-values indicate that the algorithms have to examine longer parts of
the suffixes to determine their sorted order.

Name Mean SD Max Alphabet Size
CC 10396.42 50428.5 1838814 243
DNA 25.17 17.89 3570 4

Proteins 179.31 644.43 34340 26
Wiki 396.07 9342.32 1582472 213

Table 6.1.: LCP statistics and alphabet size of our texts. LCPs were computed on the first
50 GB of the data.

Measurements. We measure the wall-clock time of each algorithm. The timing starts
as soon as the local parts of the text are available in RAM. To measure the memory-
footprint, we record themaximum resident size on each PE (PE-MaxRss) after the algorithms
termination. Since PEs of the same node share the RAM, for each node, we sum up the
PE-MaxRss of its corresponding PEs (node-MaxRss). Further, we define the node-blowup as
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6. Experimental Evaluation

Name 𝑞0.1 𝑞0.2 𝑞0.3 𝑞0.4 𝑞0.5 𝑞0.6 𝑞0.7 𝑞0.8 𝑞0.9 𝑞0.95 𝑞0.99
CC 10 14 20 33 124 484 1350 3677 15010 45922 208833
DNA 16 17 18 19 20 22 26 31 37 47 98

Proteins 7 8 9 10 11 18 33 73 258 924 3674
Wiki 10 13 16 19 22 28 40 70 184 490 3013

Table 6.2.: Quantiles of LCPs of our texts. LCPs were computed on first 50 GB of the data.

the node-MaxRss divided by the total size of the input of its PEs. By blowup we refer to
the maximum node-blowup aggregated over all nodes. The blowup measures how many
bytes per input character are required by the algorithm.

Additionally, we measure imbalances of distributed vectors. Let𝑚 be the total number
of elements in a distributed vector, 𝑚𝑖 for 0 ≤ 𝑖 < 𝑝 the local number of elements on
PE 𝑖 and𝑚𝑎𝑣𝑔 = 𝑚/𝑝 the average number of elements. We define the imbalance of the
distributed vector as max0≤𝑖<𝑝 (𝑚𝑖/𝑚𝑎𝑣𝑔) − 1. In our experiments, we report the arithmetic
mean of 3 runs with different seeds. Each PE adds its rank to the global seed to avoid using
the same source of randomness for all PEs.

6.2. Evaluating Distributed DCX

We use the IPS403 algorithm [8] for local and AMS4 [6, 7] for distributed comparison-based
sorting. For sorting 𝑋 -prefixes (Line 3 and Line 12 in Algorithm 3), we can either use
comparison-based sorting or string sorting. The remaining sorting routines to sort tuples
of integers (Line 6 and Line 9 in Algorithm 3) use comparison-based sorting. AMS is
configured to use two levels and otherwise uses default parameters, which guarantee an
imbalance of at most 10% of the distributed vector after sorting.

For distributed string sorting, we implemented our own prototypical version of (single-
level)-sample sort (see Section 5.8.1). We were not able to easily include already existing
distributed string sorters5 [55, 68], since we also require the sample ranks in the comparison
of suffixes.
On the first level of DCX, we use MSD RadixSortCE36 for local sorting and on later

levels MultiKeyQuickSort7. Bingmann [12] showed in his extensive evaluation of string
sorters that MSD RadixSortCE3 performs best among all string sorters tested. RadixSort
is optimized for 8-bit and 16-bit alphabets and crashes on larger alphabets. Therefore, we
can only use it on the first level, since on later levels the characters represents ranks in the
range of the text size. We use the LCP-aware Loser Tree implementation by the authors
[15].
Based on a preliminary set of experiments we set the initial configuration of DCX.

If not stated otherwise, we configure DCX with a discarding threshold of 70%, 2 · 104

3https://github.com/SaschaWitt/ips4o
4https://github.com/MichaelAxtmann/KaDiS
5https://github.com/pmehnert/distributed-string-sorting/
6https://github.com/tlx/tlx/blob/master/tlx/sort/strings/radix_sort.hpp
7https://github.com/tlx/tlx/blob/master/tlx/sort/strings/multikey_quicksort.hpp
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random global samples to determine bucket splitters, 2000 · 𝑝 random samples sorted with
Rqick to determine the splitter elements in our sample sort implementation. We apply
the bucketing technique on level 0 and 1 with 32 buckets for Phase 1 and 128 buckets
for Phase 4 and 𝑋 ≥ 13. In subsequent recursions, the input is small enough such that
space-efficient sorting is not required. Since the reduction for 𝑋 = 3 and 𝑋 = 7 is smaller,
we use bucketing on the first four and three level respectively. In Section 6.2.5, we fine-tune
these parameters for concrete difference covers. We enable chunking in the bucketing
technique and use equal chunk sizes. Let 𝑛 𝑗 be the number of locals characters on PE
𝑗 < 𝑝 and 𝑛 the number of global characters when we want to use the bucketing technique.
To configure chunking, we set the average number of chunks 𝐶 , clamp 𝐶 between 1 and
min 𝑗<𝑝 𝑛 𝑗 and set the global chunk size to (𝑛/𝑝𝐶). Assuming a global chunk size facilitates
the implementation. We configure the average number of chunks on a PE rather than
chunk size directly, to adapt the chunk size to different sized inputs. If the characters are
distributed equally, each PE uses exactly 𝐶 chunks.
For this part of the experiments, we run our algorithm on 16 nodes with a total of 768

PEs and 15.36 GB of text input (20 MB per PE). The difference covers we use are shown in
Table 5.1.

First, we will evaluate the influence of the different optimizations for distributed string
such as LCP-aware Loser Tress, LCP-compression and distinguishing prefix approximation
(Section 6.2.1). We evaluate comparison and string based sorters for sorting the 𝑋 -prefixes
in Phase 1 and Phase 4 (Section 6.2.2). Then, we show the benefit of the discarding
technique (Section 6.2.3) and fine-tune the number of chunks and bucket sizes (Section
6.2.4 and Section 6.2.5).

6.2.1. String Sorting Variants

LCP-aware 𝑘-way merging with Loser Trees (LT) and reduction of communication vol-
ume by LCP-compression (LC) and a distinguishing prefix approximation (DP) are key
components in state-of-the-art distributed string sorters [17, 55]. In this experiment, we
apply four variants of string sample sort to sort 𝑋 -prefixes in Phase 1 and Phase 4 of DCX
with varying values of 𝑋 . All other distributed sorting routines use AMS.

• string-sort: String sample sort without additional optimizations. Local merging is
performed with a local sort.

• string-sort-LT: string-sort with a LCP-aware Loser Tree to merge received
strings.

• string-sort-LC: string-sort with LCP-compression.

• string-sort-LC-DP: string-sort-LC with distinguishing prefix approximation.

Table 6.3 shows the reduction in communication volume and the average length of the
distinguishing prefix for DC133 in Phase 4 on level 0. We show the values for DC133,
since here the effects of the reduction can be demonstrated the best. On deeper levels, the
LCP-value are very low (between 0 and 2) and LC would actually send more data than
the standard variant. For this reason, we deactivate LC if the reduction of characters is
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less than 5%. LC reduces the total communication volume by about 6% to 9% and LC-DP
between 30% and 55%.

Figure 6.1 shows the total time and the blowup of DCX with varying values of𝑋 and the
four string sorter configurations. In terms of running time, string-sort is the fastest on
𝑋 = 3, 7, being on average 7% faster string-sort-LT. Here, the strings are very short, such
that the LCP optimizations can not take effect. There is a sweet spot around 𝑋 = 13, 21, 31,
where string-sort and string-sort-LT achieve the best running times of all values of 𝑋 ,
while string-sort-LC is 6% slower. For 𝑋 ≥ 39, string-sort-LT is on average 23% faster
than the second best variant string-sort. On longer 𝑋 -prefix, merging with the LT is
much more efficient than locally sorting the received strings.
Across all values of 𝑋 , LC and DP slow down the algorithm significantly with greater

difference for larger values of 𝑋 . LC and DP create an additional overhead for copying
the text that should be communicated into a separate send buffer and copying back the
results into the static data types. DP requires additional time for the distinguishing prefix
approximation. In Phase 4 of DCX, the |𝐷𝑋 | sample ranks to break ties of equal 𝑋 -prefixes
create significant part of the communication volume, which is not affected by the reduction.

Memory consumption does not vary significantly between the variants. DCXwith𝑋 = 3
has a higher blowup (around 33) than the remaining DCX variants (around 23). This occurs
because DC3 reduces the text size by only 66.66%, while the data type for ranks is changed
from 1 byte to 5 bytes. Secondly, the bucket imbalances in Phase 4 are very high (> 80%
for DC3, < 30% for DC21). The bucket splitter consists only of 3 characters, consequently
there can be many equal strings that are not split between the PEs. To resolve this issue,
we implemented a variant that breaks ties by using the full comparison function including
the sample ranks when comparing a suffix with a splitter element. However, it slowed
down the other faster DCX variants significantly, therefore we deactivated tie-breaking
for the splitter elements.

Overall, the computational overhead of LC and DP does not outweigh the time gained
by the reduction in communication volume. LT brings some improvements in running
time for larger values of 𝑋 .

Input LCP LCP-PD
Char Total Char Total AvgPrefix

CC 0.10 0.07 0.45 0.30 86.68
DNA 0.09 0.06 0.82 0.55 35.33

Proteins 0.09 0.06 0.76 0.51 43.29
Wiki 0.14 0.09 0.74 0.50 52.49

Table 6.3.: Reduction of communication volume in Phase 4 on level for DC133. The Char
columns shows the reduction of send characters and Total the overall reduction.
The last column is the average length of the approximated distinguishing prefix.
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6.2.2. Comparison-based-Sorting vs. String Sorting

In this experiment, we want to determine the best sorting variant for the 𝑋 -prefixes and
the best value of 𝑋 . We run four configurations:

• atomic-sort: Comparison-based sorting with AMS.

• packed: atomic-sort and additionally characters are packed into the minimal
number of 64-bit words required. Table 6.4 shows the number of packed words and
characters for packed with various values of 𝑋 .

• packed+: packed with one additional word used for packing.

• string-sort-LT: String sample sort with LCP-aware Loser Tree.

Examining the running times in Figure 6.2, we see that the packed variants are the
fastest and string-sort-LT is faster than atomic-sort. packed and packed+ differ not
significantly, except on DNA. For 𝑋 ≤ 21, packed+ is faster than packed. Instead of
21 characters, 42 characters are packed such that the reduction of the text size is much
higher. DC39-packed uses 42 characters without the extra word and, thus it performs
similar to the lower packed+ variants. The packed variants exploits the smaller alphabet
size on DNA (𝜎 = 4) and Proteins (𝜎 = 26), causing the larger gap to string-sort-LT.
DC39-packed uses 2 and 4 words on DNA and Proteins instead of 5 as on CC and Wiki.
The sweet spot for running time lies on medium-sized values 𝑋 = 21, 31, 39. We choose
DC39-packed as the default configuration from now on, since it performs the best on
DNA and on the other inputs DC21, DC31, DC39 perform similarly. The memory plot is
almost the same as in the previous experiment. Here, DC39-packed has a blowup close
to 20 on all inputs, which is only 1 - 2 bytes per input character higher than the lowest
achieved blowup.
Figure 6.3 shows the time spent in the different Phases of DC39-packed on the first

two levels and on the remaining levels. Clearly, Sort All (Phase 4) is the most expensive.
All suffixes have to be sorted at once and characters and ranks have to be materialized.
For 𝑋 ≥ 21, between 70% and 80% of the total time is spent in this phase. Furthermore,
we observe that for 𝑋 ≥ 21 more than 75% of the time is spend on the first level. Higher
values of 𝑋 lead to greater reduction in text-size. DCX for 𝑋 ≥ 21 takes between 2 and 3
levels in total to construct the SA. For 𝑋 ≥ 57, the additional overhead caused by longer
𝑋 -prefix does not outweigh the greater reduction in text size. This however, depends on
the characteristic of the text instances. In our evaluation, medium-sized values of 𝑋 are
the best choice across all inputs.
Table 6.5 shows the time spent on sorting in Phase 4 on level 0 and 1 for DC39 with

different sorting variants. We observe that sorting on both levels on average makes about
up 79% of the time spent in Phase 4. Packed outperforms string-sort-LT and atomic-
sort significantly. On level 0, Packed is on average 40% faster than string-sort-LT in the
sorting part of Phase 4 and on DNA even 49%. This performance gain arises from the more
effective comparison function of packed, which allows to compare multiple characters at
once. string-sort-LT and atomic-sort take similar time for sorting on level 0, but in
total string-sort-LT is 17% faster than atomic-sort on level 0. On level 1, packed and
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atomic-sort need similar time, since we use the packing optimization only on level 0. The
differences come from the higher reduction in text size of packed. We pack more than 39
characters to utilize every bit in the packed words. string-sort-LT needs between 2 and
3 seconds longer, than the other variants for sorting on level 1. The LCPs on deeper levels
are quite low (between 0 and 2). Thus, comparison-based sorting only has to compare the
first few characters. MultiKeyQuickSort can not benefit from the low LCP-values.
Summing up, DC39-packed has the best trade-off between running time and memory

consumption on our inputs. The majority of the time is spent on sorting all suffixes in
Phase 4 on level 0.

Input Bits per Char Metric period length 𝑋
3 7 13 21 31 39 57 73 91 95 133

DNA 3 #words 1 1 1 1 2 2 3 4 5 5 7
#chars 21 21 21 21 42 42 63 84 105 105 147

Proteins 5 #words 1 1 2 2 3 4 5 7 8 8 12
#chars 12 12 24 24 36 48 60 84 96 96 144

CC, Wiki 8 #words 1 1 2 3 4 5 8 10 12 12 17
#chars 8 8 16 24 32 40 64 80 96 96 136

Table 6.4.: Number of packed 64-bit words and chars in packed.

Input Algorithm Total Time Level 0 Level 1
Total Sorting Total Sorting

CC
packed 54.79 31.93 24.51 8.28 5.82

string-sort-LT 68.29 42.89 38.23 10.77 9.39
atomic-sort 71.1 49.36 38.28 8.23 5.93

DNA
packed 35.6 24.59 18.02 0.88 0.74

string-sort-LT 57.27 40.94 35.48 4.53 4.37
atomic-sort 63.13 51.29 42.9 1.06 0.88

Proteins
packed 45.9 29.66 21.82 3.6 2.48

string-sort-LT 60.23 41.08 35.93 7.04 6.42
atomic-sort 67.32 51.1 35.81 4.23 2.84

Wiki
packed 51.97 33.08 25.35 5.26 3.66

string-sort-LT 66.95 45.48 40.27 8.31 7.47
atomic-sort 72.04 54.42 40.78 5.36 3.68

Table 6.5.: Time spent on sorting in Phase 4 on level 0 and 1 for DC39.

6.2.3. Discarding

Now, we demonstrate the influence of the discarding optimization. We run DCX-packed
with a discarding threshold of 70% (DCX-discard) and without discarding (DCX-no-
discard). Recall, that a discarding threshold of 70% means that if the size of reduced string
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Input Text Size
Level 1 Level 2 Level 3

CC 8.9564% 0.3713% 0.004%
DNA 0.2872% - -

Proteins 3.2308% 0.12% -
Wiki 5.2949% 0.0675% 0.0002%

Table 6.6.: Text size on level 1, 2, 3 of DC39-discard. Empty cells indicate that the algo-
rithm already finished. For DC39-no-discard, the text-sizes are (7/39)𝑖 for
𝑖 ∈ {1, 2, 3} : 17.95%, 3.22%, 0.58% independent of the input text.

is less than 70% we apply discarding, otherwise we call the normal recursion procedure of
Phase 3.
Figure 6.4 shows the time and memory usage of both variants on varying values of 𝑋 .

On CC and Wiki, DCX-discard is 4-10% faster for 𝑋 ≤ 13 and 13-21% faster for 𝑋 > 13.
The effect is stronger for larger 𝑋 -prefixes, since more samples become unique and can
be discarded. On DNA and Proteins with 𝑋 ≥ 31, DCX-discard is 25-39% faster than
DCX-no-discard. These data sets have on average lower LCP-values than Wiki and CC,
which leads to more unique suffixes that can be discarded. Comparing the number of
packed chars of DC39-packed in Table 6.4 on the DNA, Proteins, CC and Wiki (42, 48,
40, 40) with the next lower quantile in Table 6.2 (𝑞0.9, 𝑞0.7, 𝑞0.4, 𝑞0.7), we see that after the
first level more than 70% of the ranks are already unique, except on CC only 40%.
Looking at the blowup values of Wiki, CC and Proteins, we observe that for 𝑋 ≤ 57

DCX-discard requires 24-40% less memory. For larger 𝑋 , the reduction in memory is
slightly smaller. On DNA, the memory consumption is reduced by 23-33% for 𝑋 ≤ 13.
For 𝑋 > 13, the blowup is almost the same as in both variants. The memory peak in
DCX-no-discard arises from level 2 of DCX. Since we only apply bucketing on level 0 and
1, on level 2 of Phase 4 all suffix are materialized at once. Table 6.6 shows the remaining
text sizes of DC39-discard. The remaining string size is still large enough (3.22% of the
input text) that it causes the memory peak, while for DC39-discard the sizes are smaller
than 0.38% of the input text on all inputs. On DNA, this effect does not occur for 𝑋 ≥ 21,
because all ranks are unique before level 2 is reached. The memory peak could be reduced
by using bucketing also on level 2. However, discarding is always faster and does not
require bucketing on deeper levels, which makes it the better choice. Discarding synergies
well with the packing optimization. Packing compares longer 𝑋 -prefix than non-packing
variants, which creates more unique ranks that can be discarded.

6.2.4. Chunk Sizes

In this experiment, we evaluate the influence of the average number of chunks 𝐶 per
PE on time and memory usage. We run DC39-packed without chunking (𝐶 = 0), and
𝐶 = 10, 100, 1000, 10000, 100000 without the in-place optimization (see Section 5.9.3). We
enable the in-place optimization in a separate configuration for 𝐶 = 10000. Recall, that we
can only use this variant if the bucket imbalances are low.
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Input Metric Chunks 𝐶 Chunks 𝐶 (in-place)
0 10 100 1000 10000 100000 10000

CC
time 66.76 81.24 70.0 64.68 64.85 65.66 53.92

blowup 23.97 21.0 20.08 19.82 20.12 21.07 20.65
imbalance 2.99 3.05 1.59 0.73 0.32 0.23 0.3

DNA
time 44.13 60.83 48.75 44.94 44.8 46.34 36.09

blowup 23.33 19.98 18.96 18.93 19.35 20.29 20.36
imbalance 1.7 1.75 0.69 0.35 0.27 0.24 0.25

Proteins
time 52.2 72.02 58.79 54.76 55.1 56.8 45.35

blowup 23.23 20.26 19.41 19.65 19.95 21.25 20.75
imbalance 2.42 1.69 0.63 0.37 0.24 0.22 0.27

Wiki
time 62.54 78.2 65.23 63.6 61.0 62.92 51.47

blowup 23.62 20.63 19.85 19.82 20.39 21.44 21.07
imbalance 3.76 3.14 0.83 0.37 0.32 0.23 0.25

Table 6.7.: Time, memory and imbalance for chunking experiment with DC39. The best
values in each row are marked in bold.

Table 6.7 shows the total time, blowup and the bucket imbalances. We observe that
chunking with 𝐶 = 1000, 10000, 100000 has similar time to 𝐶 = 0 and takes 15-20 seconds
longer with 𝐶 = 10. Thus, there is an overhead caused by copying and exchanging the
chunks. However, smaller initial bucket imbalances accelerate the sorting step, since
the work is distributed better among the PEs. With 𝐶 = 10000, 100000, the imbalance is
reduced to 22% to 32% while without chunking the imbalance is between 170% and 376%.
For a proper choice of 𝐶 , the gains of a more balanced distribution of data outweighs the
overhead created by chunking and additionally reduces the blowup from around 23.5 to
19.5 bytes per input character. For 𝐶 = 10000, 100000, the blowup increases slightly. This
occurs because we send more chunks and thus more padding characters in total.

Enabling the in-place optimization with 𝐶 = 10000 reduces the running time around 10
seconds. Now, the suffix-ID can be read continuously and we do not have to scan the whole
array 𝑞 times. The blowup increase slightly by 0.5-1 bytes per input character, because we
allocate 25% extra space for the vector to simultaneously store suffix-IDs and SA entries.
We chose the in-place variant with 𝐶 = 10000 for our default configuration, since it has
the lowest running time with very low blowup.

6.2.5. Bucket Sizes

Lastly, we fine-tune the bucket sizes of DCX-packed for 𝑋 = 21, 31, 39. As we have shown,
these values of 𝑋 achieve the fastest running times and good memory-efficiency. The
reductions of the text-size for 𝑋 = 21, 31, 39 are 23.8%, 19.4%, 17.4% respectively. We set
the buckets size in Phase 4 to 𝑏 = 4, 8, 16, 32, 64, 128, 256, 512. The buckets sizes of Phase 1
are set to the corresponding values divided by four, since the number of difference cover
samples is roughly a fourth or a fifth of the input text.
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Figure 6.5 shows the resulting running times and blowups. For 𝑏 ≤ 64, the running time
does not vary greatly. Using even larger block sizes slows down the algorithm. Block sizes
of 𝑏 = 256 take 4-5 seconds and 𝑏 = 512 about 11-13 seconds longer than 𝑏 = 128. Looking
at the blowups, we observe that for after 𝑏 = 64 the memory usage does not decrease
further and stagnates around 20 bytes per input character. Thus, for our best configuration
we use 𝑏 = 64. Table 6.8 summarizes our best DCX configuration.

DCX-Configuration
𝑋 39
discarding threshold 70%
sorter Phase 1, Phase 4 AMS-lv2-packed
atomic-sorter AMS-lv2
#global samples bucket splitters 2 · 104
#buckets Phase 1 16 (on level 0 and level 1)
#buckets Phase 4 64 (on level 0 and level 1)
avg #chunks per PE 104
use in-place optimization True

Table 6.8.: Our best configuration of DCX.

6.3. Comparison with State-of-the-Art

We compare the following distributed suffix array construction algorithms:

• DC39 the best configuration of our DCX implementation.

• PSAC the distributed prefix doubling algorithm by Flick et al. [32]

The prefix doubling algorithm with discarding and distributed DivSufSort by Fischer
and Kurpicz [31] computed incorrect suffix arrays on some inputs, which is why we
excluded them from our evaluations. We are also aware of the distributed DCX implemen-
tation in FEMTO [28]. However, we were not able to get it to run on our system. In future
work, we want to compare DCX with those implementations as well.

PSAC Variants. PSAC uses a threshold on the number non-singleton suffixes to decide
when to switch to the second algorithm. The second algorithm trades more memory usage
for faster running time. In the original paper [32], the authors use a threshold of 10%.
However, they only evaluated PSAC on genomic datasets. To see the full potential of
PSAC, we also evaluate a version of PSAC with the threshold set to 100% (PSAC+). This
means, that PSAC performs only one round of prefix doubling with the first algorithm
and than switches to the second one.

Internally, PSAC uses 64-bit integers for indices and ranks, while we use 40-bit integers.
For a fair comparison of memory usage, we evaluate PSAC and PSAC+with 64-bit and a
versions, in which we replaced all necessary 64-bit integers by 40-bit integers in the source
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code. In the plots, we indicate the integer type used in the subscript. The authors use their
own sample sort implementation for distributed sorting. We also tried to replace sample
sort by AMS with varying number of levels, but could not improve the performance.

Libsais. Libsais [44, 76, 90, 93] is a library for linear time suffix array, longest common
prefix array and Burrows-Wheeler transform construction based on induced sorting algo-
rithm. We run the single-threaded (-ST) and multi-threaded (-MT) suffix array construction
algorithm of Libsais8 on a single node of SuperMUC. Due to the limited RAM of 96 GB
on a SuperMUC node, we can only run Libsais up to 7.68 GB (input to 8 nodes). To
process larger inputs, we run Libsais on machine B as well (indicated by *). In the parallel
version, we use the maximum number of cores available (48 cores on SuperMUC and 96
on machine B) and do not use hyperthreading. Libsais supports 32-bit and 64-bit integers
for indices. For our input sizes, we require the 64-bit version.

6.3.1. Weak-Scaling Experiments

We perform weak-scaling experiments to evaluate the scalability of the distributed suffix
array algorithms. The input per PE is fixed at 20 MB and we increase the number of nodes
𝑁 up to 128 nodes (6144 cores in total). We can not use more input per PE, because PSAC64
goes out of memory for larger inputs (see breakdown test in Section 6.3.2). Libsais is
configured with the same total input sizes as the distributed algorithms, but we leave the
number of used threads unchanged.

Figure 6.6 shows the time and memory consumption of our weak-scaling experiments.
On Wiki, CC and Proteins, DC39 outperforms PSAC40/PSAC64 significantly and scales
better to larger number nodes. It is 1.13× - 2.4× faster on Wiki, more than 3.2× faster on
CC and 1.4× - 2.2× faster on Proteins. For more than 16, 1 and 16 nodes respectively,
DC39 overtakes PSAC+40/PSAC+64 in terms of running time. PSAC64 is slightly faster
than PSAC40 on Wiki and Proteins, while on CC they perform similarly. PSAC+64 and
PSAC64 are the fastest on DNA and are 1.8× - 2× faster than DC39 for 𝑁 ≤ 8, 1.5× faster
for 𝑁 = 16, 32 and 1.15× faster for 𝑁 = 64, 128. DC39 performs similar to PSAC40, but is
1.2× faster for 𝑁 ≥ 64.

The difference between the 40-bit and 64-bit PSAC variant mainly arises from the initial
𝑘-mer packing. More characters can be packed with 64-bit, which allows prefix-doubling to
start with a longer prefix length. On the 3-bit alphabet of DNA, this difference is especially
prominent (21 packed chars for 64-bit and 13 packed chars for 40-bit). Except on DNA,
PSAC40/PSAC64 performmany rounds of expensive global sorting, while PSAC+40/PSAC+64
only perform one initial round of global sorting before switching to the second algorithm.
PSAC64 requires 4-7 rounds of global sorting on Wiki and Proteins, and 10-12 rounds on
CC.

Clearly, the single-threaded and multi-threaded Libsais algorithms can not scale, since
they do not get additional compute resources. We observe that on the faster hardware
of machine B we require 4 compute nodes (192 PEs, 3.84 GB total input) to outperform
Libsais-MT*. On the largest input of 122.88 GB, DC39 with 128 nodes (6144 cores) takes
8https://github.com/IlyaGrebnov/libsais
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between 50 and 80 seconds, Libsais-MT* (192 threads) around 30 minutes, Libsais-ST* (1
thread) between 95 and 115 minutes, depending on the input text. Executing Libsais-MT
(48 threads) and Libsais-ST on the SuperMUC hardware is about twice as slow as on
machine B.
Now, we examine the memory usage of the compared algorithms. Libsais requires

around 9 bytes per input character, which is just enough to store the input text and the
SA. DC39 requires around 20 bytes per input character, which slightly increase up to 25
when using more compute nodes. Approximately 4.7 bytes per input character are used
after initializing MPI (94 MB) and before starting DC39. In theory, we except a blowup of
approximately 9.4 for the bucketing phase and 11.0 for rearranging the SA (see Section 5.6).
The deviation may be to internal allocations of MPI or a limitation of our conservative
method of measuring memory. According to our measurements, the memory peak of
DC39 with 64 nodes still occurs on level 0 in Phase 4 and the imbalance are not higher than
for lower number of nodes (around 20%). We suppose that internally MPI may allocates
more buffers when using additional PEs. Additionally, we inspected the heap allocations
of individual PEs in a run with 64 nodes using heaptrack9 and found that we allocated
approximately 15 bytes per input character. As we will see in our breakdown test (Section
6.3.2), for larger inputs per PE (up to 130MB), these effects are mitigated and the blowup is
on average 14.2 bytes per input character, which is closer to the theoretical optimum.

PSAC64 and PSAC40 use around 60 and 40 bytes per character on CC,Wiki and Proteins
and around 53 and 40 bytes per character on DNA. From theory we expect a blowup of 48
and 30 (6 words).
On Wiki and CC, PSAC+64 and PSAC+40 require 60 bytes per input character for 1

node, which gradually increase up to 80 and 67 for 128 nodes. On Proteins, PSAC+64
requires less memory than PSAC+40 for 𝑁 ≤ 32. Again, the reasons lies in the initial 𝑘-mer
packing. The alphabet of Proteins can be coded with 5-bits, thus PSAC+64 starts with
a prefix length of 12 and PSAC+40 with a prefix length of 8. PSAC+64 has to process less
non-singleton suffixes in the second algorithm, which explains the lower memory peak.
Overall, DC39 is the most memory-efficient. It uses 1.5× - 2× less memory than the

next best distributed algorithm. We showed that DC39 scales well to large number cores
and is the fastest on 3 out of 4 texts for inputs larger than 30.72 GB. PSAC+40 is slightly
faster for 𝑁 ≤ 16 on Wiki and Proteins, but requires 3× and 1.5× the memory of DC39.
In terms of running time, PSAC64 and PSAC+64 remain unbeaten on DNA. As a side result,
we proposed alternative configurations to PSAC64 that offer different trade-offs between
running time and memory usage.

6.3.2. Breakdown Test

Finally, we conducted a breakdown test. We run each distributed algorithm with 768 PEs
and increase the input per PE starting from 10 MB until the program crashes. Figure 6.7
shows the throughput and memory consumption on different input sizes. DC39 can handle
inputs up to 120 MB per PE (92.16 GB in total), PSAC64, PSAC+64 and PSAC+40 up to 20 MB
per PE (15.36 GB in total) and PSAC40 up to 40 MB per PE (30.72 GB in total). Depending
9https://github.com/KDE/heaptrack
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on the characteristic of the input the algorithms can handle slightly larger inputs. For
example, PSAC+40 can process up to 40 MB per PE on Proteins and DNA.

When looking at the throughput, we see a decrease in efficiency of DC39 for increasing
input size. For inputs larger than 110 MB, DC39 is between 10% and 15% less efficient on
Wiki, CC and Proteins, while performing the same on DNA. On average, DC39 has a
throughput of 365 MB per second. For comparison, Libsais-ST* has an average throughput
of 20 MB per second and Libsais-MT* of 70 MB per second. Using the same hardware,
Libsais-ST/Libsais-MT are about half as efficient.
The memory curve decreases with larger inputs, since the constant overheads outside

of our algorithm, like additional allocations of MPI, relatively becomes less significant. On
average, DC39 requires 14.2 bytes per input character if the input is larger than 100 MB
per PE.
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Figure 6.1.: Running times and blowup of DCX for different period lengths𝑋 with different
string sort optimizations, 15.36 GB input and 768 PEs.
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Figure 6.2.: Running times and blowup of DCX for different period lengths𝑋 with different
sorter configurations, 15.36 GB input and 768 PEs.
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6.3. Comparison with State-of-the-Art
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Figure 6.7.: Throughput and blowup during our breakdown test on 768 PEs.
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7. Conclusion

In this thesis, we have developed a distributed suffix array algorithm. Our algorithm
adapts the sequential DCX algorithm [46] to the distributed setting, generalizing the
distributed DC3 implementation of Kulla and Sanders [52]. Additionally, we proposed and
implemented multiple algorithmic improvements to distributed DCX. These are the most
important insights of our experimental evaluations of DCX.

1. Packing characters together with comparison-based sorting proves to be the most
efficient approach for sorting 𝑋 -prefixes, outperforming string sorting techniques
with on average 25% lower running times.

2. Discarding significantly improves running times by 13-39% depending on the LCP-
values of the inputs.

3. Bucketing, combined with the novel load-balancing method chunking, achieves
blowups around 20 bytes per character and even 14.2 bytes if the input per PE is
large (92.16 GB).

We compared DCX, with the current state-of-the-art distributed suffix array algorithm
PSAC [32] on up to 6144 PEs. On 3 out of 4 inputs, our algorithm achieves the fastest
running times for more than 768 PEs with speedups up to 3.2×, while being the most
memory-efficient across all inputs. Although DCX is slower on a DNA dataset (1.5× slower
for 768 PEs, 1.15× slower for 6144 PEs), our algorithm offers a good time-space trade-off,
enabling it to handle much larger text inputs. Moreover, DCX is able to process inputs 3×
as large as our competitor. Overall, we showed that our DCX implementation is scalable,
fast and still space-efficient.

Future Work

There are more aspects of DCX that can be inspected in future research. An open question
is, whether distributed DCX can be combined with prefix doubling or inducing approaches
to design an even more efficient hybrid-algorithm. Furthermore, one can consider to
implement DCX in a semi-external setting. It combines the distributed with the external
approach. Communication over a network between compute nodes works as before. In
addition to its RAM, each compute node can now also use an external hard drive with
much more memory, but slower access speeds. This allows to construct suffix arrays
for even larger amounts of data, for example in the order of TB. Space-efficient sorting
techniques using bucketing and chunking can possibly reduce the I/O transfers necessary
by utilizing the RAM more efficiently. Optimizations proven useful in the distributed
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setting, like discarding and packing, might also improve DCX in the semi-external setting.
Another option is to consider implementing DCX for the GPU, benefiting from faster
specialized hardware. The comparison of our algorithm with the two distributed suffix
array algorithms of Kurpicz and Fischer [31] and the DCX implementation of Ferguson
[28] remains open.
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A. Appendix

A.1. Theoretical Guarantees of Random Chunk Redistribution

Here, we state a theoretical result and its proof [40] on the imbalance guarantees of random
chunk redistribution.
Theorem 3 (RandomChunk Redistribution). When redistributing chunks of size 𝑐 uniformly

at random across 𝑝 PEs, with 𝑞 buckets each containing 𝑛/𝑞 elements, the expected number

of elements from a single bucket received by a PE is 𝑛/(𝑝𝑞). Furthermore, the probability

that any PE receives 2𝑛/(𝑝𝑞) or more elements from the same bucket is at most 1/𝑝𝛾 for
𝑛 ≥ 8𝑐 (𝛾 + 2)𝑝𝑞 ln(𝑝)/3 and 𝛾 > 0.
Proof. Let 𝑌𝑘𝑖 denote the number of elements belonging to bucket 𝑘 , which are assigned
to PE 𝑖 . In the following, we will determine the expected value of 𝑌𝑘𝑖 and show that
P[𝑌𝑘𝑖 ≥ 2E[𝑌𝑘𝑖 ]] is small. This will then be used to derive the above-stated bounds.
Let 𝑐𝑘𝑗 be the number of elements belonging to bucket 𝑘 in chunk 𝑗 . For the sake of

simplicity, we assume all buckets to be of equal size, thus,
∑𝑛/𝑐−1
𝑗=0 𝑐𝑘𝑗 = 𝑛/𝑞. We define

𝑋𝑘𝑗,𝑖 =

{
𝑐𝑘𝑗 if chunk 𝑗 is assigned to PE 𝑖
0 otherwise,

for chunk 𝑗 with 0 ≤ 𝑗 < 𝑛/𝑐 , PE 𝑖 with 0 ≤ 𝑖 < 𝑝 , and bucket 𝑘 with 0 ≤ 𝑘 < 𝑞. Thus,
the random variable 𝑋𝑘𝑗,𝑖 indicates the number of elements from bucket 𝑘 received by PE
𝑖 if chunk 𝑗 is assigned to this PE. Hence, we can express 𝑌𝑘𝑖 as the sum over all 𝑋𝑘𝑗,𝑖 ,i.e.,
𝑌𝑘𝑖 =

∑𝑛/𝑐−1
𝑗=0 𝑋𝑘𝑗,𝑖 . As all chunks are assigned uniformly at random and there are 𝑝 PEs,

we furthermore have E[𝑋𝑘𝑗,𝑖] = 𝑐𝑘𝑗 /𝑝 . By the linearity of expectation, we can derive the
expected value of 𝑌𝑘𝑖 as

E[𝑌𝑘𝑖 ] = E

[
𝑛/𝑐−1∑︁
𝑗=0

𝑋𝑘𝑗,𝑖

]
=

𝑛/𝑐−1∑︁
𝑗=0

E[𝑋𝑘𝑗,𝑖] =
𝑛/𝑐−1∑︁
𝑗=0

𝑐𝑘𝑗

𝑝
=
𝑛

𝑝𝑞
.

For each bucket 𝑘 , we now bound the probability P[𝑌𝑘𝑖 ≥ 2𝑛/(𝑝𝑞)] that PE 𝑖 receives
two times its expected number of elements or more. We have

P
[
𝑌𝑘𝑖 ≥ 2𝑛

𝑝𝑞

]
= P

[
𝑛/𝑐−1∑︁
𝑗=0

𝑋𝑘𝑗,𝑖 ≥
2𝑛
𝑝𝑞

]
= P

[
𝑛/𝑐−1∑︁
𝑗=0

𝑋𝑘𝑗,𝑖 −
𝑛

𝑝𝑞
≥ 𝑛

𝑝𝑞

]
= P

[
𝑛/𝑐−1∑︁
𝑗=0

𝑋𝑘𝑗,𝑖 − E[𝑋𝑘𝑗,𝑖] ≥
𝑛

𝑝𝑞

]
. (A.1)
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As the value of 𝑋𝑘𝑖, 𝑗 is bounded by the chunk size 𝑐 , the Bernstein inequality [19,
Theorem 2.10, Corollary 2.11] yields the following bound

P

[
𝑛/𝑐−1∑︁
𝑗=0

𝑋𝑘𝑗,𝑖 − E[𝑋𝑘𝑗,𝑖] ≥
𝑛

𝑝𝑞

]
≤ exp

©­­«−
(
𝑛
𝑝𝑞

)2
2
(∑𝑛/𝑐−1

𝑗=0 E[(𝑋𝑘
𝑗,𝑖
)2] + 𝑐𝑛

3𝑝𝑞

) ª®®¬ . (A.2)

Since we find 𝐸 [(𝑋𝑘𝑗,𝑖)2] = (𝑐𝑘𝑗 )2/𝑝 , it follows that

𝑛/𝑐−1∑︁
𝑗=0

E[(𝑋𝑘𝑗,𝑖)2] =
𝑛/𝑐−1∑︁
𝑗=0

(𝑐𝑘𝑗 )2/𝑝 ≤ 1
𝑝

𝑛/(𝑞𝑐)−1∑︁
𝑗=0

𝑐2 =
𝑐𝑛

𝑝𝑞
,

as the sum of the squares of a set of elements 0 ≤ 𝑎𝑖 ≤ 𝑐 with
∑
𝑖 𝑎𝑖 = 𝑏 and 𝑏 divisible by

𝑐 is maximized if they are distributed as unevenly as possible, i.e., 𝑎𝑖 = 𝑐 for 𝑏/𝑐 elements
and 0 for all others. We can use this estimation for an upper bound on the right-hand side
of (A.2)

exp
©­­«−

(
𝑛
𝑝𝑞

)2
2
(∑𝑛/𝑐−1

𝑗=0 E[(𝑋𝑘
𝑗,𝑖
)2] + 𝑐𝑛

3𝑝𝑞

) ª®®¬ ≤ exp
©­­«−

(
𝑛
𝑝𝑞

)2
2
(
𝑐𝑛
𝑝𝑞

+ 𝑐𝑛
3𝑝𝑞

) ª®®¬ = exp
(
− 3𝑛
8𝑝𝑞𝑐

)
. (A.3)

Combining these estimations, we obtain the bound

P
[
𝑌𝑘𝑖 ≥ 2𝑛

𝑝𝑞

]
(A.1),(A.3)

≤ exp
(
− 3𝑛
8𝑝𝑞𝑐

)
≤ exp (−(𝛾 + 2) ln 𝑝) = 1

𝑝𝛾+2

for 𝑛 ≥ 8𝑝𝑞𝑐 ln(𝑝) (𝛾 + 2)/3.
Although the random variables 𝑌𝑘𝑖 are dependent on each other, using the union-bound

argument yields the following estimation

P
[⋃

𝑌𝑘𝑖 ≥ 2 𝑛
𝑝𝑞

]
≤

𝑝−1∑︁
𝑖=0

𝑞−1∑︁
𝑘=0

P[𝑌𝑘𝑖 ≥ 2 𝑛
𝑝𝑞

] ≤
𝑝−1∑︁
𝑖=0

𝑞−1∑︁
𝑘=0

1
𝑝𝛾+2

≤ 1
𝑝𝛾
.

Hence, we obtain 1
𝑝𝛾

as an upper bound on the probability that any PE receives more
than two times the expected number of elements 𝑛/(𝑝𝑞) for any bucket when assuming
𝑞 ≤ 𝑝 . □
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