KIT | KIT-Bibliothek | Impressum | Datenschutz

Limit consistency of lattice Boltzmann equations

Simonis, Stephan ORCID iD icon 1; Krause, Mathias J. 2
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

We establish the notion of limit consistency as a modular part in proving the consistency of lattice Boltzmann equations (LBEs) with respect to a given partial differential equation (PDE) system. The incompressible Navier–Stokes equations (NSE) are used as a paragon. Based upon the hydrodynamic limit of the Bhatnagar–Gross–Krook (BGK) Boltzmann equation towards the NSE, we provide a successive discretization by nesting conventional Taylor expansions and finite differences. We track the discretization state of the domain for the particle distribution functions and measure truncation errors at all levels within the derivation procedure. By parameterizing equations and proving the limit consistency of the respective families of equations, we retain the path toward the targeted PDE at each step of discretization, that is, for the discrete velocity BGK Boltzmann equations and the space-time discretized LBEs. As a direct result, we unfold the discretization technique of lattice Boltzmann methods as chaining finite differences and provide a generic top-down derivation of the numerical scheme that upholds the continuous limit.


Verlagsausgabe §
DOI: 10.5445/IR/1000182996
Veröffentlicht am 07.07.2025
Originalveröffentlichung
DOI: 10.1051/m2an/2025026
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 05.2025
Sprache Englisch
Identifikator ISSN: 2822-7840, 2804-7214
KITopen-ID: 1000182996
Erschienen in ESAIM: Mathematical Modelling and Numerical Analysis
Verlag EDP Sciences
Band 59
Heft 3
Seiten 1271–1299
Vorab online veröffentlicht am 14.05.2025
Schlagwörter Lattice Boltzmann methods / Consistency / Convergence / Partial differential equations / Navier–Stokes equations
Nachgewiesen in OpenAlex
Web of Science
Dimensions
Scopus
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page