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One Shot Inverse Scattering Revisited\ast 

Roland Griesmaier\dagger and Martin Hanke\ddagger 

Abstract. We develop and discuss a novel reconstruction algorithm for the inverse source problem and the
inverse scattering problem for the Helmholtz equation with well-separated compactly supported
sources or scatterers in two-dimensional free space from far field observations of a single radiated
or scattered wave. We show that a rational approximation of a Laurent polynomial formed by the
low order Fourier coefficients of the given far field pattern can be used to determine straight lines
connecting the support of the sources or scatterers to the origin. After repeating this procedure
for many different choices of the origin, we apply a filtered backprojection algorithm to recover
information on the number and the location of the unknown sources or scatterers. We give numerical
examples to illustrate the performance and limitations of our reconstruction algorithm.

Key words. inverse source problem, inverse scattering, Helmholtz equation, AAA algorithm, filtered backpro-
jection
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1. Introduction. We continue previous investigations [14] of rational approximation tech-
niques for solving inverse source and inverse scattering problems for the two-dimensional
time-harmonic acoustic wave equation at fixed frequency. Our goal is to recover information
about the number and the positions of a few well-separated compactly supported sources or
scatterers from the far field pattern of a single radiated or scattered wave. In [14] asymptotic
expansions of Bessel functions for large order have been used to show that the Fourier coeffi-
cients of the far field pattern associated to high spatial frequencies can be linked to a rational
function with poles that cluster near the sources or scatterers. This method, however, is very
sensitive to noise, because the absolute values of the Fourier coefficients with large indices de-
cay superlinearly, and thus most of them are below any reasonable noise level. In the present
work we turn the focus from high order Fourier modes of the far field pattern to its low order
modes, because these are less susceptible to data errors. Applying asymptotic expansions of
Bessel functions for large argument, we link these Fourier coefficients to a rational function
with poles that determine straight lines connecting the unknown sources or scatterers to the
origin of the chosen coordinate system. To determine these poles numerically we solve the
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882 ROLAND GRIESMAIER AND MARTIN HANKE

rational approximation problem with the AAA algorithm of Nakatsukasa, S\`ete, and Trefethen
[24], using a customized variant of this method that fits to our particular needs.

The given far field depends on the particular choice of the origin. However, since the
background medium is assumed to be homogeneous, we can easily retrieve numerically the
far field pattern with respect to any other position of the origin---henceforth called a virtual
origin---by multiplication with a suitable modulating factor. Repeating the procedure outlined
above for many different virtual origins yields a large number of straight lines intersecting the
supports of the sources or scatterers. Parametrizing these lines by means of their normal
vector and their signed distance to a (now fixed) origin, and rebinning these data on an
equidistant grid on the unit cylinder, renders the possibility to apply a filtered backprojection
for the Radon transform to recover information on the number and the approximate positions
of the sources or scatterers.

This method works particularly well, when the far fields of the individual sources or scat-
terers can be approximated by far fields radiated by a rather small number of well-separated
point-sources. But useful information can often also be inferred for other sources or scatter-
ers, because the insight obtained from these reconstructions can be exploited in a subsequent
step as a priori information for determining the shapes of their supporting domains. For
this, one can use, e.g., iterative reconstruction schemes [17, 19] or far field splitting schemes
[11, 12, 13] in combination with reconstruction algorithms for single objects like, e.g., the
convex scattering support [20, 21, 29], the range test [27], or the enclosure method [15, 16].

Alternative methods for locating well-separated point-like sources or scatterers by means
of sparse optimization have been addressed, e.g., by Fannjiang, Strohmer, and Yan [7] and
by Pieper et al. [26]. An algorithm to estimate the number, positions, and intensities of
point-sources algebraically from Cauchy data of the radiated wave has been proposed by El
Badia and Nara [6]. In another scheme developed in [10] together with Raasch we have used
a windowed Fourier transform of the far field pattern followed by a filtered backprojection
to recover information on the supports of well-separated sources or scatterers from a single
far field pattern. However, in particular at low frequencies this method gives rather blurry
reconstructions. A combination of a range test algorithm and an iterative scheme based on the
reciprocity gap principle for the inverse source problem has been discussed by Alves, Kress,
and Serranho [1]. Finally, the no response test by Luke and Potthast [22] is a sampling method
to locate scatterers from the far field pattern for a single incident wave.

The outline of this article is as follows. In section 2 we provide the problem setting for the
direct and inverse source problem for the Helmholtz equation. After deriving a connection
between the low order Fourier modes of the radiated far field pattern and sparse exponential
sums in section 3, we use it to recover information on the location of the present sources by
rational approximation. To this end we derive a special variant of the AAA algorithm in
section 4, and we apply it to determine lines connecting the supports of the sources to the
current origin of the coordinate system. Section 5 focuses on how this computation can be
extended by considering a large number of virtual origins and on how the resulting data set can
be inverted by filtered backprojection. Here we also provide a series of numerical examples.
Finally, in the appendix we establish a quantitative error estimate for the approximation of
the Bessel functions for large argument that we use in the derivation of the reconstruction
algorithm.
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ONE SHOT INVERSE SCATTERING REVISITED 883

2. Problem setting. Consider the source problem

\Delta u+ k2u =  - f in \BbbR 2(2.1)

for the Helmholtz equation, where f is a distribution with compact support in \BbbR 2 and k > 0
denotes the wave number. The unique radiating solution u of (2.1), i.e., the distributional
solution that satisfies the Sommerfeld radiation condition

\partial u

\partial r
 - iku = o(r - 1/2) as r= | x| \rightarrow \infty ,

admits an asymptotic expansion

u(r\widehat x) = e\mathrm{i}kr\surd 
kr

e\mathrm{i}\pi /4\surd 
8\pi 

u\infty (\widehat x) + O(r - 3/2) , \widehat x\in S1 , as r\rightarrow \infty ,(2.2)

near infinity (cf., e.g., Colton and Kress [3, p. 90]). The associated function u\infty : S1 \rightarrow \BbbC is
known as the far field pattern of u, or, for short, as the far field radiated by the given source
f .

Here we are interested in the inverse source problem, that is, in retrieving information
about the source f from knowledge of its radiated far field. Without further assumptions
the source f itself cannot be retrieved from the far field pattern, as is worked out, e.g.,
in Bleistein and Cohen [2]. However, assuming that the individual source components are
sufficiently well-separated---the diameter of each component being strictly smaller than the
distance to the other components---and that each of them radiates a nontrivial far field, it
has been shown by Sylvester [29] that the number and the location of these components are
uniquely determined. In particular, superpositions of finitely many separated point-sources
can be uniquely reconstructed.

The radiating solution u of (2.1) can be written as a volume potential

u(x) =

\int 
\BbbR 2

\Phi (x - y)f(y) dy , x\in \BbbR 2 ,(2.3)

where \Phi (x) = \mathrm{i}
4H

(1)
0 (k| x| ), x\in \BbbR 2\setminus \{ 0\} , is the radiating fundamental solution of the Helmholtz

equation in \BbbR 2, with H
(1)
0 denoting the Hankel function of the first kind of order zero. Substi-

tuting the asymptotic expansion of Hankel functions for large argument [3, p. 89], we conclude
from (2.2) and (2.3) that the far field of u can be written as

u\infty (\widehat x) = \int 
\BbbR 2

e - \mathrm{i}k\widehat x\cdot yf(y) dy , \widehat x\in S1 .

For fixed y \in \BbbR 2 we now insert the Jacobi--Anger expansion [3, p. 91]

e - \mathrm{i}k\widehat xt\cdot y =
\sum 
n\in \BbbZ 

( - i)ne - \mathrm{i}n\mathrm{a}\mathrm{r}\mathrm{g} yJn(k| y| ) e\mathrm{i}nt ,

where arg y is the polar angle of y for y \not = 0, and arg 0 = 0, and where \widehat xt = (cos t, sin t) with
0\leq t < 2\pi . From this we obtain the Fourier series of the far field pattern

u\infty (\widehat xt) = \sum 
n\in \BbbZ 

ane
\mathrm{i}nt
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884 ROLAND GRIESMAIER AND MARTIN HANKE

with

an = ( - i)n
\int 
\BbbR 2

e - \mathrm{i}n\mathrm{a}\mathrm{r}\mathrm{g} yJn(k| y| )f(y) dy , n\in \BbbZ .(2.4)

Remark 2.1. Let us assume that the source f is supported in a disk of radius R around
the origin. In many practically relevant situations (see [14] for point-sources, single-, and
double-layer sources, and [11, 13] for square integrable sources) it has been shown that, after
restricting the strength of the source and the sensitivity of the sensors that are used to measure
the far fields, the observable part of the far field radiated by f belongs to a finite dimensional
subspace

V\itOmega \ast :=
\Bigl\{ 
v \in L2(S1)

\bigm| \bigm| \bigm| v(\widehat xt) = \sum 
| n| \leq \itOmega \ast 

ane
\mathrm{i}nt
\Bigr\} 

of \Omega \ast -bandlimited functions, where \Omega \ast can be chosen between kR and 3kR/2 for a wide range
of strength and sensitivity thresholds for the sources and receivers. Following [13], we refer to
V\itOmega \ast as the subspace of nonevanescent far fields radiated from sources within a disk of radius R
around the origin, and to the orthogonal projection P\itOmega \ast u

\infty of a far field u\infty onto this subspace
as the nonevanescent part of this far field. As suggested in [11, 12] we estimate \Omega \ast numerically
from

\Omega \ast \approx \Omega \eta := min
\Bigl\{ 
\Omega 
\bigm| \bigm| \bigm| \| P\itOmega u

\infty \| L2(S1) \geq (1 - \eta )\| u\infty \| L2(S1)

\Bigr\} 
(2.5)

for some sufficiently small threshold parameter \eta > 0, which should take the noise level into
account, and then approximate

kR \approx 2

e
\Omega \eta =: kR\eta (2.6)

from the given data.

Example 2.2. Figure 2.1 shows the absolute values | an| versus n \in \BbbZ of the Fourier
coefficients of the far field to be used in Example 4.2 below, with two sources at about (10,10)
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Figure 2.1. Fourier coefficients of a particular far field (absolute values); the right hand side plot zooms in
on the oscillating regime.
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ONE SHOT INVERSE SCATTERING REVISITED 885

and (6, - 10) and wave number k = 1. The plot exhibits the typical features of these data,
as it roughly splits into three parts: The first one---bounded by the two solid vertical lines---
concerns the low-frequency spectrum. This part corresponds to the frequencies associated
with indices n with | n| \lesssim kR\eta . Choosing \eta = 10 - 6 in (2.5) gives \Omega \ast \approx \Omega \eta = 20. According
to (2.6) we therefore obtain the estimate kR\eta \approx 14.72 from this plot, while the true value is
kR\approx 14.53. Within this range, the Fourier coefficients are oscillating, in agreement with the
corresponding behavior of the Bessel functions Jn(k| \cdot | ) that occur in (2.4).

The second feature is the superlinear decay of the Fourier coefficients corresponding to
indices n with | n| \gtrsim kR\eta ; we refer to this regime as the tail of this plot. And finally, when
this superlinear decay has reached the order of the data noise (here, machine precision), all
one can see is noise in the respective coefficients.

In [14] the evanescent part of the far field, i.e., the tail of the plot in Figure 2.1, has been
used to deduce some information about the support of the source f by means of rational
approximation techniques. The corresponding algorithm suffers from the fact that the infor-
mation content of this tail is low for realistic noise levels, i.e., for much larger noise levels
than in the plot. It is the purpose of the present paper to explore whether and how the
nonevanescent component of the far field can be used instead. In fact, the algorithm which
we propose below only employs the Fourier coefficients, which are enclosed by the two dotted
vertical lines in Figure 2.1.

3. The idea. Consider for the moment the situation that the source f is close to a single
point-source at position y= y0, i.e.,

f \approx \gamma \delta y0
for some \gamma \in \BbbC ,(3.1)

in the sense that the far field radiated by the source f is close to the far field radiated by \gamma \delta y0
,

with \delta y0
denoting the delta distribution supported in y0. Using polar coordinates

y0 = r\widehat x\theta = r(cos\theta , sin\theta )

with r > 0 and 0\leq \theta < 2\pi again, this means that

an \approx \gamma ( - i)ne - \mathrm{i}n\theta Jn(kr) , n\in \BbbZ ,(3.2)

according to (2.4).
As we work out in the appendix, the values of the Bessel functions in (3.2) can be approx-

imated by

Jn(kr) \approx 
\sqrt{} 

2

\pi kr

\biggl( 
cos
\Bigl( 
kr - \pi 

2
n - \pi 

4

\Bigr) 
 - sin

\Bigl( 
kr - \pi 

2
n - \pi 

4

\Bigr) 4n2  - 1

8kr

\biggr) 
,(3.3)

provided that

| n| \leq N \lesssim 
\surd 
kr .(3.4)

The right hand side of (3.3) corresponds to the approximation J
(1,1)
n (kr) considered in (A.3)

in the appendix.
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886 ROLAND GRIESMAIER AND MARTIN HANKE

Inserting (3.3) into (3.2) and rewriting sine and cosine via complex exponentials we even-
tually arrive at

an \approx \gamma \beta n(e
 - \mathrm{i}\theta )n + \gamma \beta n( - e - \mathrm{i}\theta )n =: bn , | n| \leq N ,(3.5)

where

\beta n = \omega 0 + \omega 1n
2(3.6)

is a quadratic polynomial expression in n with coefficients

\omega 0 =
e\mathrm{i}\pi /4\surd 
2\pi kr

e - \mathrm{i}kr

\biggl( 
1 +

i

8kr

\biggr) 
and \omega 1 =

e - \mathrm{i}\pi /4

\surd 
2\pi kr

e - \mathrm{i}kr 1

2kr
.(3.7)

Given that we are interested in the inverse source problem, we can, therefore, in principle,
fix some N \lesssim 

\surd 
kr, use the given Fourier coefficients with indices | n| \leq N as data, and solve

(3.5) for the unknown polar angle \theta and for the coefficients \gamma \omega 0 and \gamma \omega 1; according to (3.7)
one can then retrieve r from \omega 0/\omega 1. This is an exponential approximation problem, which
is very ill-conditioned; in particular, the approximation of r will suffer severely under small
uncertainties in the reconstructed value of \theta .

Therefore, we restrict our efforts merely to the approximation of the exponential terms
\pm e\mathrm{i}\theta in (3.5), i.e., the polar angle of the source, and ignore the associated prefactors; note,
however, that then we cannot decipher whether the polar angle of the source equals \theta or \theta \pm \pi .
To determine these two angles we apply the z-transform and define the Laurent polynomial

\varphi N (z) =

2N\sum 
n=0

an - Nz
 - n - 1 , z \in \BbbC ;(3.8)

see Weiss and McDonough [31]. Using (3.5) we observe that

\varphi N (z)\approx \psi N (z) :=

2N\sum 
n=0

bn - Nz
 - n - 1(3.9a)

= \gamma 

2N\sum 
n=0

\biggl( 
\beta n - N (e - \mathrm{i}\theta )N

z
(ze - \mathrm{i}\theta ) - n +

\beta n - N ( - e - \mathrm{i}\theta )N

z
( - ze - \mathrm{i}\theta ) - n

\biggr) 
\approx \gamma 

\infty \sum 
n=0

\biggl( 
\beta n - N (e - \mathrm{i}\theta )N

z
(ze - \mathrm{i}\theta ) - n +

\beta n - N ( - e - \mathrm{i}\theta )N

z
( - ze - \mathrm{i}\theta ) - n

\biggr) 
(3.9b)

=:\psi (z)

for | z| > 1. Inserting (3.6) and evaluating the series we find that

\psi (z) = \alpha +
1

z  - e\mathrm{i}\theta 
+ \eta +

e\mathrm{i}\theta 

(z  - e\mathrm{i}\theta )2
+ \xi +

e\mathrm{i}\theta (e\mathrm{i}\theta + z)

(z  - e\mathrm{i}\theta )3

+ \alpha  - 
1

z + e\mathrm{i}\theta 
+ \eta  - 

e\mathrm{i}\theta 

(z + e\mathrm{i}\theta )2
+ \xi  - 

e\mathrm{i}\theta (e\mathrm{i}\theta  - z)

(z + e\mathrm{i}\theta )3

(3.10)
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ONE SHOT INVERSE SCATTERING REVISITED 887

with

\alpha + = \gamma (\omega 0 +N2\omega 1)e
 - \mathrm{i}N\theta , \alpha  - = \gamma (\omega 0 +N2\omega 1)( - 1)Ne - \mathrm{i}N\theta ,

\eta + =  - 2\gamma N\omega 1e
 - \mathrm{i}N\theta , \eta  - = 2\gamma N\omega 1( - 1)Ne - \mathrm{i}N\theta ,

\xi + = \gamma \omega 1e
 - \mathrm{i}N\theta , \xi  - = \gamma \omega 1( - 1)Ne - \mathrm{i}N\theta .

The important observation to make is that \psi is a rational function with two poles on the unit
circle, which are symmetric with respect to the origin and whose polar angles coincide up to
\pm \pi with that of the source point y0 in (3.1).

Let us be more specific about the conditions under which the rational approximation
\varphi N \approx \psi in (3.9) is valid. The error in (3.9a) is due to the chosen model (3.1) in combination
with the approximation (3.3) of the Bessel functions in (3.5), (3.6). Suppose that we have
access to (possibly noisy) Fourier coefficients an of the far field radiated by f , such that

\pi kr

2

N\sum 
n= - N

| an  - bn| 2 = \delta 2 .(3.11)

The normalizing factor in front of the sum is meant to cancel the prefactor of the asymptotic
representation (3.3) of the Bessel functions; therefore, \delta may be interpreted as an estimate of
a certain relative error in the Fourier coefficients. Then the total squared pointwise error in
(3.9a) can be bounded for | z| = \rho as follows:

| \varphi N (z) - \psi N (z)| 2 \leq 
2N\sum 
n=0

| an - N  - bn - N | 2
2N\sum 
n=0

(\rho  - n - 1)2

=
2

\pi kr

\delta 2

\rho 2
1 - \rho  - 4N - 2

1 - \rho  - 2
=:

2C\rho 

\pi kr

\delta 2

\rho 2
.

(3.12)

The estimation of the truncation error in (3.9b) is more involved: Since

| bn| \leq 2| \gamma | | \beta n| \leq 2| \gamma | (| \omega 0| + | \omega 1| n2)

by virtue of (3.5) and (3.6), the truncation error satisfies

| \psi (z) - \psi N (z)| \leq 
\infty \sum 

n=N+1

| bn| \rho  - N - n - 1

\leq 2| \gamma | \rho  - N - 1

\Biggl( 
| \omega 0| 

\infty \sum 
n=N+1

\rho  - n + | \omega 1| 
\infty \sum 

n=N+1

n2\rho  - n

\Biggr) 

for | z| = \rho > 1. Taking (3.7) into account, and evaluating the two series, this eventually leads
to a bound of the form

| \psi (z) - \psi N (z)| \leq 
Cf\surd 
2\pi kr

\biggl( 
1 +

N2

2kr

\biggr) 
\rho  - 2N - 2 ,(3.13)
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888 ROLAND GRIESMAIER AND MARTIN HANKE

where the constant Cf is a multiple of the strength | \gamma | of the point-source, and hence, of
\| (an)n\| \ell 2 . The latter follows immediately from (3.2) and the fact that

\sum 
n\in \BbbZ J

2
n(kr) = 1; see

[5, 10.23.3]. Ideally, we want the truncation error to be smaller than the (inevitable) data and
modeling error (3.12). According to (3.12) and (3.13) this is the case when

\rho \geq 

\Biggl( 
1

C
1/2
\rho 

1

2

\biggl( 
1 +

N2

2kr

\biggr) \Biggr) 1

2N+1
\biggl( 
Cf

\delta 

\biggr) 1

2N+1

.(3.14)

Remark 3.1. The number 2N + 1 of Fourier coefficients that we use in the definition of
\varphi N in (3.8) is typically small and restricted by the validity of the approximation (3.3), i.e.,
by the condition (3.4). According to Lemma A.1, and based on numerical tests similar to

Figure A.1, somewhat larger values of N can be used when replacing J
(1,1)
n (kr) on the right

hand side of (3.3) by some J
(p,q)
n (kr), q \in \{ p - 1, p\} , as in (A.3) with p\gg 1. In this case the

approximation (3.9) remains valid with a rational function \psi similar to (3.10), which still has
two poles on the unit circle that are symmetric with respect to the origin and whose polar
angles coincide up to \pm \pi with that of the source point y0 in (3.1). The only difference is that
these poles then come with multiplicities up to order 2(p+ q) - 1 instead of three. However,
this does not affect the reconstruction of the polar angle of the source point, which is obtained
by the algorithm that we develop next in section 4 below. Therefore, using a few more Fourier
coefficients than determined by (3.4) is also justified. We will make use of this observation in
Examples 5.4 and 5.5 in section 5.

Of course, the presentation above is rather simplified in that we have made the assumption
that a single point-source can be used as an effective model for the true source f . Since our
real interest is in the case of several separated sources, we now turn to the case where a
combination of a finite number of point-sources is needed for a good approximation of f , i.e.,
we assume that

f \approx 
J\sum 

j=1

\gamma j\delta yj
, yj = rj \widehat x\theta j ,(3.15)

for some small J \in \BbbN , where rj > 0, 0\leq \theta j < 2\pi , and \gamma j \in \BbbC . In this case we proceed similarly
and truncate the Laurent polynomial (3.8) after

N \lesssim min
j

\sqrt{} 
krj(3.16)

terms. Then, since the solution of the source problem, the Fourier coefficients of its far field,
and the definition of the Laurent polynomial (3.8) all depend linearly on the source, we obtain
by superposition that the resulting Laurent polynomial \varphi N is close to a rational function \psi 
with poles in \pm e\mathrm{i}\theta j , meaning that

| \varphi N (z) - \psi (z)| \leq 4

N

\biggl( 
C\rho 

2\pi 

\biggr) 1/2 \delta 

\rho 
for | z| = \rho ,(3.17)

provided that \rho > 1 satisfies the inequality (3.14) and N satisfies (3.16).
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ONE SHOT INVERSE SCATTERING REVISITED 889

We summarize our findings of this section. Assuming that the source f is well approx-
imated by a combination of finitely many point-sources, then the Laurent polynomial (3.8)
agrees up to the relative modeling and data error (3.17) with a rational function whose poles
provide the polar angles of the individual sources. This is true for all z in the exterior of a
disk of radius \rho > 1 around the origin in the complex plane, as long as \rho satisfies the inequality
(3.14), which depends on the strength of the sources and the amount of errors in the data,
and in particular, on the number of terms of the Laurent polynomial.

The above analysis suggests to recover the polar angles \theta j of the source points yj by (i)
approximating \varphi N on some circle | z| = \rho > 1 numerically by a rational function with poles on
or close to the unit circle and (ii) by using these poles as estimates of \pm e\mathrm{i}\theta j . Take note that
\varphi N in itself is a rational function with a single pole (of order 2N+1) at the origin; the crucial
point is therefore to approximate \varphi N by a rational function of smaller (denominator) degree
with poles close to the unit circle.

Remark 3.2. The definition (3.8) of the Laurent polynomial \varphi N is not symmetric with
respect to the order of the Fourier coefficients a - N , . . . , aN . When evaluating \varphi N (z) at z \in \BbbC 
with | z| = \rho > 1 the information content of the Fourier coefficients with positive indices is
much more damped compared to that within the coefficients with negative indices. This is
somewhat unsatisfactory. Reversing the order of the Fourier coefficients, we can alternatively
consider

\widetilde \varphi N (z) =

2N\sum 
n=0

aN - nz
 - n - 1 , z \in \BbbC .(3.18)

Applying the same arguments as in (3.9) we obtain that, for | z| = \rho > 1, this Laurent polyno-
mial satisfies \widetilde \varphi N (z)\approx \widetilde \psi (z), where the rational function

\widetilde \psi (z) = J\sum 
j=1

\Biggl( \widetilde \alpha j
1

z  - e\mathrm{i}\theta j
+ \widetilde \eta j e\mathrm{i}\theta j

(z  - e\mathrm{i}\theta j )2
+ \widetilde \xi j e\mathrm{i}\theta j (e\mathrm{i}\theta j + z)

(z  - e\mathrm{i}\theta j )3

+ \widetilde \alpha  - j
1

z + e\mathrm{i}\theta j
+ \widetilde \eta  - j

e\mathrm{i}\theta j

(z + e\mathrm{i}\theta j )2
+ \widetilde \xi  - j

e\mathrm{i}\theta j (e\mathrm{i}\theta j  - z)

(z + e\mathrm{i}\theta j )3

\Biggr) 

has coefficients

\widetilde \alpha j = \gamma j(\omega j,0 +N2\omega j,1)e
 - \mathrm{i}N\theta j , \widetilde \alpha  - j = \gamma j(\omega j,0 +N2\omega j,1)( - 1)Ne - \mathrm{i}N\theta j ,\widetilde \eta j =  - \gamma j2N\omega j,1e

 - \mathrm{i}N\theta j , \widetilde \eta  - j = \gamma j2N\omega j,1( - 1)Ne - \mathrm{i}N\theta j ,\widetilde \xi j = \gamma j\omega j,1e
 - \mathrm{i}N\theta j , \widetilde \xi  - j = \gamma j\omega j,1( - 1)Ne - \mathrm{i}N\theta j ,

and the same poles as \psi . In our numerical examples in section 5 we will not only use \varphi N but
also \widetilde \varphi N as well as (\varphi N + \widetilde \varphi N )/2 and (\varphi N  - \widetilde \varphi N )/2 to symmetrize the usage of the Fourier data
in the reconstruction algorithm.

4. A special variant of the AAA algorithm. To determine a suitable rational approxima-
tion of the Laurent polynomial \varphi N we suggest the AAA algorithm, which has been proposed
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890 ROLAND GRIESMAIER AND MARTIN HANKE

in [24] as a powerful tool for rational approximation. This algorithm determines a rational
function which matches a set of given function values of \varphi N to a prescribed tolerance.

In view of the discussion in the previous section these function values should correspond
to arguments z \in \BbbC whose absolute value | z| = \rho > 1 satisfies (3.14). Moreover, | z| should
not be too large in order to extract most of the information content hidden in all relevant
Fourier coefficients an with | n| \leq N . Concerning the terms occurring in (3.14), take note that

1\leq C\rho \leq 2N + 1 by virtue of (3.12), and hence 1 \leq C
1/(4N+2)
\rho \leq exp(1/(2e))< 1.202; further

note that N2/(kr) is about one in view of (3.16). Finally, we choose 4\| (an)n\| \ell 2 for the value
of the constant Cf on the grounds of the derivation of (3.13). Accordingly we replace the
right hand side of (3.14) by

\rho \ast := (4\| (an)n\| \ell 2/\delta )
1

2N+1(4.1)

in our numerical code. To estimate the value of \delta in (3.11), we use a guess for the relative

data and modeling error \Delta e := (
\sum 

| n| \leq N | an  - bn| 2/
\sum 

| n| \leq N | an| 2)1/2 and then approximate

\delta \approx \Delta e

\Biggl( 
\pi N2

2

N\sum 
n= - N

| an| 2
\Biggr) 1/2

.(4.2)

Therewith, we can evaluate (4.1) and choose the input arguments for the AAA algorithm
from the circle | z| = \rho \ast . More precisely, we determine the function values y\nu = \varphi N (z\nu ) for an
equidistant angular grid

z\pm \nu = \pm \rho \ast e\mathrm{i}\nu \pi /M , \nu = 1, . . . ,M ,(4.3)

with 2M points on this circle. In view of (3.17) we then aim for a fit of order

\tau :=
2

N

\biggl( 
C\rho \ast 

2\pi 

\biggr) 1/2 \delta 

\rho \ast 
(4.4)

of these data. We note that this threshold is smaller by a factor of 1/2 than the right hand side
of (3.17), but this slight overfitting has yielded better numerical results. The reason is that
when the tolerance is too loose then the AAA algorithm will often terminate with small degree
rational functions and therefore does not provide enough pole information. Alternatively, one
may take this factor 1/2 as a compensation for the overestimation of the true error in (3.9)
by using upper bounds.

Remark 4.1. We mention in passing that the underlying approach is similar to a method
for parameter estimation for sparse exponential sums suggested by Derevianko, Plonka, and
Petz [4]. However, the number of terms of the Laurent polynomial \varphi N used in [4] is larger
by orders of magnitude, so that a fine angular spacing of the grid points z\nu of (4.3) could be
achieved in [4] by choosing all (2N + 1)th complex roots of \rho 2N+1. For this particular grid
the associated function values coincide with those of another rational function with the same
poles, so that the approximation (3.9b) is no longer necessary. This is the major difference
in our setting here, because it enables the choice \rho = 1 utilized in [4]. In our application the
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corresponding number of input data pairs for the AAA algorithm would be much smaller,
namely, at most ten to twenty. We did some numerical experiments with the method in [4]
and found that the corresponding rational approximations are not sufficient for our purposes.

In the original paper [24] the rational function determined by the AAA algorithm is
represented in barycentric form, i.e.,

\scrR (z) =
\sum 
\nu \in \scrN 

w\nu y\nu 
z  - z\nu 

\Bigg/ \sum 
\nu \in \scrN 

w\nu 

z  - z\nu 
,(4.5)

with appropriate (complex) parameters w\nu \not = 0, \nu \in \scrN . As observed earlier (cf., e.g., Schneider
and Werner [28]), a rational function of the form (4.5) interpolates by construction the data
points (z\nu | y\nu ) with \nu \in \scrN \subset \{ \pm 1, . . . ,\pm M\} . In the AAA scheme the parameters w\nu are chosen
in such a way that the fit for the remaining data points is optimal in an appropriate sense;
compare (4.7) below. However, since \varphi N is no even function in general, the poles of this
rational approximation will not be symmetric with respect to the origin. Another issue with
(4.5) is that although \psi of (3.10) vanishes at infinity, the generic AAA approximation will
not.

We therefore replace (4.5) by the Ansatz

\scrR (z) =
\sum 
\nu \in \scrN +

w\nu 

\biggl( 
y\nu 

z  - z\nu 
 - y - \nu 

z + z\nu 

\biggr) \Bigg/ \Biggl( 
w\infty +

\sum 
\nu \in \scrN +

w\nu 

\biggl( 
1

z  - z\nu 
 - 1

z + z\nu 

\biggr) \Biggr) 
,(4.6)

where \scrN + \subset \{ 1, . . . ,M\} : Similar to the original version (4.5) this function interpolates the
data points (z\nu | y\nu ) with | \nu | \in \scrN +; moreover, unless w\infty = 0, the rational approximation (4.6)
vanishes at infinity, and since its denominator is an even function, the zeros of the latter---
which constitute the poles of \scrR ---are symmetric with respect to the origin.

Let

\scrM = \{ \pm 1, . . . ,\pm M\} \setminus \{ \nu : | \nu | \in \scrN +\} 

be the indices of the data points which are not used for interpolation, and define w= [w\nu ]\nu \in \scrN +

and y= [y\mu ]\mu \in \scrM . Then, following the derivation of the original AAA algorithm, the parame-
ters w\nu , \nu \in \scrN +, and w\infty are chosen such that the quadratic form

\| w\infty y+\Delta Lw\| 22(4.7)

becomes minimal, subject to the constraint

| w\infty | 2 + \| w\| 22 = 1 ,

where the matrix \Delta L is given by

\Delta L =

\biggl[ 
y\mu  - y\nu 
z\mu  - z\nu 

 - y\mu  - y - \nu 

z\mu + z\nu 

\biggr] 
\mu \in \scrM , \nu \in \scrN +

.
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892 ROLAND GRIESMAIER AND MARTIN HANKE

In other words, the vector [w\infty ,w\nu ]
T
\nu \in \scrN +

is a singular vector associated with the smallest
singular value of the matrix

W = [y \Delta L].

The list of indices in \scrN +, which determines the set of data points that are used for
interpolation rather than approximation, is determined by a greedy iteration in the AAA
scheme: Starting with an empty set \scrN + = \emptyset , the absolute value of an index \nu , for which the
current residual | y\nu  - \scrR (z\nu )| is largest, is appended after each iteration to the list of indices
in \scrN +, until, eventually, all the residuals are below the tolerance \tau of (4.4).

The poles of the final approximation \scrR of (4.6) are the finite eigenvalues \lambda \in \BbbC of the
matrix pencil \left[      

w\infty 1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1

w Z  - \lambda I 0

 - w 0  - Z  - \lambda I

\right]      ,
where Z is the diagonal matrix with the interpolation grid points z\nu , \nu \in \scrN +, on the diagonal.
This can readily be checked by computing the corresponding eigenvector. Of course, there is
no guarantee that these poles are located on the unit circle, and we discard poles as spurious
ones, when they fail to belong to the annulus

0.95 < | z| < 1.05 .

Example 4.2. To illustrate the method we consider an incident time-harmonic plane wave
with direction of propagation (1,0) in a homogeneous medium with wave number k= 1, which
is scattered by two objects with a diameter of about one, namely, a kite located at (10,10)
and a disk at (6, - 10): The kite is a sound-soft scatterer,1 whereas the disk is such that the
total field satisfies a homogeneous impedance condition.2 We simulate the far field pattern
of the scattered wave with a Nystr\"om method as described in [3, 18], using an equidistant
grid on S1 with 128 points. The scattered wave u solves the source problem (2.1) for some
(distributional) source f supported on the boundaries of the two scatterers. In fact, since the
scatterers are relatively small compared to the wavelength of the incident field (the diameters
of the kite and the circle are 0.22 and 0.13 wavelengths, respectively), the associated far field
pattern can be approximated by the far field radiated by two point-sources supported near
the centers of the two scatterers as in (3.15) rather well (see, e.g., [9, Thm. 3.1]).

The absolute values of the Fourier coefficients of the far field of the corresponding scattered
wave have already been displayed in Figure 2.1. Figure 4.1 shows the two scatterers and the
disk with radius r\ast \approx 11.26, which is the minimal distance of the scatterers from the origin.
Accordingly, we use seven Fourier coefficients an (corresponding to N = 3 = \lfloor 

\surd 
11.26 \rfloor in

accordance with (3.16)) for the Laurent polynomial \varphi N ; they belong to the oscillating regime

1See, e.g., [3, p. 2].
2See, e.g., [3, p. 3]. We use the value \lambda = 0.5 for the impedance parameter.
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Figure 4.1. Illustration of the basic algorithm for Example 4.2.

of the Fourier coefficients as indicated by the dotted red bars in Figure 2.1. (Color images are
available online.)

With the estimated value \Delta e = 10 - 3 in (4.2) the radius (4.1) of the circle, on which \varphi N

is being evaluated, has been determined to be \rho \ast \approx 3.33 by (4.1). We use 2M = 100 data
pairs on this circle as input for the modified AAA algorithm. The tolerance \tau in the AAA
algorithm is 7.18 \cdot 10 - 5 according to (4.4). The greedy AAA iteration determines a rational
approximation with four poles.

Figure 4.1 shows these poles marked as black crosses, which are all close to the unit circle.
According to the theory the scatterers should be located along the red lines, which depict all
complex numbers which share the polar angle with one of the four poles. In this particular
example these two lines indeed (almost) intersect the two scatterers.

5. Moving around. To get further information about the location of the sources we can
utilize another important property of the inverse source problem that has, e.g., been advocated
by Kusiak and Sylvester in [21] (see also [22, 27]), and that has already been employed in [14]
as well. Assume that we shift the origin of the coordinate system to some arbitrary point
c \in \BbbR 2, or rather, keep the origin and move the source f , so that we consider the radiating
solution uc of the Helmholtz equation (2.1) with f replaced by the (virtual) source fc given
by

fc(y) = f(c+ y) , y \in \BbbR 2 .

A straightforward computation reveals that this solution has the far field pattern

u\infty c (\widehat x) = e\mathrm{i}kc\cdot \widehat xu\infty (\widehat x) , \widehat x\in S1 ,(5.1)

which is immediately available from the given data u\infty ---and so are its Fourier coefficients

acn =
\sum 
m\in \BbbZ 

im - ne\mathrm{i}(m - n) \mathrm{a}\mathrm{r}\mathrm{g} cJm - n(k| c| )am , n\in \BbbZ .

Remark 5.1. Assuming that f is supported in a disk of radius R> 0 and that we can only
observe the nonevanescent part of its radiated far field u\infty , we have argued in Remark 2.1 that
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2\Omega \ast +1 Fourier coefficients of the far field pattern for some \Omega \ast \gtrsim kR suffice to capture all the
information from u\infty . In our numerical examples below we will simulate the far field patterns
on a sufficiently fine grid to be able to compute these Fourier coefficients with satisfactory
accuracy. According to the Shannon sampling theorem (cf., e.g., Natterer and W\"ubbeling [25,
p. 67]), this is the case if our equidistant angular grid has at least 2\Omega \ast grid points.

Depending on the shift parameter c in (5.1), the radius Rc of the smallest disk centered
at zero that contains the support of the shifted source fc might be significantly larger than R.
As a consequence, the number 2\Omega c

\ast +1 of Fourier coefficients with \Omega c
\ast \gtrsim kRc that are required

to correctly represent the radiated far field u\infty c might be significantly larger than the number
of Fourier coefficients which are available from our simulated far field data. However, since
the Fourier coefficients of the original far field are essentially zero for | n| >\Omega \ast we can employ
the approximation

acn \approx 
\itOmega \ast \sum 

m= - \itOmega \ast 

im - ne\mathrm{i}(m - n) \mathrm{a}\mathrm{r}\mathrm{g} cJm - n(k| c| )am , n= - \Omega c
\ast , . . . ,\Omega 

c
\ast ,

to determine the Fourier coefficients of u\infty c to sufficient accuracy.

When we apply the algorithm developed in the previous sections to the far field pattern
u\infty c we obtain lines which connect the virtual origin c with approximate locations of individual
source components. Repeating this procedure for many different virtual origins c \in \Lambda , where
\Lambda \subseteq \BbbR 2 denotes some suitable grid of points, gives a large number of lines, each of which
should intersect or be at least close to one source component.

Each line \ell recovered by the scheme outlined above can be represented in the form

\ell (\omega , s) := \{ s\omega + t\omega \bot | t\in \BbbR \} ,

parametrized by a normal vector \omega \in S1 and the associated signed distance s \in \BbbR from the
true origin. Next, we consider the grid

\Sigma := \{ (\omega h, sl) | h= 0, . . . ,2H  - 1 , l= - L, . . . ,L\} \subseteq S1 \times \BbbR (5.2)

with

\omega h = (cos(h\Delta \omega ), sin(h\Delta \omega )) and sl = l\Delta s ,

where \Delta \omega = \pi /H and \Delta s = d/(L
\surd 
2) for some H,L \in \BbbN . Here d > 0 denotes the side length

of a square region of interest, in which we want to reconstruct the support of the sources.
For each line \ell (\omega , s) that is recovered by the AAA algorithm we first determine the nearest
normal direction \omega h\ast in the grid \Sigma from (5.2), i.e.,

| \omega  - \omega h\ast | = min\{ | \omega  - \omega h| | h= 0 . . . ,2H  - 1\} ,

and we set h\ast \ast = (h\ast +N)mod2N ; note that \ell (\omega h\ast , s) = \ell (\omega h\ast \ast , - s). Then we define a matrix
R\ell (\omega ,s) \in \BbbR (2L+1)\times H with entries

R
\ell (\omega ,s)
l,h =

\left\{           

\varepsilon \surd 
2\pi 

e - 
1

2
| s - sl| 2\varepsilon 2 if h= h\ast and l= - L, . . . ,L ,

\varepsilon \surd 
2\pi 

e - 
1

2
|  - s - sl| 2\varepsilon 2 if h= h\ast \ast and l= - L, . . . ,L ,

0 else .

(5.3)
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ONE SHOT INVERSE SCATTERING REVISITED 895

A similar Gaussian spreading is often used in nonuniform fast Fourier transforms; see, e.g.,
Greengard and Lee [8]. The h\ast th and the h\ast \ast th column of R\ell (\omega ,s) are discretized one-
dimensional Gaussians with standard deviation 1/\varepsilon , and we interpret these as probability
densities describing whether there is a source located along a line orthogonal to \omega h\ast with
signed distance sl from the true origin. We further note that the h\ast th and the h\ast \ast th column
of R\ell (\omega ,s) coincide with the h\ast th and the h\ast \ast th column of the values of the Radon transform
of g\varepsilon (\cdot  - z) on \Sigma , respectively, where

g\varepsilon (x) =
\varepsilon 2

2\pi 
e - 

1

2
| x| 2\varepsilon 2 , x\in \BbbR 2 ,

is a two-dimensional Gaussian with standard deviation 1/\varepsilon and z is any point on \ell (\omega h\ast , s).
Accordingly, when adding up these matrices R\ell (\omega ,s) for all lines \ell (\omega , s) that have been de-
termined by the AAA algorithm for all possible virtual origins c \in \Lambda , the result should be
close to the values on \Sigma of the Radon transform of some density function with peaks near the
individual supports of the sources and negligible magnitude away from them. Since we have
spread every single pole information via the particular ansatz (5.3) to neighboring parallel
lines, we may further expect that this density function has an essential bandwidth of roughly
3\varepsilon .

We now apply the classical filtered backprojection algorithm for the two-dimensional
Radon transform, as described, e.g., in [25, pp. 81--87], to reconstruct this density function in
order to visualize the support of the sources. The aforementioned guess 3\varepsilon of the bandwidth
of this function is used as parameter for the Ram--Lak filter in this algorithm. Accordingly,
[25, p. 86] suggests the sampling conditions

\Delta s \leq \pi 

3\varepsilon 
and \Delta \omega \leq 

\surd 
2

d

\pi 

3\varepsilon 
(5.4)

for the grid \Sigma in (5.2) to obtain artifact free reconstructions.

Remark 5.2. We have already mentioned in Remark 3.2 that there are at least four different
ways to define a Laurent polynomial from the given far field data, which can then be used
as input for the AAA algorithm. To symmetrize the use of the Fourier coefficients and to
stabilize the reconstruction algorithm in our numerical examples below, we run the AAA
algorithm for each virtual origin c\in \Lambda four times using \varphi N from (3.8), \widetilde \varphi N from (3.18), as well
as (\varphi N + \widetilde \varphi N )/2 and (\varphi N  - \widetilde \varphi N )/2 as input data. Each of these four computations typically
gives a slightly different set of lines indicating the directions of the scatterers, when seen from
the current virtual origin. We then simply combine all the reconstructed lines obtained for
the four different versions of the Laurent polynomial into one discrete sinogram by adding up
all associated matrices R\ell from (5.3) for all virtual origins c\in \Lambda .

Example 5.3. We continue with Example 4.2, but this time we simulate the far field
pattern of the scattered field on an equidistant grid with just 64 points on S1, which is
sufficient according to Remark 2.1 and Example 2.2. We choose 900 virtual origins that
are equiangularly distributed on a grid \Lambda on five circles around the true origin with radii
25,26, . . . ,29 as visualized by the red crosses in Figure 5.1 (left). We have already obtained
the estimate R\eta \approx 14.72 for the radius of the smallest disk centered at the origin that contains
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Figure 5.1. Geometrical setup of Example 5.3 (left); sinogram from unperturbed data (right).
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Figure 5.2. Reconstruction from unperturbed data in Example 5.3 (left); reconstruction from noisy data
with 5\% uniformly distributed relative error (right).

the scatterers in Example 2.2. Accordingly, the distance between each virtual origin c \in \Lambda 
and the scatterers is approximately bounded from below by | c|  - R\eta . Therefore, we set
N = \lfloor (k(| c|  - R\eta ))

1/2\rfloor and use 2N + 1 Fourier coefficients acn of the translated far field u\infty c
for the corresponding Laurent polynomials \varphi N , \widetilde \varphi N , (\varphi N + \widetilde \varphi N )/2, and (\varphi N  - \widetilde \varphi N )/2 for each
virtual origin c \in \Lambda . We choose \Delta e = 10 - 3 for the estimated relative error in (4.2), and we
determine the radius \rho \ast in (4.3) according to (4.1) and the tolerance \tau in the AAA algorithm
according to (4.4). As mentioned before, we use 2M = 100 data pairs on the circle of radius
\rho \ast as input for the AAA algorithm.

We take d = 32 for the side length of the region of interest, which is shown as a dashed
square in Figure 5.1 (left). For the other parameters in the rebinning and filtered backpro-
jection scheme, we use \varepsilon = 1.3 and determine \Delta s and \Delta \omega according to (5.4). The plot in
Figure 5.1 (right) shows the resulting sinogram (i.e., the sum of all matrices R\ell (\omega ,s) for all
virtual origins and the four realizations of the corresponding Laurent polynomials). We note
that this sinogram consists of 63 rows and 5057 columns in agreement with (5.4). The recon-
struction of the source positions obtained by the filtered backprojection is shown in Figure 5.2
(left) together with visualizations of the true locations of the scatterers. Here and in all
following examples, negative values in the reconstruction have been replaced by zero.
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We would like to elaborate briefly on this sinogram. It is well-known that the Radon
transform sinogram of a point-source shows the graph of a shifted sine function with a certain
amplitude; the sinogram of a Gaussian centered at the same point is a ``sine ribbon,"" i.e.,
a Gaussian blur in vertical direction of the former graph; see [10]. In the particular plot in
Figure 5.1 one can easily identify two sine ribbons corresponding to the two source components
of our phantom. But it can also be seen that this plot contains a decent amount of aberrations
and outliers, which are due to inaccurate reconstructions of pole directions due to the AAA
algorithm. Aside from this there are gaps in the two sine ribbons near their crossing points:
Apparently the rational approximations fail to provide accurate pole information, when the
two double cones connecting a virtual origin with the individual source components are close
to each other. In this case the exponential terms associated to these two source components
according to (3.2) might interfere strongly.

To study the sensitivity of the reconstruction algorithm with respect to noise in the data,
we repeat the computations but add 5\% complex-valued uniformly distributed relative error
to the original far field data. Figure 5.2 (right) shows the corresponding results. We use the
same parameters as before, except for \eta and \Delta e (which then also implies new values for \delta , \rho \ast ,
and \tau according to (4.2), (4.1), and (4.4)). Taking into account the magnitude of the relative
data error, we choose \eta = 2 \cdot 10 - 3 and \Delta e= 0.025. The reconstructions are only slightly worse
than those obtained in the noise free case.

Example 5.4. In our second example, we add a third scatterer to the scene, which is a
sound-hard3 ellipse at ( - 10,0), the diameter of the ellipse being 0.38 wavelengths. We consider
again a plane wave incident field with wave number k = 1 and direction of propagation (1,0)
and simulate the far field pattern of the scattered wave in the same way as before. The main
difference in Example 5.3 is that we use a different setup for the virtual origins in that we
select 2500 equidistant points on a square cartesian grid \Lambda with side length 40 as shown in
Figure 5.3 (left). Since we can now no longer bound the distance of the virtual origins from
the scatterers from below, we have to relax the condition (3.16). Instead we estimate for each

virtual origin c\in \Lambda the radius R
(c)
\eta of the smallest disk centered at c containing all scatterers
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Figure 5.3. Geometrical setup of Example 5.4 (left); sinogram from unperturbed data (right).

3See, e.g., [3, p. 2].
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Figure 5.4. Reconstruction from unperturbed data in Example 5.4 (left); reconstruction from noisy data
with 5\% uniformly distributed relative error (right).

by means of (2.5), (2.6), let N = \lfloor (kR(c)
\eta )1/2\rfloor  - 1, and use 2N + 1 Fourier coefficients acn of

the translated far field u\infty c for the corresponding Laurent polynomials. To some extent this is
justified by Remark 3.1, and numerical tests have confirmed that this strategy actually works
much better than the circular grid of virtual origins in Example 5.3 in cases of more than
two scatterers---as long as they are sufficiently well-separated. We choose \Delta e= 10 - 3 for the
estimated relative error in (4.2), and we determine the radius \rho \ast by (4.1) and the tolerance
\tau by (4.4). Again, we use 2M = 100 data pairs on the circle of radius \rho \ast as input for the
modified AAA algorithm.

The region of interest, which is shown as a dashed square in Figure 5.3 (left), and the
other parameters in the rebinning and filtered backprojection scheme remain the same as in
Example 5.3. The corresponding sinogram is shown in Figure 5.3 (right). The reconstructions
of the source positions that we have obtained by the filtered backprojection are shown in
Figure 5.4 (left) together with visualizations of the true locations of the small scatterers.

As in Example 5.3 we repeat the computation for noisy far field data containing 5\%
uniformly distributed relative additive error. Accordingly, we choose \eta = 2 \cdot 10 - 3 and \Delta e =
0.025 as in the noise case of Example 5.3, and otherwise we use the same parameters as
before. The results are shown in Figure 5.4 (right). The reconstructions of the additional
circular scatterer and of the kite-shaped scatterer are less pronounced than in the noise free
case, but it still seems possible to correctly guess the locations of the three scatterers.

Example 5.5. In our third example we consider three larger scattering objects: two sound-
hard obstacles at (10,10) and (8, - 10), and a sound-soft obstacle at ( - 8,0) as shown in
Figure 5.5 (left). We consider a plane wave incident field with wave number k = 1 and
direction of propagation (1,0) and simulate the far field pattern of the scattered field on
the same equidistant grid with 64 points on S1 as before. Here we are no longer close to
the point-scatterer regime, because the wavelength \lambda \approx 6.28 is comparable to the diameter
of the obstacles (the diameters of the kite, the ellipse, and the nut are 1.35, 0.64, and 0.83
wavelengths, respectively). We use the same grid for the virtual origins, the same region of
interest for the reconstructions, and the same parameters for the reconstruction algorithm as
in Example 5.4. The corresponding sinogram is shown in Figure 5.5 (right).
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Figure 5.5. Geometrical setup of Example 5.5 (left); sinogram from unperturbed data (right).
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Figure 5.6. Reconstruction from unperturbed data in Example 5.5 (left); reconstruction from noisy data
with 5\% uniformly distributed relative error (right).

The reconstructions of the source locations obtained from unperturbed data and from
noisy far field data containing 5\% uniformly distributed relative additive error are shown
together with visualizations of the true locations of the scatterers in Figure 5.6. Although
the shape of the scatterers cannot be inferred from these reconstructions, even with 5\% noise
on the data the correct number and the approximate locations of the scatterers can easily be
depicted.

Example 5.6. In our numerical results so far we have considered k = 1 for the wave
number, and the scatterers have been chosen such that their diameters were either less than
or comparable to the wavelength. This regime is usually called the resonance region, and
it is the regime we are mainly interested in. Nevertheless, we repeat in our final example
Examples 5.3--5.5, but this time we apply the reconstruction method at wave number k = 10
instead of k = 1. In accordance with Remark 2.1 and Example 2.2, we now simulate the
far field patterns of the scattered fields on an equidistant grid with 640 points on S1. We
use the same grids for the virtual origins, the same region of interest for the reconstructions,
and the same parameters for the reconstruction algorithm as in Examples 5.3--5.5, except
for the parameter \varepsilon in the rebinning step, which we choose as \varepsilon = 2 instead of 1.3. This
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Figure 5.7. Reconstruction from noisy data with 5\% uniformly distributed relative error in Example 5.6.

means less regularization and higher resolution. The reconstructions of the source locations
obtained from noisy far field data containing 5\% uniformly distributed relative additive error
are shown together with visualizations of the true locations of the scatterers in Figure 5.7.
The reconstructions are much clearer and sharper than in the previous examples. However,
we note that the data set is ten times larger than before. The reconstructed sources are near
the left boundary of the scatterers because the incident wave that we consider is a plane wave
with direction of propagation (1,0) propagating from left to right.

6. Conclusions. We have developed a new method to reconstruct the number and the
positions of a few well-separated sources or scatterers from far field observation of a single
radiated or scattered wave. The main attraction of this algorithm is that it uses only the few
largest coefficients in the Fourier spectrum corresponding to the Fourier modes of low order.
This part of the data set is arguably the least susceptible to measurement errors and noise.

The reconstruction method is based on rational approximation, and we utilize the poles
of the corresponding rational functions to determine a sinogram of a density function which
exhibits peaks near the individual supports of the sources or scatterers. These peaks are
more pronounced the better the far field can be approximated by the far field radiated by
a few well-separated point-sources. The well-known filtered backprojection algorithm from
computerized tomography can be employed to visualize these peaks.

As has been emphasized before, the number of Fourier modes of the far field that we can use
for the reconstruction is rather small, on the order of ten to twenty at most in Examples 5.3--
5.5. Accordingly, the amount of work to determine the connecting lines in the plane can
be considered to be about the same for every virtual origin. This means that the overall
complexity of our method is linear in the number of virtual origins. Finally, the work load
for the visualization of the source locations using the filtered back projection method is linear
in the chosen number of pixels of the final reconstruction. Our MATLAB implementation on
a standard laptop computer takes just a few seconds for any of the reconstructions shown in
this paper.

While rational approximation in itself is very powerful, very little is known about the
resulting poles and the information they carry. But according to our limited numerical exam-
ples, the variant of the AAA algorithm which we employ provides enough pole information to
reconstruct three well-separated scatterers and seems to tolerate a decent amount of noise in
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the data. We have also observed numerically (not shown in the article) that the method can
handle more than three scatterers, when they are farther than a few wavelengths apart from
each other. However, the information contained in reconstructions obtained by this method,
when the sources or scatterers have larger supports, is limited.

Our method requires us to choose a number of parameters, and we have provided a careful
analysis to guide these choices. We warn, however, that selecting those parameters wrongly
typically results in failure.

Appendix A. Here we provide an error bound for the particular approximations of the
Bessel functions which form the basis of our numerical approach.

The Bessel functions Jn(x) of the first kind of order n \in \BbbZ with argument x > 0 can be
written as

Jn(x) =

\sqrt{} 
2

\pi x

\Bigl( 
cos
\Bigl( 
x - \pi 

2
n - \pi 

4

\Bigr) 
Pn(x) - sin

\Bigl( 
x - \pi 

2
n - \pi 

4

\Bigr) 
Qn(x)

\Bigr) 
for some auxiliary functions Pn and Qn (see Watson [30, sects. 7.2--7.3]). The latter possess
asymptotic representations

Pn(x) \sim 
\infty \sum 

m=0

( - 1)m(n,2m)

(2x)2m
and Qn(x) \sim 

\infty \sum 
m=0

( - 1)m(n,2m+ 1)

(2x)2m+1
(A.1)

as x\rightarrow \infty , where

(n,\nu ) :=
(4n2  - 12)(4n2  - 32) \cdot \cdot \cdot (4n2  - (2\nu  - 1)2)

22\nu \nu !
.(A.2)

Truncating the asymptotic representations for Pn and Qn from (A.1) after p \geq 1 and q \in 
\{ p - 1, p\} terms, we can approximate Pn and Qn by

P (p)
n (x) :=

p - 1\sum 
m=0

( - 1)m(n,2m)

(2x)2m
and Q(q)

n (x) :=

q - 1\sum 
m=0

( - 1)m(n,2m+ 1)

(2x)2m+1
,

respectively, which gives the aforementioned approximation

J (p,q)
n (x) :=

\sqrt{} 
2

\pi x

\Bigl( 
cos
\Bigl( 
x - \pi 

2
n - \pi 

4

\Bigr) 
P (p)
n (x) - sin

\Bigl( 
x - \pi 

2
n - \pi 

4

\Bigr) 
Q(q)

n (x)
\Bigr) 

(A.3)

of Jn(x). This approximation is well-known and recommended for large arguments (cf., e.g.,
[5, section 10.17]). In the following auxiliary result we provide a quantitative error estimate.

Lemma A.1. Let p\in \BbbN and q \in \{ p - 1, p\} , and N \in \BbbN with N > 2p. Then, the approximation
(A.3) satisfies

| Jn(x) - J (p,q)
n (x)| \leq 

\sqrt{} 
2

\pi x

1

(p+ q)!

\biggl( 
N2

2x

\biggr) p+q

eN
2/(2x)(A.4)

for every x> 0 and every n\in \BbbZ with | n| <N .
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Proof. Consider first the case that 0 \leq n < N . Since p\ast := \lfloor N/2\rfloor and q\ast := \lceil N/2\rceil  - 1
satisfy 2p\ast \geq N  - 1\geq n and 2q\ast \geq N  - 2\geq n - 1 the remainders

Rn(x,p\ast ) := | Pn(x) - P (p\ast )
n (x)| and Sn(x, q\ast ) := | Qn(x) - Q(q\ast )

n (x)| 

are no larger than the first neglected term of the respective asymptotic series (A.1) according
to [30, pp. 205--206]. It thus follows that, for all p as in the lemma,

Rn(x,p) \leq | Pn(x) - P (p\ast )
n (x)| + | P (p\ast )

n (x) - P (p)
n (x)| \leq 

p\ast \sum 
m=p

| (n,2m)| 
(2x)2m

,

because 2p\ast \geq N  - 1\geq 2p by our choice of N . By virtue of (A.2)

| (n,2m)| = | 4n2  - 1| | 4n2  - 32| \cdot \cdot \cdot | 4n2  - (4m - 1)2| 
24m(2m)!

\leq 1

(2m)!

\biggl( 
4N2

4

\biggr) 2m

for every m\leq p\ast , and we therefore conclude that

Rn(x,p) \leq 
p\ast \sum 

m=p

1

(2m)!

\biggl( 
N2

2x

\biggr) 2m

\leq 
\infty \sum 

m=p

1

(2m)!

\biggl( 
N2

2x

\biggr) 2m

.(A.5)

As q\leq p <N/2\leq q\ast + 1 we also have q\leq q\ast , and hence we conclude similar to above that

Sn(x,p) \leq | Qn(x) - Q(q\ast )
n (x)| + | Q(q\ast )

n (x) - Q(q)
n (x)| 

\leq 
q\ast \sum 

m=q

| (n,2m+ 1)| 
(2x)2m+1

\leq 
\infty \sum 

m=q

1

(2m+ 1)!

\biggl( 
N2

2x

\biggr) 2m+1

.
(A.6)

For the final inequality in (A.6) take note that 4q\ast + 1\leq 4N - 1
2 + 1\leq 2N .

Using (A.5) and (A.6), and taking into account that q \in \{ p  - 1, p\} , which implies that
min\{ 2p,2q+ 1\} = p+ q, we see that the total error (A.4) is bounded by

| Jn(x) - J (p,q)
n (x)| \leq 

\sqrt{} 
2

\pi x

\infty \sum 
m=p+q

1

m!

\biggl( 
N2

2x

\biggr) m

=

\sqrt{} 
2

\pi x

\biggl( 
eN

2/(2x)  - 
p+q - 1\sum 
m=0

1

m!

\biggl( 
N2

2x

\biggr) m\biggr) 
\leq 
\sqrt{} 

2

\pi x

1

(p+ q)!
eN

2/(2x)
\Bigl( N2

2x

\Bigr) p+q
,

where we have used Taylor's theorem in the final step. Thus, (A.4) holds true for 0\leq n<N .
For negative n \in \BbbZ the statement now follows immediately from the fact that J - n(x) =

( - 1)nJn(x) and J
(p,q)
 - n = ( - 1)nJ

(p,q)
n (x) for every n\in \BbbZ .

Consequently, the truncated asymptotic representations J
(p,q)
n (x) with q \in \{ p  - 1, p\} in

(A.3) are good approximations of the Bessel functions for indices n which satisfy

| n| \leq N for some N \lesssim 
\surd 
x .
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Figure A.1. Bessel function Jn(x) (blue circles) together with their approximations J
(p,q)
n (x) as functions

of n, using p = q = 1 (red dots) and p = q = 2 (black crosses), respectively; x = 5 in the left hand plot and
x= 100 in the right hand plot; the dotted bars indicate the values of \pm 

\surd 
x.

In this regime, even small values of p and q often yield satisfactory approximations: For
instance, when N = \lfloor 

\surd 
x\rfloor > 2 then the error bound (A.4) gives

| Jn(x) - J (1,1)
n (x)| \leq 0.21

\sqrt{} 
2

\pi x
and | Jn(x) - J (2,2)

n (x)| \leq 0.0043

\sqrt{} 
2

\pi x

for | n| < N . As illustrated in Figure A.1 for two different values of x, the true errors are
significantly smaller because of the alternating signs of the terms in the expansion. In fact,
the values of Jn(x) are well matched within the range | n| \lesssim 

\surd 
x, which is indicated by the

dotted vertical lines in these plots.
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available at the following URL/DOI: https://gitlab.kit.edu/kit/ianm/ag-ip/software/2024 Rg
Mhb OneShotRevisited.
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