KIT | KIT-Bibliothek | Impressum | Datenschutz

Adaptation of the translation model for statistical machine translation based on information retrieval

Hildebrand, A. S.; Eck, M.; Vogel, S.; Waibel, A.

Abstract:

In this paper we present experiments concerning translation model adaptation for
statistical machine translation. We develop a method to adapt translation models using in-
formation retrieval. The approach selects sentences similar to the test set to form an adapted
training corpus. The method allows a better use of additionally available out-of-domain
training data or finds in-domain data in a mixed corpus. The adapted translation models
significantly improve the translation performance compared to competitive baseline sys-
tems.


Verlagsausgabe §
DOI: 10.5445/IR/1000182997
Veröffentlicht am 07.07.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 06.2005
Sprache Englisch
Identifikator ISSN: 1063-6919
KITopen-ID: 1000182997
Erschienen in EAMT 2005 - Proceedings of the 10th EAMT Conference: Practical applications of machine translation, Budapest, May 30–31, 2005
Veranstaltung Conference of the European Association for Machine Translation (EAMT 2005), Budapest, Ungarn, 30.05.2005 – 31.05.2005
Verlag Association for Computational Linguistics (ACL)
Externe Relationen Abstract/Volltext
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page