AT

Karlsruher Institut fur Technologie

Uncertainty principles for inverse source and
inverse scattering problems

Zur Erlangung des akademischen Grades eines
DOKTORS DER NATURWISSENSCHAFTEN

von der KIT-Fakultat fiir Mathematik
des Karlsruher Instituts fiir Technologie (KIT)
genehmigte

DISSERTATION

von

Lisa Schatzle

REFERENT: Prof. Dr. Roland Griesmaier
KORREFERENT: Prof. Dr. Andreas Rieder

TAG DER MUNDLICHEN PRUFUNG: 28. Mai 2025






iii

ACKNOWLEDGMENT

This thesis was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) — Project-ID 258734477 — SFB 1173.

An dieser Stelle méchte ich mich bei einer Reihe an Personen bedanken, die mich wihrend meiner Pro-
motion unterstiitzt und dadurch zu einem wesentlichen Teil zum Gelingen dieser Arbeit beigetragen
haben.

Ein besonderer Dank gilt meinem Betreuer Prof. Dr. Roland Griesmaier fiir seine stetige Unter-
stiitzung und hilfreichen Anregungen, sowie das sorgfiltige Lesen meiner Texte und die resultierenden
ausfithrlichen Verbesserungsvorschlage. Weiter mdchte ich mich bei Prof. Dr. Andreas Rieder dafiir
bedanken, dass er das Zweitgutachten dieser Arbeit ibernommen hat.

Auch bei meinen zwei weiteren Chefs PD Dr. Tilo Arens und PD Dr. Frank Hettlich m&chte ich
mich bedanken, sowohl fiir die angenehme Zusammenarbeit in der Lehre, wie auch fiir die fachlichen
und nichtfachlichen Gespréache und dafiir, dass sie stets ein offenes Ohr fiir mich hatten.

Ich bedanke mich auch beim Rest meiner Arbeitsgruppe und moéchte namentlich meinen Mit-
doktorandinnen Leonie Fink, Eliane Kummer, und Nasim Shafieebyaneh nennen, die diese Arbeit
korrekturgelesen haben. Ich hatte das Glick zeitgleich mit tollen Menschen zu promovieren und
hoffe, dass wir auch in der Zukunft in Kontakt bleiben werden.

Ein grofies Dankeschén geht auch an meine Eltern und meine Schwester, die mich stets unterstiitzt
und an mich geglaubt haben, selbst in Zeiten, in denen ich mich selbst damit schwer getan habe.

Nicht zuletzt mochte ich mich bei meinem Partner Marvin Knoller fiir seinen stetigen Riickhalt
und sein Verstdndnis, das Korrekturlesen dieser Arbeit und die schone gemeinsame Zeit, bisher hier
in Karlsruhe und bald endlich in Helsinki, bedanken.






ABSTRACT

We consider scattering of time-harmonic acoustic waves by an ensemble of compactly supported
inhomogeneous objects, called scatterers, in a homogeneous background medium. The scatterers
are illuminated by incident plane waves along all possible illumination directions and, each time,
the resulting scattered waves are detected far away along all possible observation directions. This
data can be described by the far field operator, which uniquely determines the scatterers in inverse
medium scattering. In practice, this given data is often noisy and possibly incomplete, which
motivates the study of two related inverse problems, that are at the center of our consideration in
this thesis. On the one hand, given the far field operator associated to the ensemble of scatterers,
we discuss the nonlinear inverse problem to recover the far field operators associated to each of
the scatterers individually. We refer to this problem as far field operator splitting, which involves
the removal of specific multiple scattering effects. This problem is closely related to the question
whether the components of the scatterer can be distinguished by means of inverse medium scattering
in a stable way. On the other hand, we study the restoration of missing or inaccurate components
of the observed far field operator, which we refer to as far field operator completion. Both problems
are ill-posed without further assumptions, but we give sufficient conditions on the diameter of the
supports of the scatterers, the distance between them, and the size of the missing or corrupted data
component to guarantee stable recovery whenever sufficient a priori information on the location
of the unknown scatterers is available. We reformulate both inverse problems as suitable splitting
problems and take advantage of the fact that the arising far field operator components can be well
approximated by sparse or low rank operators. This enables us to use techniques from compressed
sensing and from low rank matrix completion. We provide algorithms, error estimates and a stability
analysis for two as well as for three dimensions. Furthermore, we verify our theoretical predictions
by numerical examples both on synthetic and on experimental data, and we test to what extent our
reconstructions are suitable as an input for an inverse medium scattering problem.
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CHAPTER 1

INTRODUCTION

1.1. FROM INVERSE MEDIUM SCATTERING TO FAR FIELD OPERATOR
SPLITTING AND COMPLETION

The aim of research in inverse scattering theory is to detect or to identify unknown objects from
measurements of associated acoustic, electromagnetic or elastic waves. In the case of scattering
of time-harmonic acoustic waves by compactly supported inhomogeneous media this leads to the
acoustic inverse medium scattering problem (see, e.g. [31, p. 439]). Here, the compactly supported
inhomogeneous unknown object, called scatterer, is supposed to lie in a homogeneous background
medium. Mathematically, the scatterer can be modeled by the support of a contrast function. In
inverse medium scattering, the task is to determine this contrast function or at least its support from
the knowledge of scattered wave data. The scatterer is illuminated along all possible illumination
directions with plane waves and the resulting scattered waves are measured far away along all
possible observation directions, i.e., the associated far field patterns are measured. This input data
can be described by the far field operator, which maps densities of superpositions of incident plane
waves to the far field patterns of the corresponding scattered waves. The determination of the
scatterer given the far field operator leads to a uniquely solvable, but ill-posed inverse problem. This
operator can be viewed as an idealized measurement operator for the inverse medium scattering
problem, and it plays a central role in several reconstruction methods (see, e.g., [2, 28, 29, 32, 51, 64]
and the monographs [16, 17, 31, 69]). In practice, the given far field data is typically noisy and often
incomplete, which makes these reconstruction methods more or less challenging to apply. Scenarios
are also conceivable in which the data carries artifacts that one likes to avoid and to filter out. One
may think, e.g., of an ensemble of scatterers, where only the far field data corresponding to one or a
few of the scatterers is of interest. Consequently, it is desirable to preprocess the data accordingly.
This motivates the consideration of two related inverse problems, which we aim to focus on in this
work. Assuming that a possibly noisy and incomplete version of the far field operator is available
and that the scatterer may consist of several components, we ask the following questions:

(a) Far field operator splitting: Is it possible to reconstruct the far field operators associated to
the scatterer’s components individually, if we have enough a priori information on the location
of these components to distinguish them from one another? In particular, is it possible to
remove multiple scattering effects generated simultaneously by all scatterers?

(b) Far field operator completion: Can we recover missing parts of the far field operator, provided
the portion of missing data is not too large, and filter possible data errors?

Both problems are uniquely solvable with exact data but severely ill-posed without further assump-
tions. The goal of this work is to develop reconstruction methods for solving problems (a) and (b)
without solving the time-consuming and also ill-posed inverse medium scattering problem itself.
Furthermore, the stability of the obtained reconstructions with respect to noise in the data is aimed
to be analyzed.
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In contrast to the inverse medium scattering problem with the far field operator as an input it is
an open question whether a single far field pattern is already sufficient to determine the scatterer
uniquely at least under some (simplifying) assumptions, see [30, Sec. 8]. The same holds for the
inverse obstacle problem (see e.g. [31, Chap. 7]), but it has been proven to fail in the case of the
inverse source problem, see [10]. For all three problems, nevertheless, substantial information on
the support, just as the (convex) scattering support (see [75, 76, 95]), or provided the scatterer’s
components are small enough and far enough away from each other, the number and locations of
these components can be uniquely reconstructed (see [95]). The studies on this research question
motivated the considerations in [50, 54, 55, 56], that form the foundation of this thesis.

The key concept for handling the ill-posedness of problems (a) and (b) relies on sparse and low
rank approximations of the far field operator components. These can be derived from (possibly
partial) a priori knowledge on the localizations and sizes of the scatterer’s components (for problem
(a)) or on the localization and size of the whole scatterer and the configuration of non-observable
data (for problem (b)). This is based on the concept of nonevanescent far fields as developed for
the source problem in [55, 56] for the Helmholtz equation or in [57] for Maxwell’s equations and
Navier systems. The regularization strategy, which is called a regqularized Picard criterion in this
context, is to not recover the full far fields, but only their nonevanescent parts. These are the parts
that can be radiated by a limited power source supported in a ball, which is prescribed by the a
priori knowledge on the scatterer’s location and size, and at the same time detectable by a receiver
of a given sensitivity. The resulting sparse representations of these parts with respect to modulated
Fourier bases reappear in a modified form within the sparse and low rank approximations of the far
field operators in this work.

When moving from the inverse source problem to the inverse medium scattering problem, two
major differences arise. The first difference is that the far field splitting problem for inverse source
problems is linear, while it is nonlinear for the inverse medium scattering problem due to multiple
scattering effects. Thus, it becomes an additional challenge to quantify and to remove these
unintended multiple scattering contributions when solving problem (a). The Born series expansion
(see e.g. [62]) of the far field operator proves to be a good tool to tackle this issue. Starting with
the Born approximation, i.e. with a linearization of the problem, and gradually involving more and
more scattering orders allows us to develop strategies for dealing with the full medium scattering
problem. The consideration of the Born approximation provides, as a special source problem,
a direct link to the existing work on far field splitting and completion for the source problem,
cf. [55, 56]. This further clarifies the inclusion of the term ‘source problem’ in the title of this thesis.
The (inverse) Born series has recently also been used directly in reconstruction methods for the
inverse medium scattering problem in [35, 62, 63, 83]. In [11] (see also [42, 43]) the authors have
been applying a reduced order model to transform scattering data for a time-dependent scattering
problem including multiple scattering effects to observations expected in the Born approximation,
i.e., multiple scattering effects are removed. Both approaches are not directly related to the results
in this work. The second difference is that, while for the inverse source problem one has access to
just one far field pattern radiated by the unknown source, infinitely many but correlated far field
patterns are available for the inverse medium scattering problem. These correlations in the data
unlock the possibility to further stabilize our reconstruction methods by incorporating the concept
of low rank and the reciprocity relation (see e.g. [31, Thm. 8.8]), when working with whole far field
operators instead of individual far field patterns.

To position our work within existing research, we also note that alternate methods for far field
splitting for inverse source problems have been proposed in [8, 88], and that splitting problems for
time-dependent waves have recently been considered in [4, 48, 58]. Data completion for far field
operators as in problem (b) has been discussed in [41, 80] (see also [3, 12] for related results for the
Cauchy problem for the Helmholtz equation). In contrast to our work, the authors of those works do
not use sparse representations of far field patterns or far field operators with respect to modulated
Fourier bases to stabilize their algorithms, which so far also lack a rigorous stability analysis.
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The contribution of this thesis can be classified as follows. We extend the existing stability
analysis and algorithms for splitting and completion of single far fields in inverse source problems
to far field operator splitting and completion for inverse medium scattering problems, which turns
out to result in an improved stability due to correlated data. In the case of far field operator
splitting, this leads to new theoretical insights. On the one hand, we incorporate the reciprocity
relation and the low rank property of far field operators, which both was not possible in the case
of single far field patterns. On the other hand, we identify far field operator components that
model multiple scattering effects with those scatterer components that first and last interact with
the wave. This makes it possible to develop a criterion to filter out a large portion of unwanted
multiple scattering when solving problem (a). We formulate related uncertainty principles for both
inverse problems (a) and (b). Some of these are similar to those in existing literature, while others,
involving above mentioned aspects, require completely new approaches. Incorporating the low rank
property enables the use of a new class of algorithms for nuclear norm minimization. In addition to
our tests on synthetic data, we run our methods on experimental data and examine to what extent
our reconstructions are suitable as an input for the inverse medium problem.

In the following, we give a brief insight into some underlying ideas for our stability analysis, which
originate from the compressed sensing problem (see e.g. [22, 37]) and the matriz completion problem
(see e.g. [20, 21]) in signal processing. In [18] a survey and a comparison of these two problems can
be found.

1.2. RELATED CONCEPTS FROM SIGNAL PROCESSING

In signal processing, a classical uncertainty principle links the measure |T'| of the essential support T’
of a signal to the measure |W| of the essential support W of its Fourier transform via |T'||W| > 1,
so they cannot be arbitrarily localized at the same time. In quantum mechanics, this principle
is also known as Heisenberg’s indeterminacy principle, which states that a particle’s position and
momentum cannot be measured with arbitrary precision at the same time. This principle further
applies in a similar way to the discrete Fourier transform, where for visualization purposes, we
consider the two-dimensional case, since this is relevant throughout this work. Let the discrete
two-dimensional Fourier transform of a matrix A = (amn)o<mn<n—1 € CNXN for N € N be given

by A= (am/’n/)ogm/m/SN,l with

= _Zﬂ_lmm-i—nn /AN
—ZZamne N2 for m''n" € {0,...,N — 1},
m=0 n=0

and let || A0 = {(m,n)|amn # 0}. Consequently, the inverse discrete Fourier transform is given
by A = (Gmn)o<mn<n—1 With

mm’+nn’

N—1 N—
o Z Z At €™ N2 for m,n € {0,...,N —1}. (1.1)

Then, for the time-bandwidth product there holds a classical uncertainty principle of the form
1Al ool Allore > N2, (1.2)

see [40, Thm. 1]. This can be proven easily as follows. For arbitrary A, B € CV*¥ we conclude
from Hélder’s inequality, (1.1), the Cauchy Schwarz inequality and Parseval’s identity that

1 .
(A, B)pzx2| < ||Allg x| Bllesexee < NHAHelxélHBHélxel

< 1 Alloxel Bloxol Alewe | Bllexe, (1:3)
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where C = 1/N. Choosing A = B in (1.3) yields (1.2). Estimates of the form (1.3) is what we
refer to as an uncertainty principle throughout this work. For ¢, € L?(R?) with supp ¢ C T and
suppvy C W and the Fourier transform on L?(R?) given by

1

=5 (x)e Y da for y € R?,
T JR2

(y) :
an uncertainty principle of the form (1.3) reads

(0, V) 2@y < CVITIW |9l 22y 191l 22 2y 5 (1.4)

where C' = 1/(2m). In contrast to the above, it is not possible to directly deduce a classical
uncertainty principle of the form (1.2) from (1.4), since supp ¢ and supp ¢ cannot be finite at
the same time, so the choice ¢ = 1 is not admissible. Nevertheless, (1.4) can be transformed
into a meaningful statement in that case by the use of essentially supported functions on certain
sets, see [40, Thm. 2]. The notion of an uncertainty principle as in (1.3) and (1.4) constitutes
the foundation for the development of algorithms and associated stability estimates for sparse
representations of functions, see e.g. [38, 39], and for tackling the compressed sensing problem,
see e.g. [22, 37]. Since for the source problem, the far field pattern radiated by a source is its
restricted Fourier transform, this notion of an uncertainty principle further highly influenced the
results from [55, 56, 57] for splitting and completion of single far field patterns in that situation.

In the compressed sensing problem, the aim is to reconstruct a signal from finitely many sampled
values, which leads to an undetermined system and is thus not uniquely solvable. To relate it to
the framework as introduced above, we think of the signal as an L?(R?) function. By additionally
assuming its Fourier coefficients to be sparse, which means that only a few coefficients are nonzero,
a good approximation of this signal can be obtained by solving a basis pursuit problem. Here, a
minimization of the number of nonzero Fourier coefficients is replaced by a minimization of their
¢1 x ¢ norm. This preserves, as a convex relaxation, certain properties of the original problem, but
can be solved numerically using convex optimization. Alternatively, we can think of the original
problem as a matriz completion problem, when interpreting the Fourier coeflicients as matrix entries.
Instead of demanding sparsity of the Fourier coefficients, we can also assume the underlying matrix
to have low rank. Similar to basis pursuit, minimizing the rank, i.e., the number of nonzero singular
values of the matrix, can be relaxed to minimizing the nuclear norm, i.e., the ¢£; norm of the singular
values, see [20, 21].

Our idea is to translate far field operator splitting (a) and far field operator completion (b) into
the frameworks of compressed sensing and low rank matrix completion. This allows us to incorporate
key concepts and algorithms from these research fields to develop reconstruction methods and
stability analyses for our own purposes. Particularly, this involves introducing spaces of sparse or
low rank far field operators, deriving suitable splits of the far field operator in these subspaces and
setting up related minimization problems.

1.3. OUTLINE OF THIS THESIS

In Chapter 2, after introducing some preliminaries, we provide the technical background on the
acoustic medium scattering problem, which we end with the introduction of the far field operator.
This operator is a Hilbert—Schmidt integral operator and at the center of our considerations. Some
basics about Hilbert—Schmidt integral operators are collected in Appendix A. We develop sparse
and low rank approximations of the far field operator with respect to modulated Fourier bases, by
first examining its Born series expansion in more detail. For the Born approximations as well as for
the sparse and low rank approximations we give related error estimates. The latter are essentially
based on the decay behavior of Bessel functions with respect to their order and for fixed argument.
Useful properties of Bessel functions and related special functions can be found in Appendix B. It
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turns out that shifting the scatterer in space further improves the sparsity and low rank property of
the associated far field operator, which can be modeled by introducing a translation operator.

The rest of this thesis is divided into two parts, Chapters 3 and 4 covering the far field operator
splitting problem and Chapters 5 and 6 dealing with the completion problem (possibly in combination
with the splitting problem).

In Chapter 3, assuming the scatterer to consist of two components, we start our theoretical
investigation of far field operator splitting by further expanding the far field operator not only
in terms of the scattering order, but also in terms of the scatterer’s components. Based on
this, we generalize our concepts from the previous chapter to develop sparse representations of
far field operator components associated to multiple scattering effects involving both scatterer’s
components. After considering a general subspace splitting problem, we first study the problem’s
Born approximation, which neglects multiple scattering effects, as an ansatz equation. Later, we
extend on this idea to include multiple scattering effects. We formulate related uncertainty principles
and examine the stability of the reconstructions when approximating the solutions of the original
splitting problem by related least squares problems, ¢! x ¢! minimization problems and a coupled
nuclear norm minimization problem. Two subgradients, that are needed for the proofs of the last
mentioned problem formulation, are given in Appendix C. Finally, we describe how to incorporate
the reciprocity principle and provide related results for more than two scatterer’s components.

In Chapter 4, after explaining the implementation in detail, we provide numerical examples to
test our theoretical findings from the previous chapter. Numerically, we implement the solutions of
the mentioned minimization problems by using the conjugate gradient method and different variants
of the fast iterative soft thresholding algorithm. The general framework and the required proximity
operators are elaborated in more detail in Appendix D.

Far field operator completion is the topic of Chapter 5. Starting with solving the completion
problem only, we turn to solving the completion and splitting problem simultaneously. We again
give related uncertainty principles and stability analyses for least squares and ¢! x ¢! minimization
problem formulations.

In Chapter 6 we provide numerical tests on far field operator completion. Additionally to the
theoretically investigated schemes, we implement algorithms for nuclear norm minimization. We
begin, as in Chapter 4, with tests on synthetic data and then apply our algorithms to experimental
data from the Fresnel Institute in the framework of missing backscattering data. Finally, we use
our obtained reconstructions for missing back scattering data as an input for solving the shape
identification problem by the factorization method. Here, we compare the results with the often
used procedure to use the data extended by zeros as an input.

1.4. PRIOR PUBLICATION

Some results of this work have already been published in [53]. This applies to many of the results
for two dimensions excluding the findings from Subsection 3.4.2 as well as all results involving the
low rank property of the far field operator.






CHAPTER 2

FAR FIELD OPERATORS FOR INHOMOGENEOUS ACOUSTIC
MEDIUM SCATTERING

2.1. PRELIMINARIES

Let d € {2,3} denote the dimension and D C R? an open set with boundary 9D = D N (R%\ D).
For m € Ny U {oo} we define the subspaces of classical m-times differentiable functions by

C™(D) := {u: D — C|u is m times continuosly differentiable} ,
Cy'(D) := {ue C™(D)|suppu C D is compact},

where suppu := {z € D|u(z) # 0} is the support of u: D — C.
For 1 < p < oo we denote by LP(D) the standard Lebesgue space equipped with the norm

(Jp lu(z)P dz)? ifp < o0,
HUHLP(D) = e
esssup,ep lu(x)]  if p=o0.

The space L%(D) is a Hilbert space with the inner product

(1, 0) g2y = /Du(m)v(ac) dz,  wwveID).

Throughout this work, in our notation, inner products are always linear in the first and antilinear
in the second argument. We further define for 1 < p < oo the vector-valued spaces

LP(D;C% := {u:D — C%|u; € L’(D) for j = 1,...,d}.

We call v € L?(D,C%) the variational gradient of u € L%(D) if
/quﬁda:: —/v¢dac for all ¢ € C5°(D),
D D

and we write v = Vu in that case. We introduce the Sobolev space H'(D) by
HY(D) := {u € L*(D)|u has a variational gradient Vu € L?(D,C%)},
which is a Hilbert space together with the inner product

(u,v) g1(py = (u,v)2(py + (Vu, Vu)r2(py,

where (Vu, Vv)r2py = [p Vu(z) - Vo(z) de.
For x = (21,...,24)| € R? we write ' = (z1,...,24_1)" € R'. We denote by Br(c) C R?
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the open d-dimensional ball of radius R > 0 centered at ¢ € R? and by Bp(c') € R4! the open
(d — 1)-dimensional ball of radius R > 0 centered at ¢/ € RY~!. Let

Hp (RY) = {u € L*(RY) | xp0)u € H' (Bg(0)) for all R > 0}.
We recall the definition of a Lipschitz bounded set from [70, Def. 5.1] (see also [81, Def. 3.28]).

Definition 2.1. We call an open set D C R? Lipschitz bounded if there exist J € N cylinders

Uj={Rjw+ 2 |z € B, (0) x (—28;,28;))}, j=1,...,J,

with translation vectors z(?) € R? and rotation matrices R; € R4 and Lipschitz continuous
functions &; : B(’Ij (0) — R with |¢(2)| < B; for all 2’ € ng (0) such that 9D C U}-le U; and

oDNU; = {Rjm+ 2V |’ € B, (0), x4 = (')},
DNU; = {Rjz+ 29 |’ € B}, (0), za < &(2)},
Uj\D = {Rjz+ 2|2’ € B, (0), 24 > §(a')}
for 5 = 1,...,J. Here, without loss of generality, the cylinders are constructed in such a way
that 8; > ;.

Roughly speaking Definition 2.1 means, that the boundary 0D of D can be represented locally,
i.e., after choosing possibly different cartesian coordinates for different parts of 0D, as the graph of
a Lipschitz function. Due to the Rademacher theorem (cf. [45, Sec. 5.8, Thm. 6]) D being Lipschitz
bounded guarantees the differentiability of the local parametrizations

7/}]'(93/) = R; [ gj(w/)

of D almost everywhere. Therefore, particularly the unique exterior unit normal vector v(x) exists
at almost all points @ € 0D, see [70, Rem. A.8]. This regularity assumption on 9D ensures the
validity of Green’s theorems as a basic tool for studying solutions of the Helmholtz equation.

Let 9 denote a parametrization of the sphere 41, e.g. for d = 2

+20,  a'eB, (0),j=1...,J,

¥ :[0,27) — ST, Y(p) = (cosp,sinp)’
and for d =3
Y2 [0,7] x (=, 7] — S, (0, @) = (sin ¥ cos @, sin ¥ sin o, cos 9) "
respectively. We use this parametrization for introducing the Hilbert space L?(S%"!) on the

sphere S%1 := {x € R?||z| = 1} as it is for example done in [73, Sec. 8.2], which is for d = 2
equipped with the inner product

21
(fs @251y = (fo,gov)r202x) = A Fh(0)g(¥(p)) dp, frg€ L*(SY),

as a line integral, and for d = 3 it is equipped with the inner product

(f,9)12(s2) == (fov,9°9)2((0,m)x
//f (9, 0)g@ (0, @) sind dd dp,  f,g € LX(S?),

as a surface integral. The spaces LP(S971), 1 < p < oo, and L?(S%~! x §971) are defined analogously
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by setting
_ JIIfedllir2m itd=2,
1 Fllzo(sisy = fd=
ILf o Yllr(om)x(—m,my)  If d=3,

and by using Fubini’s theorem, respectively. For 2 € R? we introduce the notation  := 2 /|z| € S9!
for the direction of x.

2.2. ACOUSTIC SCATTERING BY INHOMOGENEOUS MEDIA

Let £k > 0 be the wave number. Furthermore, let D C R? be a bounded set with Lipschitz
boundary. The function n? = 1+ ¢ models the index of refraction with contrast function q € L>°(D)
satisfying ¢ > —1. The set D corresponds to the shape of the scatterer. This scatterer is illuminated

by the incident plane wave ‘
ul(x;0) = ekl x € RY,

along the illumination direction @ € S 1. We mark dependencies on ¢ with ¢ as a subscript
and dependencies on 6 with @ as a second argument. The total wave u, resulting in scattering
of u’ on the scatterer D solves the following medium scattering problem for the Helmholtz equation.
Find u, € H} (R?) with

Aug + k*nuy = 0 in RY, (2.1a)

such that the corresponding scattered wave uy := ug — u! fulfills the Sommerfeld radiation condition

_ ou’
lim :1:|d21< “q(a;;o)—ikug(m;o)) ~0 (2.1b)

|| —o00 or

uniformly with respect to the direction # = x/|z| € S9!,

Remark 2.2. Since the index of refraction n? is not smooth we cannot expect the solution uq to be

smooth. Therefore, the Helmholtz equation (2.1a) has to be understood in the variational sense,
i.e., u, € HL (R?) is a solution if and only if

/R (Vug- Vo~ Kn’ugg) de = 0 forall ¢ € CP(RY.

For R > 0 large enough such that D C Bg(0) the restriction u —— € HL _(R?\ Bg(0)) solves

2|Rd\BR(O)

Aug + kZQ’LLZ =0 in R?\ Bg(0), Uy = Ug — u' on 0BR(0).

Thus, [70, Thm. 2.37] yields smoothness and even analyticity of ug, so also of u, outside Bg(0)
for d = 3. The case d = 2 can be shown analogously, see also [46, Chap. 7-8]. Therefore, the
Sommerfeld radiation condition (2.1b) is well defined in classical sense. O

Let
(2.2)

i (1) T
R
g ifd=3,
denotes the fundamental solution of the Helmholtz equation at wave number k. Here, Hél) is the
Hankel function of the first kind and order zero, cf. (B.5). Problem (2.1) has a unique solution,
which can be represented as the solution of an integral equation, cf. [67, Thms. 6.8, 6.9] (see also [31,
Thms. 8.3, 8.7] for piecewise smooth index of refraction n?).

Theorem 2.3. (a) Let u, € HL_(R?) be a solution of (2.1). Then uylp € L*(D) solves the
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Lippmann—Schwinger integral equation
uy(@:0) = w'(@:0) + K | a@)Pu@ - y)u(y:6) dy, weD. (2.3)

(b) If, on the other hand, u, € L*(D) is a solution of the integral equation (2.3), then u, can be
extended by the right hand side of (2.3) to a solution u, € HL_(R?) of (2.1).

¢) There exists a unique solution u, € HL (R?) of the scattering problem (2.1) or, equivalently, a
q loc
unique solution u, € L?(D) of the integral equation (2.3).

To motivate where formula (2.3) comes from, we use Au’ + k*u’ = 0 in R? to rewrite (2.1a) as
Aug + kzug = Auy + Ky, = k(1 —n*)u, = —kqu, in RY.

This is a source problem for the Helmholtz equation for uy with source term —k2quq. By applying
the theory of solutions for this problem class (see [67, Thms. 6.5, 6.7]), we conclude that u; is given
as a volume potential with density —k2quq.

From the asymptotic behavior of the fundamental solution ®(x) for || — oo follows that the

5 satisfies the asymptotic far field expansion

scattered wave Uy

61k|m|

s 00 (7 —dtt
ug(x;0) = Cqy T[@D72 u(2;0) + O <]az\ P ) for |x| — o0 (2.4)

uniformly with respect to the observation direction & = x/|x| € S~ with

eim/4 . o
Cp e | v 4= (2.5)
= ifd=3.

The far field (pattern) ug® € L2891 x §91) in (2.4) is given by
uF@50) = 1 [ algu(gs0)e Y dy,  @e st (2.6)
D

(cf. [67, Thm. 6.11] or [31, p. 316]). We further have the following one-to-one correspondence
between the scattered field uy and its far field pattern ug®. There holds

uy” =0 if and only if ~ wuy = 0 outside Bg(0) for D C Bg(0),

see also [67, Thm. 6.11]. Superpositions of far field patterns are modeled by the associated far field
operator, which maps densities of superpositions of incident plane waves to the far field patterns of
the corresponding scattered waves, i.e.,

F,: LA(5%1Y) = L2(59Y) . (Fug) (@) ::/

i U (@:0)g(8) ds(8). (2.7)

Throughout this work, the far field operator Fj is at the center of our considerations. Some of its
basic properties are collected in the following proposition (cf. e.g. [67, Thms. 6.14, 6.16] or [69,
Thm. 4.4] and [31, p. 324)).

Proposition 2.4. (a) The far field pattern ug® satisfies the reciprocity relation
uX(2;0) = u®(—0;-2)  forallz,0 € ST (2.8)

(b) Since Fy is an integral operator with analytic kernel (see the beginning of Chapter 5), we have
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that F, € N(L*(S971)), i.e., it is trace class, so in particular Hilbert-Schmidt and compact
(cf. Definitions A.3 and A.J).

c) The far field operator Fy is normal (i.e. FYF, = F,F*).
q q-4q 9" q
d) The scattering operator S, : L?(S%1) — L2(S91) given by
q
S, = I +2ik|Cy4*F, (2.9)

with Cq as in (2.5) is unitary (i.e. S;8; = S4S; = 1), so its eigenvalues lie on the unit circle
in the complex plane. For the far field operator F, this means, that its eigenvalues lie on the
circle centered at i/(2k|Cy|?) of radius 1/(2k|Cq4|?) in the complex plane. These eigenvalues are
further infinitely many provided q has no sign change (see [31, Thm. 8.16] and the proof of [31,
Thm. 8.13]).

The following example illustrates how a far field operator F, can be realized numerically for a
piecewise constant contrast function ¢ and dimension d = 2.

Example 2.5. Let d = 2. For simulating the far field operator F, we define L € N equally
distributed incident and observation directions by

2
T = 0; = (coswl,sinwl)T with ¢y := (I — l)f7T forl=1,...,L.

For resolving all relevant information it is sufficient to choose L 2 2kR + 1 for R > 0 being the
smallest radius of a ball than contains D. We do not elaborate on the reason for this at this point,
as it will be discussed in detail later, see Theorem 2.11 and Example 4.1 (cf. also [55]). We apply
the composite trapezoidal rule on (2.7) and obtain for g € L?(S?)

27

(Fq9) ~ fzu & (6)
=1
Accordingly, the matrix
2o LxL
F, = T (uq <xm’0"))1§m,n§L eC

approximates Fy, and it remains the task to simulate the evaluations of the far field pattern ug® (Zn; 61)
for 1 < m,n < L. Here, the main issue is that the scattering problem (2.1) that defines u, and conse-
quently ug® is defined on the unbounded domain R2. There are two common classes of methods that
treat this difficulty differently: Volume integral methods and coupled finite element and boundary
element methods. At this point, we particularly emphasize one method proposed by Vainikko [97]
for smooth or at least piecewise smooth contrast functions ¢, which is a special volume integral
method that solves the Lippmann—Schwinger equation using trigonometric interpolation based on
periodization and Fourier transform techniques (see also Example 3.7). Since the simulation of far
field data is not the main focus of this work, we simplify the situation for our numerical purposes,
and we do not use one of these methods but a Nystrom method. We restrict ourselves to a piecewise
constant contrast function, i.e. ¢ = go in D and ¢ = 0 in R?\ D for some constant gy > —1.

Let k1 := kv/1+ qo be the inner and ks := k be the outer wave number. Moreover, let u, be the
solution of the original scattering problem (2.1) and uj = u, — u® the corresponding scattered field.
Then, the restrictions v; = u4|p and vy = “2|Rd\5 solve the transmission problem

Avl—i—k%vl =0 in D,
Avy + k3vg = 0 in R\ D,
; oy Ovy o
vy — vy =u' and Sk W R on 0D,

ov ov ov
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FIGURE 2.1. Left: Support of the scatterer D (solid) and ball Br(0) (dashed) with
radius R = 3.5 containing D.
Real part (middle) and imaginary part (right) of the discretized far field operator F,
for L = 256 equally distributed illumination and observation directions.
lim 77" (‘%2(3:;9) —ikU2($;0)> =0 (2.10)
r—00 or

in the classical sense. Here, the superscripts + and — denote the traces on the boundary 9D from
the outside and the inside of D, respectively. This problem has been studied e.g. in [74, 98] and can
be reformulated as a boundary integral equation. We make a layer potential ansatz for v; and v
with coupling parameter k, i.e. we assume them to be of the form

8 .
A /8D ((Mg;)q)ki("y) - ”“q’ki("y)) vily) ds(y) (2.11)

for some unknown densities ¢; € C(0D), i = 1,2. By the jump relations (cf. [31, Thm. 3.1]) for the
single- and double-layer potential (1 and @9 are solution of the boundary integral equation system

I — Ky, +ikSy, I+ Ky, — ikSy, o1 | _ —2u’|op
Ty, +ik(I + KG,) Ty, —ik(—1 + K},) P2 —29%op |

Here, we used the transmission conditions (2.10). For given ! > 0 the operators S;, K;, K] and T are
the acoustic single-layer, double-layer, transposed double-layer and hypersingular boundary integral
operator at wave number [, as defined in [31, (3.8)—(3.11)]. We use a Nystrom method as described
in [31, Sec. 3.6] for an even number L of discretization points for computing the densities 1 and .
Using the asymptotics of the fundamental solution in (2.11) with i = 1 gives a formula for the far
field pattern, on which again the composite trapezoidal rule can be applied.

In Figure 2.1, the real part (middle) and the imaginary part (right) of the discretized far
field operator F is plotted for a kite shaped scatterer D as shown in Figure 2.1 (left) modeled

by the contrast function ¢ as defined above for g9 = 2. The wave number is £k = 2.5 and
for R = 3.5 we have that D C Br(0), so the choice for the number of incident and observation
directions L = 256 > 18.5 = 2kR + 1 is large enough. %

2.3. BORN APPROXIMATIONS

For any fixed 8 € S we can interpret the Lippmann-Schwinger equation (2.3) as a fixed point
equation for uy(-;0) '
ug(+30) = u'(-;0) + Lyug(-;0) inD ,
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where the bounded linear operator L, : L?(D) — L?(D) is defined by

(Lah) @) = & | ) f@ou(e-y) dy, @eD. (212)

If the operator norm ||L,|| is strictly less than one, then the solution to (2.3) can be written as a
Neumann series

ug(-;0) = ui(-;O)—I—iLflui(-;B) inD. (2.13)

This series is often called the Born series and describes the different levels of multiple scattering of
the incident wave u’(-;8) at the scatterer q. It converges in L?(D) and uniformly with respect to
the incident direction @ € S?!. The Ith summand of this series, which we refer to as the scattered
field component associated to scattering processes of order | € N on q is denoted by

! !
uZ,()(. 6) = L} u'(-;0)

k”/ / a(y) - a(y)e™ 0P+ —y)Pr(y; — yi—1) - Pr(yo — y1) dyy -~ dy; .

Plugging the Born series (2.13) of the total wave into the representation (2.6) of the far field pattern
yields

_ k2Z/ Je I BY (LN 0)) (y) dy, & e ST (2.14)
We write for & € S and [ > 2
uO(@:0) = K [ aw)e (LY (-:0))(y) dy

k2l/ / ) - @y )iy, —yiq) - Py — yy )eFOVI=ZY) dy .. dy,
(2.15)

for the Ith summand in (2.14), which we refer to as far field component associated to scattering
processes of order | € N on ¢q. Then,

o0

=Y u>W(@;0), azesil. (2.16)

q

Taking all scattering components up to a certain scattering order p € N into account leads to the
Born far field of order p, which is given by the pth partial sum in (2.14), i.e., by

p
u=P(z;0) =Y uW(z;0), zeSsT
=1

Recalling the definition of the far field operator (2.7) we introduce the far field operator component
associated to scattering processes of order | € N on g by

FD L2(87Y — 128, (FWg) (@) = /S ) lugoil)(@;a)g(e) ds(0). (2.17)

Accordingly, the Born series of the far field operator F, reads as F, = > 72, Fq(l). For any p € N we
define the Born far field operator of order p by

Fi=P) L2(8%7Y) — L2(S*h),  (F=Pg)(@) = /S . uS =P (z;0)g(0) ds(6). (2.18)
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The operators Fq(l) and Fq(SP ) are Hilbert-Schmidt integral operators since their integral kernels

satisfy ugo’(l),ugo’(gp) € L?(8%1 x 8971) see Theorem A.8. Alternatively, this follows from the
estimates in Theorems 2.11 and 2.19 below, which give upper bounds for the Hilbert—Schmidt norms
of these operators, see (2.20).

Remark 2.6 (Convergence of the Born series expansions). Theorem A.8 gives together with (2.14),
the Cauchy Schwarz inequality and the definition of the operator norm for the approximation error
of the far field operator by the Born far field operator of order p € N that

1Py = F{P s = e — 0P 2 gars g

_ 14 1kmy -1, 4/ .
= Z/ (L5 (:6)) () dy
) 2
|Sd—1|k4”q||%2(m /Sd_1< Z ||Lg—1uz(-;0)|L2(D>> ds()
l=p+1

00 2
< IS lalifaco [ ( > ||Lq||’—1||u%<-;e>||Lz<D>) ds(6)
l=p+1

2
ds(z) ds(0)

IN

A

%S 2
= S PRD Pl (D1l

l=p

o0 2
ST D el oy (Y 12a11)

l=p

IN

Here, |D| and |S?!| denote the volume of D and the surface area of S?~1, respectively, i.e., |S'| = 27
and |S?| = 4. Provided || Ly|| < 1 we can conclude from the sum of the geometric series that

[ Lq]l”

3
1Fy — FEP|us < [SYYR?|D2 |lg]| oo (py ——ib—
YT L]

—0 for p — 0.

Sufficient conditions on k and ¢ for the convergence of the Born series expansions have, e.g., been
discussed in [62, 68, 85, 96]. For instance, (2.12) immediately implies that

1Laf ooy = [ [P [ aw)rmute - y) dy| de
< K1) / / )@z — y)|* dy dz
D JD
for all f € L?(D), i.e.,
1L < 8 [ [ Jawtne - vl dy de = L ls, (2.19)

see Theorem A.8. The right hand side in (2.19) is always finite. To see this, we write for 0 < r <1
independent of x (B,(x) € D is permitted)

IZalfss < Kl ([ [ o= w)f dydat [ / @i~y dy dz ).
D JD\By(z) (

The first integral is finite due to the analyticity of ®; in R?\ {0} and the boundedness of D. The
asymptotic behavior of the fundamental solution ®;(x — y) as |x — y| — 0 shows that the second
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integral is finite as well. We can bound

Cln(lw yl) ifd=2,

O‘miy‘ ifd=3,

[Pr(z —y)| < {

for | —y| — 0 and C > 0 (see [31, (3.107)] for d = 2). For d = 2 this implies together with
Lebesgue’s theorem that

// {cpka:— )[* dy dm<c2|Dy/ / tnt dt dp = 02]D|r (2In?r —2In7 + 1),
which tends to zero for » — 0. For d = 3 we obtain again with Lebesgue’s theorem that
// |@s(x — 9)|? dy dw<CQ]D|/ / / L 2sin0 dt 49 dp = 4xC?|Dlr — 0

for r — 0. Overall, L, is a Hilbert—-Schmidt operator, and the Born series of the far field operator
converges when ||Ly|lys < 1, which we assume henceforth. O

2.4. SPARSE AND LOW RANK REPRESENTATIONS OF FAR FIELD
OPERATORS

Let the support of the scatterer be contained in some ball Br(0) C R? centered at the origin,
i.e. D C Bg(0). We show that the far field operator components Fq(l) associated to scattering
processes of order [ € N can be well approximated by operators that have a finite expansion or are
of finite rank. Here, it turns out that the number of expansion coefficients or the rank is directly
linked to the quantity kR, respectively. Therefore, for kR not too large we obtain sparse or low
rank approximations of these far field operator components. Due to the different structure of the
underlying series expansions we tackle the two- and three-dimensional case separately.

THE TWO-DIMENSIONAL CASE

Notation 2.7. We denote by e, := (¢™28(") /\/27),,cz the standard Fourier basis of L2(Sl) which
is an orthonormal basis and satisfies Y2 = span{e,,e_,} (cf. Section B.1). Here, Y2 is the
space of spherical harmonics of degree n € Ny in R?, see (B.1). Consequently, (€m,n)mn given
by emn(Z;0) = en(Z)e_n(0), £,0 € S', m,n € Z, provides an orthonormal basis for L?(S! x S1).
We expand the kernel kg € L?(S! x S!) of a Hilbert-Schmidt operator G € HS(L?(S!)) in terms
of (€mn)m.n and obtain for g € L2(S!) that

Gg = /5'1 HG(';G)Q(G) ds(e) = Z Z(KGvem,n>L2(Sl><Sl)em<g7 en>L2(Sl) .

MEZNEL
With the notations
IGllr = lkGllr(sixsty — and  [|Gllxer = [|((kG, €mm) 1251 x51))mnllerscer
for 1 < p < 0o, we conclude from Parseval’s identity and Theorem A.8 that

1Gllas = G2 = IGllexe - (2.20)
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Based on this we identify G € HS(L?(S')) with its kernel kg € L2(S! x S1) as well with its
expansion coefficients ((kg, €mn)2(s1x51))mn € €2 X £2, which satisfy

(KGs €mn)12(51x51) = /31 /31 kG (Z;0)e_n(T)en(0) ds(z) ds(0) = (Gen, em)r2(s) -
We refer to the essential support of the integral kernel kg as the LC-support
suppro G := supp kg € St x St

of G and denote its measure by ||G||;0. Analogously, we call the index set of the nonzero Fourier
coefficients ((Gey, €m)r2(g1))m,n the 09 x 0-support

supppoypo G = {(m,n) € 7% | (Ge,, em)[2(s1) 7 O}

of G and denote the number of these indices by ||G/||s0 0. Moreover, let |G|lnue be the nuclear norm
of G (cf. (A.5)), and let rank G be its rank (cf. Definition A.6). For W C Z? and 1 < p < oo we
further define 7 x (W) := {(amn)mmn € ¥ x P | supp(@mn)mn C W} as a subspace of &7 x (P,
and we write

|Gllepxerqwy = [[({Ge€m, €n) 12(51x51))mnllerscer(w) -

Lemma 2.8. The far field component ugo’(l) in (2.15) and the far field operator component Fq(l)
in (2.17) associated to scattering processes of order | € N can be expanded as a Fourier series via

wW = 3NN "al) emn  and  FVg =3 > al) enlg en)rasy
MEZNEL MEZLNEL

for g € L2(SY) with Fourier coefficients given by

all), = QWkZZi"_m/l)---/l)q(yz)-~-q(y1)<1>k(yz — Y1) Pr(ys — Y1)

x e masynasy) 1 (kly,|) Ju (klyy|) dyy -~ dy; . (2.21)
Here, Jy, and J, denote the Bessel functions of order m and n, respectively (see Appendiz B.1).

Proof. By the Jacobi-Anger expansion (B.12) the plane wave terms in (2.15) can be rewritten as
eik(G-yl—Eyl) _ Z Z in—me—i(margyl—nargyl)Jm(k|yl|)Jn(k|y1|)eimarg/w\e—inarg/w\_
MEZ nEZ

Substituting this into (2.15) yields the result. O

Definition 2.9. Let N € N with N 2 kR, which throughout this work means that N = N(kR)
is somewhat larger than kR. We define the subspace of sparse far field operators associated to
scatterers supported in Br(0) C R? by

Uy = {GeHS(LX(SY) [Gg= 3 3" amnems en) s> mn € C}. (2.22)

[m|<N |n|<N
Furthermore, we denote by
WnN = {G S HS(LQ(Sl)) ’ Gg = Z <en<gvan>L2(Sl) + ﬁn<g7 en>L2(Sl)> s Qn, PBn € LZ(SI)} :

In|<N
(2.23)
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the subspace of low rank far field operators associated to scatterers supported in Br(0) C R2.
By Py, : HS(L?(S')) — Vy and Py, : HS(L?(S!)) — Wx we denote the orthogonal projections
onto Vy and Wy with respect to (-, - )ug, respectively.

The following remark relates the two subspaces Vy and Wy to each other.
Remark 2.10. (i) By definition we have for G € Vy that

suppgox0 G C [N, NJ.

To identify the (0 x (°-support of G € Wy, we rewrite G given as in (2.23) in the form (2.22),
i.e., we expand for all n the functions «;, and S, in terms of (e, ), and obtain

GQ = Z Zam,nem<g,en>L2(S1)+ Z Z am7nem<g,en>L2(sl)

|m|<N nez el |n[<N
— Z Z am,n em<g7en>L2(Sl), (224&)
|m|<N |n|<N
where
<en,am>L2(sl) if /m| < N,|n| > N,
amm = 4 (Bnsem)r2(s1) if /m| > N,|n| < N, (2.24b)

<€n,am>L2(Sl) + (ﬁn, em>L2(Sl) if ]m| < ,Z\/*7 \n\ < N.
We conclude that G € Wy if and only if

supppoypo G C ([-N,N] x Z) U (Z x [-N,N]),
which particularly implies Wy € V.

(ii) Let G € Vy be given as in (2.22). Then, G can be rewritten in form (2.23) by choosing,
e.g., a, =0and 8, = Z\m\SN Am,nem for all n. This implies Vy C Wy

(iii) Let N € N be not too large. Then, operators in Vy have a sparse representation with respect
t0 (€m.n)m.n because suppsoy o G C [-N, N2 (see (i)), so ||Glpxp < (2N +1)% for G € Vy.
In contrast to that, operators in Wy are not necessarily sparse with respect to (em.n)m,n
since ||G||go 0 does not even need to be finite anymore (see (i)). Nevertheless, operators in
Wy are of low rank because rank G < 2N + 1 for G € Wy. Due the (ii) the same holds
for operators in Vy. This clarifies the naming of Vy as subspace of ‘sparse’and of Wy as
subspace of ‘low rank’ far field operators. Both generalize the concept of non-evanescent far
field patterns as introduced in [55].

(iv) By definition we have G € Vy if and only if N (G)* € @), Y2 and R(G) € PN, Y2.
Denoting by Wy the subspace orthogonal to Wy in HS(L?(S1)), which is given by

WJ%T = {G € HS(L2(SI)) ‘ Gg = Z Z Um,n em<gaen>L2(S1) y AGmn € (C},

|m|>N |n|>N

we make a similar observation for Wi, It holds G € Wi if and only if N (G) C @, Y?
and R(G)*+ C @N_, Y2 (cf. [24, Sec. 4] for the finite dimensional case). O
Next, we turn to the central result of this section, which states that the far field operator

components Fq(l), [ > 1, and hence also Fq(gp), p > 1, and F, (cf. Remark 2.12 (ii)) can be well
approximated in the subspaces Vy and Wy.
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Theorem 2.11. Suppose that ||Ly||lus < 1 and let 1 > 1. For N € N with N 2 kR we have the
error estimates

1

; _ 5
1B = Pun EPllus < trbkRlale ol Zalli (5 1000 - Diagoyon) (225)
n>N
and
IED P Vs < dalaleo) 2l 3 1a0 - DBocopioy - (220)
n>N

Both upper bounds decay superlinearly in N, more precisely faster than any power of N—1.

Proof. Taking the absolute value in (2.21) and applying Holder’s inequality and the Cauchy Schwarz
inequality several times shows that

ol < 20 gl | [ Ithlanl) [ [t aw)@utm - i) @i - )

x ¢ imargy—nargyy) j (kly ) dy, - dy,_, dy,

27kl ol o O] Dz [ | [ atw@uto=wi) [ [ atwia) -+ atw)
dyl)

IN

X Qp(yi_1 — Yi_g)  Pr(yy — y1)e™ ™8V T, (klyy|) dyy -+ dy;_,

1
2
< 20kl ooy 9 (k] Dl ([, [ law)Bie = )P dy de)
X (/ ’/ / 9(Y1-2) W) Pk (Y11 = Yi2) - Prly2 — Y1)
DI1JD D
. TN
x eI (Klyy|) dyy - dyp o dyu)
S .
-1
2
< 27 a0y [ K] - Dzl K] - Dlzzeon (K [ [ aw)ate -~ w) ay do )
= 27k2llgl ) | Ll 1] = Dlz2oyll k] - D2y

Since I — Py, = Pyr and I =Py = Pyy1 the summation areas for the estimates below are defined
by the #° x °-supports of operators in V]J\-, and Wﬁ, respectively. These are visualized in Figure 2.2.

From above upper bound for |a$711),n| we conclude for Wy under consideration of Remark 2.10 (iv)
that

IEY =Py FP s = 32 > laal?

|m|>N |n|>N
2
< (2rlalsolLalls 3 R0 - Do)
In|>N
2
= (4rllal )l Lalli X RG] - Do)
n>N
2
< (4rlalie )l 5 1 Discopon) - (220

n>N
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N Nr---n- [ - N e L I ! eeee
=0 =0 =0 = 0
N N------ S — N ———  Nbeeoas : pre—
-N 0 N -N 0O N -N 0 N -N 0 N
m m m m
FIGURE 2.2. ¢Y x (%-supports of operators in Vy (left) and of operators in Wy (middle
right). Middle left: Partitioning of ¢° x ¢O-support of operators in Vy as sum of part
marked in red and part marked in blue, minus part marked in both colors. Right: £° x £°-
support of operators in Wﬁ
For the last equality we used that ||J_n (k| - |)|z2(p) = [|[Jn(k] - [)||z2(py due to formula (B.7). We
make a similar estimation for Vn and obtain
l l l l l
1D = Pog FIlRs = >0 D0 laalP+ >0 Do lall P = > > laf.
meZ |n|>N |m|>N n€Z [m|>N |n|>N
2 2
< D0 Y labl P D0 Y falal
meZ |n|>N |m|>N n€Z
2
[—
< 2 (2nllgll o) 1 Zalli)” 32 R 1alk] - DBapy 30 K1 mlkl - D220
[n|>N meZ
< 2 (20k Rl = o) Zalli)” 3 Btk - D2
n|>N
- 2
= 4 (2mkRlall oyl Lallid ) 2 R 1alk] - Do
n>N
< dm (20k Rl = o) 1 Zalli)” 32 1l - DIBa(sncon - (2.28)
n>N
For the third inequality we used that
> K dm(El - DllZzpy < Y2 K ImEl - Dli2@aoy = Do 1mll - Dliz@mo) = T(kR)?,
meZ mEZL mEZL
(2.29)

see [55, (3.7)]. The decay of (||Jn(| - )l|L2(Byg(0)))n in 7 € N for n 2 kR has been studied in [55].
It holds that

1 1 5
7325 1o 1NEPER ((RR\? (eny?) R
19201 Dllz2Benton < Sgr(g)m(HQn) L (et
Lo L\ERR ((RR\2 G (sm)?\
< b0n3 <1+ %> 7 <(7’L) e n )

with by ~ 0.7928, 50 (| Jn(] - )| 12(B,r(0)))n decays in n faster than any power of n™!, which carries
over to the two upper bounds in (2.27) and (2.28). O

Remark 2.12. (i) Our numerical tests in Example 4.3 show that the choice N = [ekR/2] is
appropriate as a truncation index in terms of kR.

(ii) By summing over [ we obtain similar upper bounds for approximating Fq(gp ) and Fyin Vy
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kR =10 kR =100
10° - - - - 10'0 -
10°
10—10 L
10—20 L
: : : : 10730 ' :
0 5 10 15 20 25 0 50 100 150
N N

FIGURE 2.3. Plots of the factor 3, .o v [[Jn(] - |>||%2(Bm(0)) in (2.25) and (2.26) as a
function of N € N for kR = 10 (left) and for kR = 100 (right)

and Wy, respectively. The superlinear decay of these bounds in N is preserved.

(iii) In [55] it has been proved additionally that

| rorr ([ - DH%%BM(O)) vi—-v? ifv <1,
im =
kR—00 2kR

0 else.

Consequently, the term ||, (| - [)||72 (B (0)) @PProaches the asymptote 2y/(kR)? — n? for large

(2.30)

values of kR. Numerical tests in [55] confirm that this already happens for moderate values
of kR and that these terms decay quickly for n 2 kR. This observation further underpins that
the essential support of the expansion coefficients (2.21) is contained in [N, N|? with N > kR

and their decay behavior from a different perspective.

(iv) We note that (B.6) shows that

17| - DIZ2(B,n0) = TR (J2(kR) = Ju_1(kR)Ju1(kR)),  neZ,

which provides explicit representations of the upper bounds (2.25) and (2.26), that can be

implemented directly without any approximations needed.

Figure 2.3 illustrates the decay of the factor >~y [[Jn(] - |)||%2(Bm(0)) by plotting the
term Z|17?|0:0N+1 |0 (] - ])H%Q(Bm(o)) as a function of N € N for the choices kR = 10 (left)

and kR = 100 (right). In both situations superlinear decay starts at about N = kR, and it is

more rapid for larger kR.

Example 2.13. To further illustrate this approximations, we consider an analytical example by
choosing ¢ = X gy (o) for the contrast function, i.e., the refractive index n? is piecewise constant with

value n? = 2 in D = Bg(0) and n? = 1 in R? \ Bg(0). Then, the Fourier coefficients (a%)n)mn
from (2.21) with [ = 1 satisfy

al), = 2wk (i [ e () g, (kly) dy
Br(0)

R 2m .
= 27Tk2(—i)m_”/ I (kr) I (k7)T dr/ e~im=me 4o
0 0

=276



2.4. SPARSE AND LOW RANK REPRESENTATIONS OF FAR FIELD OPERATORS 21
3 30 30 | 3
| |
2 2 ! !
2 0 1072 6 i L 102
1y 10 10
g0 - 0 0
AR 10 10° g 'S 102
\ | |
\ | |
20N -20 -20 !
\\ |
S | |
-3 -30 ot 30 1 1 1ot
-2 0 2 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
Ty m m

FIGURE 2.4. Left: Support of the scatterer D (solid) and ball Bg(0) with radius R = 3.5
containing D.

Absolute values of Fourier coefficients (am,n)m,n of far field operator F, at wave
number k = 2.5 together with dashed square corresponding to its sparse approximation
in Vy (middle) and with the dashed cross-shaped index set corresponding to its low

rank approximation in Wy (right) for N = 12.

271 Ju(| - D20y =,
0 else,

with 9, denoting the Kronecker delta. Recalling (2.30), this shows that the cut-off parameter N in
Theorem 2.11 cannot be chosen smaller than kR. O

Example 2.14. We illustrate our findings by a numerical example and consider the same scattering
object D as in Example 2.5, i.e. a kite-shaped scatterer as depicted in Figure 2.4 (left) at wave
number k£ = 2.5. The contrast function is given by ¢ = 2y p, and we simulate the far field operator as
explained in Example 2.5, which yields a matrix Fg = 27/ L(uZ®(Zm; 05))mn € CH*F for L = 256.
Taking the two-dimensional fast Fourier transform of this matrix gives an approximation of the
Fourier coefficients (am.n)mn of Fy with respect to (em.n)m,n-

In Figure 2.4 (middle, right) the absolute values of these Fourier coefficients are plotted
for —32 <m,n <32 on a logarithmic color scale. The dashed square in Figure 2.4 (middle)
corresponds to the support of the Fourier coefficients of operators in Vy, the dashed cross in
Figure 2.4 (right) to the support of the Fourier coefficients of operators in Wy. Here, we
choose N = [ekR/2] = 12 with R = 3.5. It is nicely confirmed that the Fourier coefficients
are essentially supported inside the marked square and in the cross-shaped area, respectively. ¢

THE THREE-DIMENSIONAL CASE

Notation 2.15. We denote by (Y,'),/<n the orthonormal basis of the space of spherical harmonics Y3
of order n in R? as introduced in (B.14). By Theorem B.3 we know that

(%, 0) = Y7 ()Y (0))meng,jo|<m,
n€No,|p|<n

((iv 0) = Yr%(i)yg(e))|o|§m,|p\§n and

form a orthonormal basis in Y3, x Y5 and in L?(5% x 5%) = @,, nen, Yo ¥ Y3, respectively. So, by
the same theorem every kernel kg € L?(S? x S?) of a Hilbert-Schmidt operator G € HS(L?(S?))
can be expanded as a Fourier—Laplace series

0o oo
Rg = Z Za’m,n

m=0n=0

with ., € Y3, x Y3 .
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For m,n € Ny the (m, n)th spherical harmonics component cy, ,, of kg is the orthogonal projection
of kg onto the space Y2, x Y3 which is given by formula (B.19). We use the notations

Gl == HKVG’HLP(SQXSQ) for1<p<oo,
0o 1
P
IGloxr = Namnmalxonuzssy = ( X lamalfygsy ) for1<p<o
m,n=0
and
Gllesosceee = [[(Qmn)monll (g0 ooy (£2(52 x52)) = €sSSUD || nllL2(52x 52) »
m,n&Ng
and we conclude from Parseval’s identity and Theorem B.3 that
1Gllas = IGllz2 = |Gllexe - (2.31)

Particularly, we have that (. )mn € (€2 x €2)(L*(S? x 5?)), where
(2 x P)(L*(S* x S%))
= {(Bin)mn | B € Yo, x Yy, for all m,n € No and [|(By,n)m,nllerxer < 00}
for 1 < p < co. We refer to the essential support of the integral kernel g as the LO-support
suppro G := supp kg C 5% % §2

of G and denote its measure by |G|/ 0. We further call the index set of the nonvanishing spherical
harmonics components (5 )m,n the 20 x O-support

SUpPPyo x g0 G = {(m7 n) € Ng |am,n 7& 0}

of G and denote the number of these indices by ||G||,050. Moreover, we introduce the following
weighted (P x (P spaces, which are of special importance when investigating the mapping properties
of the translation operator in Subsection 2.5. Given two sequences of weights w = (wy), C [0, 00)
and v = (vy), C [0,00), we define
(€5, x B)(L*(S* x %))
= {(Bmn)mmn | Bmn € an X Yf’z for all m,n € Ny and ||(Bm7n)m7n”€fu><zg < oo},

where for 1 < p < oo,

o0 ) %
||G|’egxe5 = ”(am,n)m,n||(e5xe§j)(L2(s2xs2)) = ( Z wmvn”am,nHL?(52x82)>
m,n=0
and
||G”Z?ﬂ°x€5° = ||(O‘m,n)m,nH(Z;@><eg°)(L2(S2xS2)) = mST?EPNO (wmvn||am,nHL2(52xs2)) :

If it is clear from the context, we use ¢P x £P and 2, x (P as an abbreviation for (¢7 x (P)(L?(S? x S?))
and (/2 x P)(L%(S?% x S?)), respectively. Moreover, let ||G||nuc be the nuclear norm of G ( )
and let rank G be its rank (cf. Definition A.6). For W C N3, w = (wp)n,v = (vp)n C (0,
and 1 < p < oo we further define £, x (0(W) := {(Bm.n)mn € &, X 5| supp(Bm,n)mn C W} as a
subspace of /2 x (b, and we write

G e, xercwy = [ mn)manller, <enwy -
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The following lemma gives an explicit expansion of far field patterns and represents the analogue
of Lemma 2.8 in the three-dimensional case.

Lemma 2.16. The far field component (2.15) associated to scattering processes of order I € N can
be expanded as a Fourier—Laplace series via

2:0) = > > ol (z:0), 20¢c5% (2.32)
m=0n=0
with
_ 2m 122+ 172,
0l (:0) = o 1)675 / / 9(y1) - (W) Pr(Yr — yi-1) - Pu(y2 — 1)
X G (K|yi])jn (kly1]) (PE, P2 Vi2(s2)(PS, PY) pa(s2) dyy -+ dy; . (2.33)
Here, o\ ) € Y3, x Y2 is the (m,n)th spherical harmonics component of ugo’(l) and Png =P, (z-(+)).

The functwns P, and j, are the Legendre polynomial of degree n and the spherical Bessel function
of order n, see Section B.2.

Proof. Plugging the Jacobi—Anger expansion (B.24) twice into (2.15) yields

(l km/ / q(y) - q(y)Pr(y; — Y1) - Pr(ys — y1)

XZZIP °(20+1)(2p + 1)jo(klyl)dp(kly1 D Po(Yy - ) Pp(yy - 0) dyy -+~ dy; . (2.34)
0=0 p=0

()

From (B.19) we know, that we can represent the (m,n)th spherical harmonics component oy

of uif”(” by

ol@:0) = BV [ b6 w) [P0 o) Vi) dsto) ds(w) .

We insert (2.34) and use that

2Pm(§:~w)Pn(@-w) ds(w) =0 for all Z,y € S?, m #n,
S

due to the mutually orthogonality of Y3, n € Ny (see (B.3)). Together with Remark B.2 this gives
(2.32)—(2.33). O

The following definition is the counterpart to Definition 2.9 in three dimensions.

Definition 2.17. For N € N with N 2 kR we define the subspace of sparse far field operators
associated to scatterers supported in Br(0) C R3 by

Vi == {G € HS(L2(?) | Gy = Z Z/ Cnn(+:0)9(6) ds(8), € Y3, x V3L (235)

m=0n=0

Furthermore, we denote by

N
Wy = {G € HS(L*(S%)) \ Gg=>_ /Sz(an(-;e) + Bn(-30))g(0) ds(0),
n=0

an € Y3 x L2(82), B € LA(S?) x Y3} . (2.36)
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the subspace of low rank far field operators associated to scatterers supported in Br(0) C R3.
By Py, : HS(L?(S?)) — Vy and Py, : HS(L?(5?%)) — Wi we denote the orthogonal projections
onto Vy and Wy with respect to (-, -)us, respectively.

As an analogue to Remark 2.10, the following remark relates the two subspaces Vy and Wy to
each other.

Remark 2.18. (i) We can expand the (m,n)th spherical harmonics component (2.33) further in

(i)

terms of the orthonormal basis ((Z,0) — Y,%(2)Y,, P(0))p<n,oj<m Of Yo, x Y3. We insert
the addition theorem (B.16) twice and take the orthonormality of {Y,) } o< into account to
conclude

(PE, PY) 252y = Z L Y (@)Y, (@)Y, @)V (@) ds(w)

2m+1
1672 s 0/~
= Gm1)y > Y@, (T))

o=—m

Here, we used that due to the definition (B.14) of Y,% it holds Y,2 = Y,°. Analogously, we

have that
< nrin >L2(S2) (Qn 1)2 E : n ( ) n (yl) :

p=-n

We insert both into (2.33) and obtain
ozl Z Za’p’ YO ()Y, P(0)
o=—mp=—n

with

alhV) = k2 16m%nm / / qy) - a(y) (Y — Y1) - Py — Y1)
X Jm (kY)Y (U) dn (Kly )Y (Y1) dyy - - - dy; .

This reveals the same structure as in (2.21) for the two-dimensional case and the far field

(@)

operator component F," associated to scattering processes of order [ can in the same manner
for g € L?(S?) be written as

m n
g = Z Z Z Z afﬁ}f;l(l)Y" (g, Yp>L2(52) (2.37)
m=0n=0 o=—m p=—n
Accordingly, we can rewrite Vy as
N N m n
Vv = {G e HS(LAS?) [ Ga =Y D0 > 3 anhYile, Yidase), aph, € C},
m=0n=0 o=—m p=—n

and the analogue can be done for Wy .

By definition we have for G € Vy that
suppgo o G C [0, NJ?.
For the £° x O-support of G € Wy we find as in Remark 2.10 (i) that

suppgoyo G C ([0, N] x No) U (No x [0, NT).
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(iii) As in Remark 2.10 (i)-(ii) we observe that Vy C Wy but Wy € V.

(iv) Suppose N is not too large. Due to (ii) we have ||G|l040 < (N + 1)? for G € Vy, which
reveals the sparsity of such operators. Operators in Wy are not necessarily sparse, since their
00 x O-support may be infinite.

(v) Let G € Wy be given as in (2.36) for some a,, € Y3 x L?(S?) and 3, € L?(S?) x Y2, n € N,
which can be expanded according to

n n

(@ 8) = 3 (an(+16), Vi) 250 Vi (@), Bu(@560) = 3 (Bu(@ ), V") 152 Y (6)
for Z,0 € S?. Plugging these representations into the formula for G' from (2.36) yields

N n N
rank G < Z Z 122(2n+1):2

n=0m=-—n n=0

NN+D L Np1 = (V412 (239)

The same holds for G € Vy. Consequently, if N is not too large operators in Wy as well as
in Vn are of low rank.

(vi) Finally, we make similar observations as in Remark 2.10 (iv), namely that G € Vy if and
only if N'(G)+ C @N_ Y3 and R(G) € @Y, Y2. For W denoting the orthogonal subspace
to Wy in HS(L?(S?)) we further have that G € Wy if and only if N(G) C @Y Y3
and R(G)*+ C @po Vi 0

The following approximation theorem underpins that the far field operator component Fq(l)7 [>1,
as well as Fq(gp ), p > 1, and Fj (cf. Remark 2.20 (i)) can be well approximated in the subspaces Vy

and Wpy. It represents the counterpart to Theorem 2.11.

Theorem 2.19. Suppose that ||Lq||us < 1 and let 1 > 1. For N € N with N 2 kR there holds the
error estimate

1

1FD =Py FD s < %\q||m<m|wqu%;§ (2M(kR> §f+l<2n+1>2\jn<r : Dlliz(BkRm)))Q - (2.39)
and

IES ~ Py EPlls < gl o | ol ijﬂ@ml)?ﬂjn(r DBy - (240)
Here, M(kR) := 300 o (2n + 1)?||jn(] - |)||%2(Bm(0))’ Both upper bounds decay superlinearly in N,

more precisely faster than any power of N~1.

Proof. We proceed similar to the proof of Theorem 2.11. The Cauchy Schwarz inequality together
with (B.17) yields

~ = 41 \? (47)3
T Yy 2 ) < 20 ( =" S S
/52 Elelg |<Pm7Pm>L2(52)’ ds(x) < |57 (Zm n 1) e (2.41)

from which we deduce by using (2.33) and Hoélder’s inequality and the Cauchy Schwarz inequality
several times that

D 2
\|Oé$n),n||L2(s2xs2)

Coa@m+1)i2n+1)!
= k,4l (47r)4 /52 /32

// q(y) - q(y)Pr(y — Y1—1) - Pr(y2 — Y1)
D D



26 CHAPTER 2. INHOMOGENEOUS ACOUSTIC MEDIUM SCATTERING

m m m m

FIGURE 2.5. 9 x (%-supports of operators in Vy (left) and of operators in Wy (middle
right). Middle left: Partitioning of ¢° x ¢°-support of operators in Vy as sum of part
marked in red and part in blue. Right: ¢° x £-support of operators in W5:.

2

% o (K[91) o (K1 ) (PE, PY) 252y (P, PP p2gs2y dyy - dy,| ds(@) ds(6)
< k4l<2m+2fff4”“) ol o ([, 500 178 Phsscsn * ds(@) ) i1 - Do
/52/ ’/ (Y- k(Y — Y1) / / q(Yi—2) (Y1) Pr(yi—1 — Yi—2) - Pr(y2 — 1)
% o (kly1 ) (P, PE) 252y dyy -+ dyp_, g, 4s(0)
< O (s PR PR s <A>)||jm<k|-|>||%z(p)
(//\q )Pr(xz —y \Qdydm)/sz/’/ / q(Y—2) - q(y)Pr(yi—1 —Y12) -+~
X (Y — Y1) jn (k| |)(PE Py1>L2(52) dy; - dyl—? dy;_; ds(6)
<
< ajf)i” * 1)4||q||%oo(p)( [ sup 0P, PR s 4s(@ ) lim(H] - B2

-1
dy da:)

=R 2
< ([ sup [P0 PRy 5@ ) linH] - Do (K [ [ Jawitate—w)
S2 yeD DJD

47
< oy

Therewith, we conclude from (2.31) for Wy that

IFD Py FOls = | S S o]

m=N+1n=N+1

dm 2(1-1 — ‘ 2
< Sl Mo B (5 ant 12K ialh] - D))

n=N+1

2(1-1 . .
(2m + 1220 + 12)glF () | Lallfis R im k] - DIy ln (k] - D720y -

_ l 2
L2(S2x52) - Z Z ”ammHL2(SQ><SQ)

m=N+1n=N+1

47T e . 2
< (am)” ) HQHLOO(D 1 Lq ||Hs ( Z (20 + 1)[ljn(] - DH%Q(BkR(O))) :
n=N+1

Here, the summation area is given by the 0 x O-support of operators in W]J\;, and the analogue
holds for Vy in the estimate below. These supports are visualized in Figure 2.5. We obtain for Vy
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with (2.31) and Parseval’s identity that

2
IFD —PoyFOIEs = | 3 Sall 43 S a o

m=N-+1n=0 m=0n=N-+1 L2(5%x52)
= Z lea(” |72 (52 x.52) + Z Z l?) 1172 52 x 529
m= N+1n 0 m=0n= N+1
< Z Z Ha(l) HL2 (S2x52) + Z Z HO‘ HL2 (S2x52)
m=N+1n=0 m=0n=N+1
(47T) 2(1-1) - 2731+ 2
< Sl o MERILHS ™ Y @n+ 12K k] - Doy
n=N+1
2(47)? 2(i-1) 201 2
< THQHLOO(D) (KR Lollis Y- @n+1D25nll - D200 -
n=N+1

where M(ER) = 55202+ 1 n(] - Dl22s, o))+ The decay of (In(] - [)22(5, (op)n in 7 € No
has been studied in [56]. For n 2 kR there holds

1671’2 1\ 2 kR \2 kR \2\ n+1
in(] - DIE < +————kR ) 1-(5%)
I Dison < G5 7 (n+3) (G) e )

kR kR Y2y N+l
blk‘R(n—i— 2) ((n+1> ~(7%) ) *

IN

with by ~ 4.791, so (||7n(| - \)||%2(Bm(0)))n decays in n faster than any power of n~!, which carries
over to the two upper bounds. ' ]

As in Remark 2.12 additional features of the upper bounds in (2.39) and (2.40) can be shown.
(<p)

Remark 2.20. (i) By summing over [ we obtain similar upper bounds for approximating Fy
and Fy in Vx and Wy, respectively. The superlinear decay of these bounds in IV is preserved.

(ii) From [56] we recall that

kR—o0 2rkR

- lresi2pm (|- DIze g0y _ Jy1-@w+1)? ifv<d,
0 else.

(iii) An explicit representation formula for implementation is given by

) TR
i - Dacomion = k) (T 41/2(ER) = Joo1/2(KR) o y3/2(KR))

= 21 R*(j2(kR) — jn-1(kR)jns1(kR)),  neN,

which can be obtained by using the relation (B.21) between j, and J,, 1 /2 and the product
formula (B.6).
Figure 2.6 illustrates the decay of the factor "o n(2n + 1)%(|jn(] - ’)||%2(Bk3(o)) by plots

of SR 1 (2n + 1) |5 (] - |)||L2 (Ben(0)) 28 function of N € N for the choices kR = 10 (left)
and kR = 100 (right). Similar to Figure 2.3, the superlinear decay starts in both situations at
about N = kR, and it is more rapid for the larger value of kR. ¢
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FIGURE 2.6. Plots of the factor >,y (2n41)2|/j.(| - |)||2L2(Bm(0)) in (2.39) and (2.40)
as a function of N € N for kR = 10 (left) and for kR = 100 (right)

2.5. FAR FIELD OPERATOR TRANSLATION

To reduce R and consequently N in the sparse and low rank representations of the previous section,
which involves a reduction of the 9 x fO-support or of the rank of the corresponding operators, it is
often helpful to shift the scatterer in space. If the support of the scatterer is contained in some
ball Br(c) C R? with ¢ € R? and R > 0, then the support of the shifted scatterer modelled by
q(+ + ¢) is contained in Br(0). Thus, for the shifted contrast ¢(- + ¢) our theoretical findings from
the previous section apply, which means, that the far field operator associated to ¢(- + ¢) can be
well approximated in Vy and in Wy, respectively, where N 2 kR. We define the contrast function
shifted by ¢ as
ge(x) == q(x+c), x cR?.

With this notation, it remains to investigate how the far field operators Fj, and F,, are related.
The definition of the far field pattern (2.6) for fixed 8 € S?~! can be viewed as ug°(+;0) being the
Fourier transform of qug( - ;@) restricted to the sphere kS9!, This suggests that the translation
property of the Fourier transform somehow carries over to the far field pattern and to the far field
operator associated to ¢.. We calculate

uge (2:0) = k? /R L Qe(y)ug,(y; 0)e Y dy = k2 /R La(y + g (y; 0)e Y dy
= K [ gy (y - c)e Y dy, @ e st (2.42)
By the Lippmann-Schwinger equation (2.3) and the definition of u’ we obtain for u,, (z — c;6) that
Ug (T — ¢;0) = u'(x — ¢;0) + k? /Rd 9y +c)Pp(x — c— y)ug. (y;0) dy
= eiikc'aui(w; 0) + k2 /]Rd q(y)Pr(x — y)ug. (y — ¢;0) dy, rzeD,
and consequently
eikc'euqc(a: —c0) = ui(w; 0) + k2 /Rd q(y)Pr(x —vy) (eikc'auqc (y — ¢ 0)) dy, xeD. (2.43)

From Theorem 2.3 (b) we conclude that e*¢fy, (- — ¢;0) can be extended by the right hand side
of (2.43) to a solution of (2.1) which is uniquely determined due to Theorem 2.3 (c). Hence, we
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have that

Ug, (€ — c;0) = e %0y, (x;0) and Ug (T —¢;0) = e_ikc'guZ(sc; 0), xcRY. (2.44)

By plugging (2.44) into (2.42) we obtain

5. __—ike(0—= . ~ d—1
uX(@;0) = e MOy (z:0), me sl

For the corresponding far field operator this means that

(Fug)(@) = [

9(0)u (3 0) ds(8) = eike® / e ke 00 (0)u(2:0) ds(9), @ e S
Sd—l Sd 1

To formalize this dependency we introduce the linear operators
Te: LQ(Sdfl) — L2(Sd*1), (Teg)(2) = eikc'gg(.%), (2.45)
and
Te - HS(L?(8471)) — HS(L*(SY)), TG == T,0GoT_., (2.46)

which we call translation operators. We have that F,, = T.F,. We also use the notation 7. for
the effect of 7. on the integral kernel and on the sequence of Fourier coefficients (for d = 2) or
spherical harmonics components (for d = 3) of a Hilbert—Schmidt operator. In this sense, we also
understand 7z as a mapping L?(S97! x §971) — L2(891 x 971 and (2 x £2 — 2 x ¢? (for d = 2)
or 2 x 2(L%(S% x §%)) — £2 x (2(L?(S? x S?)) (for d = 3), respectively.

Definition and Corollary 2.21. Given ¢ € R? and N € N with N > kR we define the subspace
of sparse far field operators associated to scatterers supported in Br(c) C R? by

= {G € HS(L*(S9™1)) | TG € Yy} (2.47)
and the subspace of low rank far field operators associated to scatterers supported in Br(c) C R? by
WS = {G € HS(L*(S4™)) | T.G € Wy} . (2.48)

Here, the subspaces Vy and Wy are given as in Definitions 2.9 and 2.17. The approximation
results of Theorems 2.11 and 2.19 are directly transferrable to the subspaces V5 and WE. Pro-
vided supp ¢ C Bpg(c), the right hand sides of (2.25), (2.26), (2.39) and (2.40) remain unchanged
when replacing Py, by Pye and Py, by Pywe , respectively.

Proof. For d = 2 we conclude from the Jacobi-Anger expansion (B.12) and simple linear transfor-

(0)

mations that the Fourier coefficients (amin)m.n of Tetq @ are given as in (2.21) by

() = onk2in- m/ / q(y) - q(y)Pr(yr — Yi—1) - Py — y1)

—i(marg(y,—c)—narg(y, —c)) I (Ely; — ) Jn(kly, — c|) dy, -+ - dy;. (2.49)

Proceeding as in the proof of Theorem 2.11, yields the result since |e~ (™ arg(y—c)—narg(@=c))| — 1 for
all z,y € R? and [T (k| - —¢])]|z2(p) < HJ (k| - Dllr2(Br(0)-
For d = 3 we conclude with the same techniques that the spherical harmonics components

(a%)vn)mm of ﬂu;o’(l) are given by

o)

(@;60) = K (2m + 1"Cn + )° i m/ / q(y) - q(y)Px(y — Y1—1) - Pr(y2 — Y1)

1672
X o (k|yy — €|)in (k|yy — c|) (P2, P#f*c>L2(s2)<Pg7 PYY ) 2(g2) dyy - dy; . (2.50)
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FIGURE 2.7. Left: Support of the scatterer D (solid) and ball Bgr(c) centered
at ¢ = (1,2) T with radius R = 2.2 containing D. Middle: Absolute values of Fourier
coefficients (afmn)mm of the translated far field operator 7.Fy at wave number k = 2.5
together with dashed square corresponding to sparse approximation of Fy, in V§ (middle)
and with dashed cross-shaped index set corresponding to low rank approximation of F,
in W§, (right) for N = 8.

Since we have that

0 oy e 2 (47)3 : :
/S2 SlengPnaPﬁ Yr2(s2y|” ds(8) < an 1) and |[|jn(k| - —eDllz2(py < ldn(kl - Dllz2(Br(0)) >

see (2.41), the result follows similar to the proof of Theorem 2.19. O

Remark 2.22. By construction (2.47) of V§ and (2.48) of WY, the translation operator 7_. provides
the modulation factor, with which spherical harmonics expansions as introduced in Notations 2.7
and 2.15 has to be multiplied to generate sparse or low rank representations of operators in Vg
or in WY, respectively. In this context, the support of the required Fourier coefficients or of the
required spherical harmonics components can be localized by suitably choosing c. This is why we
speak of modulated Fourier bases at this point. %

Example 2.23. We illustrate our findings by a numerical example in two dimensions. We consider
the same scattering object D as in Examples 2.5 and 2.14, i.e., a kite shaped scatterer as depicted
in Figure 2.7 (left) at wave number k = 2.5 with ¢ = 2xp. Taking the two-dimensional fast Fourier
transform of the discretized translated far field operator 7.F, gives an approximation of the Fourier
coefficients of TcFy with respect to (em,n)m,n-

In Figure 2.7 (middle, right) the absolute values of these Fourier coefficients are plotted
for —32 <m,n <32 on a logarithmic color scale. The dashed square in Figure 2.7 (middle)
corresponds to the support of the Fourier coefficients of 7.F' for operators F' € Vg, the dashed
cross in Figure 2.7 (right) to the support of the Fourier coefficients of T.F' for operators F' € WY.
Here, we choose N = [ekR/2] = 8 with R = 2.2. It is nicely confirmed that the Fourier coefficients
are essentially supported inside the marked square and inside the cross-shaped area, respectively,
and that the sizes of these supports can be reduced by applying 7. in comparison to the plots in
Figure 2.4, where we chose N = 12. %

In the following, we summarize the essential properties of the translation operator 7., that will
be needed in the rest of this work. Since the corresponding proofs differ significantly in structure,
we once again consider the two- and three-dimensional case separately. We refer to Notations 2.7
and 2.15 for the used notations.
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THE TWO-DIMENSIONAL CASE

Lemma 2.24. Let ¢ € R?\ {0}. Then, for T. € LHS(L*(S'))) the following holds.

(a) The operator Te acts as a multiplication operator on the kernel kg and as a convolution operator
on the Fourier coefficients (amn)mn of G € HS(L?(SY)), more precisely there holds

(Teric)(3;0) = *@0ep(5:0), 7.0eS",
and Te((amn)mmn) = (afmn)m,n with

W = 3D A (i T TV T (Bl l) T (Rle])) . mun€Z. (2.51)

m'€Zn' €L
(b) The operator Te is unitary with T} = T_¢ = T, *. Moreover, for all 1 < p < oo,
TGl = [|Gl|Lr G € HS(L*(SY)) nLP(S' x S1), (2.52)
(c) We have that
I7eGllewxre < (kle) S[Gllaxe, G HSELA(SH)) N e x 0. (2.53)
If in addition klc| > 2(M + N + 1) for some M,N € N, then
1 TeGllso oo ((—nrnr2y < (kleD) TG sor (- vp2) (2.54)
for G € HS(L?(SY)) N ¢' x ¢*([-N, N]?).

(d) We have that

1G [ < %HGH@X@, G e HS(L2(S) N £ x 1, (2.55)

Proof. Let G € HS(L?(S')) with associated Hilbert-Schmidt kernel kg € L?(S! x S') and Fourier
coefficients (@, )mn € €2 x £2.

(a) The effect of 7. on kg is immediately clear by definition. It operates on the Fourier coeffi-
cients (@m,n)mn 0of G as a convolution operator, since we obtain by a short calculation using
the Jacobi-Anger expansion (B.12) for the Fourier coefficients (ay, ,,)m.n of TG that

W = YD A (i T TR T (R ) T (K] €]) m,n€7Z.
m/'€Zn'E€Z

(b) By definition the adjoint of T, from (2.45) is given by T = T_. = T,-'!, which implies together
with (a) that for any H € HS(L?(S!)) with associated kernel ky € L?(S! x S1) we have that

(TeG, H)us = (TekG, KH) 12(51x51) = /51 o ke @=0) (3, 0)rp (2, 0) ds(,0)
X

= | 1Hc(ihB)Gik(_c)'(g_e)ﬁH@,m ds(z,0) = (ke T-ckH)L2(51x51)
StxS

= (G, T-cH)ns

This shows that 7 = T_,, which is the same as 7, '. On operator level, this identity can also
be concluded from tr(GH) = tr(HG), see [90, Thm. VI.25], as it is done in the proof of [53,
Lem. 3.3].

ikc~?c\| -1

The isometry property (2.52) follows immediately by definition (2.46) and (2.45), since |e
for all z € S'.
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(¢) Suppose (@mn)mn € £* x £'. Recalling that |J,(t)| < bo|t|'/3 for any ¢ # 0 and by =~ 0.7857,
see (B.8) and (b), we find that

_2
1 TeGlleexee < N[(Jn(klel)nllEx | (@mm)mnlloxe < (kle)T3[Gllaxe (2.56)
which shows (2.53).
Assuming additionally that suppgo 0 G C [~N, N]? we obtain similar to (2.56) that
| TeGllese o (—arar2y < I (Tn(kleD))nlloe (o nr—narnp 1 (@mn)mnller e - npy - (2:57)

Supposing that k|c| > 2(M + N + 1) for some M, N € N we know from (B.9) that

sup  |Jn(kle])] < bile|"2  with by A 0.7595.
|n|<M+N

Substituting this into (2.57) yields (2.54).

(d) Let (amn)mn € £* x £1. The mapping property (2.55) then follows from Hélder’s inequality,
which gives together with |e,, »(Z;0)| = 1/(27) for all m,n € Z and ,0 € S* that

1Glle = |32 3 amon €|

1
< 7||G||41xz1 .
MmEZ neZ T

Loo(StxS1)

THE THREE-DIMENSIONAL CASE

Lemma 2.25. Let ¢ € R3\ {0}. Then, for T. € LHS(L*(S?))) the following holds.

(a) The operator Te acts as a multiplication operator on the kernel kg of G € HS(L?(S?)) by
(Terc)(@:0) = " @Ok (@:0),  &,0¢€ 5,

and on the spherical harmonics components (cmn)mn of G by Te((mm)mn) = (5, 1) mn with

05 (@,0) = ZEVCRED 57 030 4 1) (2 + 1) (Hlel)jp (Bl

o,p,r,s=0

x / PE(w)Pi(w) / P )P (v)a(w;v) ds(v) ds(w) (2.58)
S S
for z,0 € S? and m,n € Ny.
(b) The operator T. is unitary with T} = T_¢ = T, *. Moreover, for all 1 < p < oo,
|7eGllr = ||GllLr, G € HS(L*(S?)) N LP(S? x §?). (2.59)
(c) We have that

_5
1Tl x50y < KD 5G g  y o G € HS(LA(S2) Nty X0y - (260)

1/(2n+1 2n+1
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L If in addition k|c| > 2(M + N + 3/2) for some M, N € N, then

1TeGllezs s 5635 iy (02012) < (RIEDTHG ey xas, o.vp) (2.61)
for G € HS(L*(5%)) N l3541 % L3041 ([0, NT?).
(d) We have that
1G] < —||G||£ p— G € HS(L*(5%) N € gy X Loy (2.62)

Proof. Let G € HS(L?(5?)) with associated Hilbert-Schmidt kernel kg € L?(S? x S?) and spherical
harmonics components (Qm n)mn € Yo, X Y3.

(a) The effect of 7. on k¢ follows immediately by definition This gives together with the Jacobi—
Anger expansion (B.24) for expanding the plane wave term elk(@=0)c that

) [e's) =N
(Ter)(@:0) = Y (Tears)(2,0) = Y o0, (,0)
r,s=0 r,s=0
= 3 9P(20+ 1)20 + )jolkle])jy (Il PE) PE(8) (3, 6)
o,p,r,s=0

We compute the (m, n)th spherical harmonics component ag, ,, of Tekg by using formula (B.19),
which gives representation (2.58).

(b) The proof of Lemma 2.24 (b) can be transferred immediately to three dimensions.

(c) We proceed similar to the proof of [56, Lem. 4.2]. Let (ag, ,,)mn denote the spherical harmonics
components of TG and suppose that (am,n)mn € Capi1 X €2n+1 By formulas (B.19) and (2.58),
we obtain for m,n € Ny

525y = 0G0 050 0) L2522
- CREEER] S s e i) [ [, 55 @0
<, P2 (w) P%(w) » PY(v) PE(v)ayo(w, v) ds(v) ds(w) ds(0) ds(z)
> 04 12+ DD e
o

X Poz(w) PE(U)ar,s(w, v)as, ,(w,v) ds(v) ds(w)’ .
52 52 ’

Due to Lemma B.4 all summands vanish for o > m+roro < |m—rlorp>n+sorp<|n—s|.

Thus, we can estimate by using the triangle inequality, Holder’s inequality and the Cauchy
Schwarz inequality

m+r n+s

oy alBsinsn < S0 S S (20 1)(@p+ Dljalkle) lip (kle)

r,5=0 o=|m—r| p=|n—s|

X

» Pé(w) » PE(0)ar(w, v)ag, , (@, v) ds(v) ds(w)

! According to Notation 2.15, we should actually write LT nt1))m X 3/ 2nt1)), and Z(l2n+1)n X Z(12n+1)n instead of
7 nt1) X 7 (an41) and 0341 X £,41, but for the sake of readability we omit the brackets at this point.
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m—+r R
pistesn( X 2o DlialkleD || u(so)

o=|m—r|

o0
< ( S s

r,5=0

n+s N
(X @ DL DI leis ) Yl lagsecs

p=|n—s|
We use formula (B.17) and divide by |lay, ,[|12(52x 52), which yields
o) m—+r n+s
gl < X lanallizgscsn( X o+ DliokleDl ) (30 @+ lilklel)] ).
r,s=0 o=|m—r| p=|n—s|
From (B.22) we know that |, (¢)| < bat|~>/¢ for any ¢ # 0 and by ~ 0.9848 and consequently

e 3 20+ 1)) ( 5 2p+1).

o=|m—r] p=In—s|

o0
_5
gl z2(s2xszy < (Kle)T3 D flans

r,s=0

Suppose m,r € Ny, and let without loss of generality be m > r (otherwise switch the roles of m
and r). Then, there holds

m+r m+r 2r
Yo (20+1) = > (20+1) =) (200+m—r)+1)
o=|m—r| o=m-—r 0=0
— 9 2r(2g+ Yo @m—r) 4 1)@ +1) = @m+1)@2r+1), (2.63)

which gives us

oo

_5
o mllz2(s2xs2y < (Kle))™3(2m+1)(2n+1) Y (2r +1)(2s + 1)l|anslz2s2xs2)

r,s=0

All in all, we obtain (3.9) since we can estimate

g ll2(s2x 52
||7ZGHET7(2n+1>X£T7(2n+1> o m?fé’No 2m+1)(2n+1)
oo

_5
(Kle)™s > (2r +1)(2s + 1)llars z2(s2xs2)

r,s=0

_5
— (kle)) 5 [1Glly

IN

n+1><zén+1 '
Let additionally the support of (m.n)m.n be contained in [0, N]? and k|e| > 2(M + N + 3/2)
for some M, N € N. Then, we know from (B.23) that

sup  |jn(klc))| < bsle|™t  with b3 ~ 0.9519.
0<n<M+N

Substituting this instead of (B.22) into above calculation yields (2.62).
Let (am,n)mf € Ei/m X fi/m. By the triangle inequality, Cauchy Schwarz, (B.19) and the
fact that ||P7||r2(s2) = V47 /(2m + 1), see (B.17), we can bound

o)

Gl = llkgllzoszxszy < D llamnllzeo(s2xs2

m,n=0
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<

o0

>

m,n=0

2 1)(2 1 ~
(2m + )(2n+ )esssup Pf;;(w)/ PP (v)kg(w;v) ds(v) ds(w)
167 2,0c52 1752 52
\/(2m—|—1)(2n+1)|| | !
A amnllrzsexs?y = lrella e

This finishes the proof.






CHAPTER 3

FAR FIELD OPERATOR SPLITTING

Before introducing our first inverse problem, that will be in the focus of this chapter, we summarize
some key assumptions on the geometry of the scatterer.

Assumption 3.1. We suppose that the scatterer consists of J € N, J > 2, well-separated com-
ponents, i.e., D = U}']:1 Dj for some Lipschitz bounded open sets D; C BRj(cj) with ¢; € R?
and Rj >0, j =1,...,J, such that |c;, — ¢;,| > Rj, + Rj, for all j1 # ja2. This means that the
scatterer’s components are contained in pairwise disjointly supported balls. Let g := ¢ p; denote the
contrast function of the jth scatterer’s component, j =1,...,J.

For simplicity we assume J = 2 henceforth, but refer to Subsection 3.6.3, which covers the general
case J > 2.

The goal of far field operator splitting is to recover the far field operators F,, and F,
corresponding to the two components of the scatterer from F.

Since g = ¢1+¢2 is uniquely determined by Fy (see [14, 84, 86, 89]), this inverse problem is uniquely
solvable, whenever sufficient a priori information on the locations of the scatterers D; and Dy is
available to determine ¢; and ¢o from ¢. However, this is an ill-posed problem since F;, and F,,
may depend discontinuously on Fj. This is due to the fact that the far field operators Fy, and Fy,,
so that suppq; C Dj, j = 1,2, satisfy Assumption 3.1, can look arbitrarily similar. Therefore, small
noise in F, may lead to large perturbations in Fy, and Fy,.

Furthermore, by (2.7) this problem is nonlinear in ¢; and g2, which is due to multiple scattering
effects involving both scatterer’s components. The task is to somehow quantify these multiple
scattering effects. This is done in Section 3.1 below based on the Born series (2.16). We will discuss
the structure of the remaining chapters after we have derived the Born series expansion of F7j,.

Beforehand, we illustrate with a concrete example how the far field operator Fj is decomposed
when dealing with far field operator splitting.

Example 3.2. Let d = 2. We choose the wave number k£ = 0.5, and we set the contrast
function ¢ = xp, + 2xp, for a nut shaped scatterer D; and a kite shaped scatterer Dy as shown in
Figure 3.1 (top left). We use a Nystrom method as described in Example 2.5 for L = 150 equally
distributed observation and illumination directions on S' to compute approximations F, F,
and F, for the far field operators Fy, F,;, and F,, corresponding to both scatterer’s components,
to the nut shaped scatterer only and to the kite shaped scatterer only, respectively. The real parts
of these operators are plotted in Figure 3.1 (top right, bottom left and bottom middle). We further
compute the difference D := F, — F,, — F,,, whose real part is shown in Figure 3.1 (bottom
right). The matrix D models the part of F'y which is related to multiple scattering effects involving
both scatterer’s components, and it must be removed when solving the far field operator splitting
problem. By construction there holds

Fo=Fy +Fp+D.
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F1GURE 3.1. Top left: Supports of the scatterer’s components. Real parts of discretized
far field operators F, (top right), F,, (bottom left) and F,, (bottom middle). Bottom

right: Real part of difference D = F, — F,

- F,.

We further calculate the relative ratios

[ Fq |[ms
”FqHHS

[ Fgs || ms
||FqHHS

| D]lss

~ 0.626,
1 Fqllms

~ 0.807 and

~ 0.406

0.5

-0.5

measured in the Hilbert—Schmidt norm, which is also known as the Frobenius norm in finite
dimensions. This gives an intuition how large the additive effects of the individual parts of F,
are in this situation. Although, the relative ratio of D is smaller than the ones of F'; and F'5 for

this example, it is not negligible, so it seems reasonable to invest effort into the quantification of
multiple scattering.

3.1. EXPANSIONS IN TERMS OF THE SCATTERER’S COMPONENTS

O

Under Assumption 3.1 each summand in the Born series (2.16) for the far field pattern can be
further decomposed. For j,1 € {1,2} we define L, ;; : L>(D;) — L?(D;) by

(Lusif)@) = B [ a)f@oe-y) dy.  weD.
i
Recalling formula (2.15) for the {th summand in (2.16) we have that
2 2
) l — ) l e ~ d—1
up (@ 0) = > > ugr® (#0),  #60e5,
Ji1=1 Jji=1
with
;?;,(-l-?,qjl (z;0) := kQ/D 9 (yy)e e (a1 (- (Lagngou'(-:6)))) (wr) dy,

Jl
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B kZl/D- /D G ) G (Y)Y — Y1) - Prlyy — ) eFOVITEV) dy, - dy, (3.1)
Jl J1

for 2,0 € S ' and ji,...,5 € {1,2}. As indicated by our notation, the term ug’l’,(‘l_?,qjl describes

the component of the far field pattern associated to the part of the scattered wave that results
from [ scattering processes starting at g;,, followed by ¢;, and so forth, until g;,.
We define the associated far field operator components by

FW CL2(80Y 5 28y, (FY L g9)(@) = /S d,luw’(l) (z:0)9(0) ds(9).

qjlz"'vqjl le7"'aqj1 le7"'7qj1

Therewith, we can rewrite the Born far field operator of order p from (2.18) as

P Ly 2
R = SR = 53 S )
=1

=1 "5=1 5=1

p
—EPeEP (Y Y AL, 32
=1 (G e{ 1,230 ({11 u{2))

Suppose that the Born series expansion of F, converges, which is the case provided ||L,||as < 1, see

Remark 2.6. For increasing p, the Born far field operator Fq(sp ) on the left hand side of (3.2) is an
increasingly accurate approximation of the far field operator Fj corresponding to the system of two
scatterers, while the first two terms Fq(lgp ) and Fq(fp ) on the right hand side of (3.2) approximate
the far field operators Fy, and Fj, corresponding to the two individual scatterers in Dy and Dy
increasingly well. Furthermore, the terms in brackets on the right hand side of (3.2) approximate
multiple scattering effects involving both ¢; and ¢s.

Formula (3.2) represents the basis for all splitting problem formulations in this chapter. We recall
the goal of far field operator splitting, which is to recover F,, and F,, from Fj. To this end, we
split Fj, into three components, two corresponding to the first two terms on the right hand side
of (3.2), and one corresponding to the terms in brackets on the right hand side of this equation.

The rest of this chapter is structured as follows. First, we generalize in Section 3.2 the concepts
from Sections 2.4 and 2.5 to identify subspaces of a similar structure, in which the components in
brackets on the right hand side of (3.2) can be well approximated. As a first approach, we search
for solutions of the splitting problem in these subspaces. The least squares problems considered here
are always of the same structure. In Section 3.3 we consequently investigate the general problem of
splitting a Hilbert Schmidt operator into two or more components individually lying in arbitrary
subspaces. For p = 1, the term in brackets on the right hand side of (3.2) vanishes, so no summand
that approximates multiple scattering effects has to be taken into account. This situation is taken
as an ansatz for our findings in Section 3.4. In contrast to that, for p > 2, the term in brackets does
not vanish, so multiple scattering effects do have an impact. The special case p = 2 is chosen as an
starting point for our methods from Section 3.5. In Section 3.6 we comment on the transferability
of our results to the case p > 3, and we elaborate related results for J > 2 scatterer’s components.
Finally, we explain how the reciprocity principle (cf. Proposition 2.4 (a)) can be incorporated for
further improving the stability of our developed methods.

3.2. GENERALIZED SUBSPACES OF NON-EVANESCENT FAR FIELD
OPERATORS AND TRANSLATION

We have already seen in Theorems 2.11 and 2.19 that the far field operator components Fq(lgp )

and Fq(ggp ) in (3.2) have sparse approximations in the subspaces Vy, and V37 and low rank ap-
proximations in the subspaces WJC\}I and W]C\?Z with N1 2 kR; and Ny 2 kRa, respectively. In fact,
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the same reasoning shows that any term in brackets on the right hand side of (3.2) that is of the
form Fq(ll?qj?__,qjl_l,ql or Fg?qu,._,,qjl_pqz, i.e., the first and the last interaction takes place at the same
component of the scatterer, can be well approximated in Vi and Wy, or Vi? and W7 , respectively
(see also Theorem 3.4 below). To obtain sparse approximations of the remaining terms in brackets
on the right hand side of (3.2), which are all of the form Fq(ll?qu,_,quFQQ or F‘I(quzqunfl"ll’ we need
to adjust our concepts from Sections 2.4 and 2.5 by allowing mutually distinct cut-off parameters
and modulation factors in & and in @ direction.

The following definition is a counterpart to Definitions 2.9 and 2.17 and to Definition and
Corollary 2.21.

Definition 3.3. Let M, N € N and b, c € R%.

(a) We define the generalized subspace of sparse far field operators for d = 2 by

VN = {G € HS(L?(Sh)) ’ Gg = Z Z Am.n €m<97€n>L2(51) , pn, € (C}

mI=M [l <N
and for d = 3 by
Vi = {G e HS(L3(5%) | Gg = Z Z/ 9(0) ds(8), € Y3, x V31
m=0n=0

By Py, x : HS(L?(5%71)) — Vas,n we mean the orthogonal projection onto Vas,n with respect
to (-, -)us. We note that Vy ny = Vn from (2.22) or (2.35).

(b) We further define the generalized translation operator by
Toe : HS(LA(STY)) — HS(LA(S™Y)), TpeG := ThoGoT ¢, (3.3)
where Ty and 1" are defined as in (2.45). Then, 7. = 7¢ from (2.46).

(c) Finally, we introduce
Vify = {G € HS(L*(S*™)) | Tp.cG € Vun} - (3.4)
Again, we note that VX}?N = V§; from (2.47).

As can be deduced from the following theorem, far field operator components of the form Fq(]L ),
for given I € N and ji,...,; € {1,2} can be well approximated in the subspace V ok “ . This

should be compared to Theorems 2.11 and 2.19, which cover the case j; = ... = j.

Theorem 3.4. Suppose |Lq|| <1 and letl € N, ji,...,5 € {1,2} and N1, Ny € N with N1 2 kRy
and Ny 2 kRy. Then, we have for d = 2 the error estimate

3
v qjl, g, — Peae ) F() s < 272 |(q5, | Lo (D)) [ Lg g go 1S - - 1 Lggiy i llms

qu’ JI]l
N]l

1
2
X <(’<¢le)2 > la( |)||%2(Bk3j1(0))+(kRj1)2 > (- ’)H%Q(Bkle(o))> , (3:5)

In|>Njy In|>Nj,
and for d = 3 we have that
) 47

v q“, 4, — P pei e Fq(“, Ly s = il (0, 1 Lag el - [ L.y i llms
717701
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x (M(k’Rﬁ) > Cm+1gml - DIZ2se. o)
m:le—l-l st
>
MKkR;) > 2n+125a(l - DllZ2(s,,, (0)))
n:le—i—l 1

(3.6)
Here, we recall M(kR;) = >90% (2n + 1)2||5n(] - |)||%2(ij(0)) for 3 =1,2 from Theorem 2.19.

Proof. We first observe that ||Ly|| < 1 implies ||L, ;;|lus < 1 for all 5,1 € {1,2}. As in (2.49), the

. . l oo, (1
expansion coefficients (ch(n),n)m,n of Te; ey, qul’,(,,),,

g;, from (3.1) are for d = 2 given by

a%n:%m%wmz;“:/ @ (Y1) 4 (YD) Pr(yr — Y1) - Pr(y2 — Y1)
a i1
> e—i(marg(yz—cjl)—narg(y1—0j1))Jm(k|yl —cj, |)Jn(k|y1 —cj |) dyl e dyl .

Therefore, we can estimate analogously to the proof of Theorem 2.11 and obtain

1) 1) |2 l
H QJ17 45, _Pvcjl c” Fq(J17 »QJlHHS < Z Z \aﬁn)m! + Z Z |a( ),
Njp - Njy meZ |n|>Ny, |m|>Nj, n€Z
< 47?5, |17 1 Zqr,ga s+~ 1 g1, I
= QLo (Dy, ) 141,32 ITHS 4,J1—1,J1 THS
<Z 1 m (] - DIIZ2 (Byr,, (0)) Yo (- |)||%2(Bmh(o))
meZ [n|>Nj,
+ Z HJ ||L2 BkR 0)) Z HJ ||L2 BkR (O))>
|m|>Nj, nez
which together with
Z [[Jm HLQ(BkR ,(0) = W(kRJz) and Z [[Jn(] ||L2 (Bir;, (0) ~ W(kRﬁ) )
meZ nez

see (2.29), yields (3.5).

For d = 3, as in (2.50), the related spherical harmonics components (a%{n)m,n can be written as

(2m + 1)%(

. 2n + 1)2 in—m
ol (@:6) = K f o, anw )@t v

— o —

X @1 (Yo — y1)im(kly, — ¢, ) jn(kly; — Cj1|)<P:c Py >L2(52)<P9 Pe “>L2(s2) dy,---dy; .

To obtain (3.6), we consequently can estimate as in the proof of Theorem 2.19

l
1.~ Py P llis < 30 D la@ulasonsy + Do 3 Nl asnns)
Njy Ny, m=Nj;,+1n=0 m=0n=N;, +1

1672
< 7\\%‘1|!Loo(D]-l)HLq,j1,j2|!12{s | Ll
o

X < %: (2m +1)?|ljm (] - \)\|%2(ijl(o)) 2%(2”+1>2Hjn(\ : ‘)”%Q(Bth(O))
m= jl+1 n=
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+ Z(2m+1)2”]m(’ : DH%%BkR_ (0)) Z (2n+1)2”jn(| ) ’)H%?(B,m. (0)))'
0 R | .

O]

Since we do not need generalized subspaces of low rank far field operators for our later purposes,
we do not introduce them in the same manner, although this would provide a meaningful definition.
Nevertheless, we have the following approximation theorem which states that far field operator
components of the form Fq(]lz s
the subspaces W;,j_l and W;,” of low rank operators.

J1 a

for given [ € N and ji,...,7j; € {1,2} can be well approximated in

Theorem 3.5. Suppose |Ly|| <1 and letl € N, ji,...,5; € {1,2} and N1, Ny € N with N1 2 kR,
and Ny 2 kRy. Then, we have for d = 2 the error estimate

|(l) _p @ I <2%|.| |Lg iy inllts -« | Lairy il
‘ iy, Wch Qjy ooy THS = ™ ‘q]l ’LOO(DJ-I)‘ q,J1,J2 ’HS ’ qji—1,J1 |HS

1
2
kaj,< > (- DH%z(Bkle(o))> ;

|n‘>NJ'1

and for d = 3 we have that

78
v qjl, a5~ Py q(Jf vy, 18 = 13l noe () 1 L gallmns - [ L. s

=

X <M(kijk(le —ci)) Y. @n+ 1?5l - \)H%z(smjl(o))> )

7“L=Nj1+1
. 2|15 2
where M (kRj,, k(cj, — ¢;,)) = 3n=0(2m + 1)%[|jm(] - !)HL2<BkRj, (k(ej—eip))
For W]c\;; we obtain the analogous bounds by interchanging the roles of j1 and j;.
!

Proof. To show this one can proceed as in the proofs of Theorems 3.5, 2.11 and 2.19. For d = 2 we
use that for all ¢ = (¢1,¢2)" € R? and R > 0 there holds due to (B.10) that

S 1l D = O / J2(la]) d

MEZ mEeZ

27 rR 27 rR
= Z / / J2 (\/7‘2 + |e]? + 2r(cq cos p + o sin cp)) rdrde = / / rdrdp = TR?
mez’0 /0 o Jo

independently on c. O

Remark 3.6. Since we have that VNl’X} Wcjl and VNI’ I

+

.
Wj\fl we expect a smaller

+

approximation error, when projecting Fq(ﬁ, .qj, ONto WN or onto WN compared to Theorem 3.4.
For d = 2 this is indeed the case, but for d = 3 this reductlon of the upper bound is not directly
visible. Consequently, for d = 3 it can be assumed that M (kRj,, k(c;, — ¢;j,)) can be simplified even
further in order to eliminate the dependence on c;, and cj, .

Example 3.7. We consider a numerical example for d = 2 with ¢ = —0.5xp, +2xp, for a nut shaped
scatterer Dj and a kite shaped scatterer Ds, as shown in Figure 3.2 (left). We choose the wave
number k = 5 and approximate the far field component ug;’g)(:fzm; dy), given as in (3.1), for L = 256
equidistant observation and illumination directions on S! using trigonometric interpolation as

described in [93, 97].
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FIGURE 3.2. Left: Supports of two scatterers Dy and Dy (solid) and balls Bg, (¢1)
and Bg,(c2) (dashed). Right: Absolute values of modulated Fourier coeffi-
cients (a%?n)myn of Fq(i)ql at k = 5. Dashed rectangle corresponds to coeflicients

used by sparse approximation of Fq(i)ql in V2%, with Ny =7 and Ny = 13.

The scatterers Dy and Ds are contained in balls Br,(¢1) and Bpg,(c2) of radius Ry = 1.1
and Ry = 2.2 centered at ¢; = (8,2)" and ¢z = (4,8)7, respectively. Both are shown in Fig-
ure 3.2 (left).

A two-dimensional fast Fourier transform of the shifted far field patterns

2T [ ik(e1-On—coBm), 00,(2) (4 . LxL
f(6 ik(eq cox u;;ql (mm,an))m’nEC

yields an approximation of the Fourier coefficients (ag?n)m,n of 7’02,ch;20, }1(12) with respect to (€m,n)m.n-
In Figure 3.2 (right) the absolute values of these expansion coefficients are plotted for —32 < m,n < 32
on a logarithmic color scale. It is confirmed that these coefficients are essentially supported in the
dashed marked rectangle [— Ny, N3] X [—=Ny, N1] with Ny = [ekR1/2] = 8 and Ny = [ekR;/2] = 15.

O

Analogously to Lemmas 2.24 and 2.25, we have the following properties of the generalized
translation operator.

Lemma 3.8. Let b,c € R4\ {0}. Then, for Ty € LHS(L?(S971))) the following holds.

(a) The operator Ty is unitary with 7;:6 =T p—c= 7;;1. Moreover, for all 1 < p < oo,
1T6.Gllr = IIGlle, G €HS(L*(S*)) N LP(S97! x 5771, (3.7)
(b) In both dimensions, the operator Tp . acts via
Tocric(@,0) = HOTDs0(z,0),  #,0€ 59",

as a multiplication operator on the kernel kg of G € HS(L?(S%™1)). It further acts for d =2 as
a convolution operator on the Fourier coefficients (amn)mmn 0f G by To.c((amn)mmn) = (agfn)m,n
with

afrfn = Z Z At o (jm'—"'e_im'argbei”'argch’(MbDJn’(k‘cD) , m,n € 7.
m/'€Zn' €l

For d = 3 its effect on the spherical harmonics components (Gmn)mn of G is described
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by %,C((am,n)m,n) = (Oéglfn)mm with

2m+1)2n+1) &

(@ 0) = e > 720+ 1)(2p + 1)jo(k[B]), (kle])
o,p,r,s=0
[ PZ(w)P(w) P2 (v) PE(v)ay. o(w; v) ds(v) ds(w)
S2 S2

for @,0 € S? and m,n € Ny.

(c) We have for d =2 and any G € HS(L?(SY)) N ¢t x ¢ that

_1 .
(kzlbllcll) 3|Glpxe ifb,e#0,
[7b,cGlleoxeoe < 9 (K[B) ™3 [[Gllersan ifb#0,¢c=0, (3.8)
1 .
(kle) 75 1Glo e ifb=0,c#0,

and we have for d =3 and any G € HS(L*(S?)) N 63,1 x 05, that

_5 .
(KBl (Gl st ., i B.c#0,

2n+1

_5 .
TGl Sy < HODBIC ey, #BA0, e=0, (39)
(Ke)S1Cly  wer,,,  #D=0,c#0.

Proof. This follows similar to the proofs of Lemmas 2.24 and 2.25.
For (c) we note that Jy(0) = jo(0) = 1 and that J,(0) = 0 for all n € Z\ {0} and j,(0) = 0 for
alln € N. O

3.3. THE GENERAL SUBSPACE SPLITTING PROBLEM

In this section, let V1, V, € HS(L?(S%1)) denote two arbitrary finite or infinite-dimensional closed
subspaces. Moreover, denote for j = 1,2 by P; : HS(L?(S471)) — V; the orthogonal projection
onto V; with respect to (-, - )us, which maps each operator G € HS(L?(S%71)) to its uniquely
determined nearest operator in V;, i.e.,

||G_PjGHHS = d(G,Vj) = inf{HG—HHHS : He Vj}.

We consider the general subspace splitting problem to recover F} € V; and Fy, € V,
from F € HS(L?(S% 1)) such that F' = Fy + Fy.

In general, neither existence nor uniqueness of this split is given. For ensuring existence we need
that F' € Vi 4+ Vs and for uniqueness that V; NV, = {0}. Here, the sum of these two subspaces is
given by

Vi+ Ve = {G—I—H :GeVy, HEVQ},

which is again a subspace, but not necessarily closed (see e.g. [94, Exa. 2.2] for a counter example).
Provided V1 NV, = {0} we call this sum direct and write V; @ Vs.

A more detailed investigation of the uniqueness of this problem as well of its stability requires to
introduce the concept of the minimal angle.

Definition 3.9. The minimal angle 6 between V; and Vs is the angle in [0, 7/2] whose cosine is
given by
cosf =  sup (G, Hjns )
cev,Hev, |G llus|| H |[ms

From [36, Lem. 10, Thm. 12] we have the following properties of the cosine of the minimal angle.
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Lemma 3.10. (a) We have that cos6 = |PyPy| = |[P1P2P1||2.
(b) In general it holds 0 < cosf < 1.
(¢) It is cos@ = 0 if and only if V1 L Vs.

(d) The following statements are equivalent
(i) cosf < 1;
(i1) Vi N Vy = {0} and V1 + Vs is closed;
(iii) inf{d(G,Vs) : G €V, ||G|lus =1} > 0.

(e) For all G € V1 and H € Vo we have the sharpened Schwarz inequality
(G, H)us| < cosb||G|lus|| H|[us - (3.10)

Remark 3.11. By comparing the sharpened Schwarz inequality (3.10) with the uncertainty princi-
ple (1.4), we recognize a close connection between the cosine of the minimal angle of two subspaces
and the uncertainty principle, which holds between operators of these subspaces. More precisely, a
corresponding uncertainty principle provides an upper bound for the cosine of the minimal angle,
which comes with a concrete interpretation, namely assumptions on the support of operators lying
in these subspaces. %

In the following, we give a stability estimate for the subspace splitting problem provided F' € V; + Vs,
see [56, Thm. 1.1].

Theorem 3.12. Suppose that F' = Fy + Fy for F1 € V1 and F5 € Vs and that cos0 < 1. Then,

1 .
I1F5lEs < 5 IF3s  forj=1,2.

—cos? 6
Proof. We estimate by using (3.10)

1F s = |11+ Falfis = |1Fillfis + || Follfis + 2 Re(Fy, Fo)us

> || Fullfis + [1P2llfs — 21(Fy, Fodus| > (| FillEs + | Fallfis — 2 cos 6| Fillus| Falus
= (cosb||F1lus — || Fallus)? + (1 — cos® 0)[| Fi [[frs > (1 — cos® )| Fi s
Interchanging the roles of F5 and F5 yields the second inequality. ]

Theorem 3.12 provides an absolute condition number, given by the cosecant of 8, of the splitting
operator that maps F onto (F1, F») in the meaning of a measure for the error propagation when
applying this splitting operator to a noisy version F° of F. This can be seen from the theorem
below.

Since for FO, F% € HS(L?(S% 1)), we cannot expect the original splitting problem as introduced
above to be solvable, we replace it by the associated least squares problem.

Theorem 3.13. Suppose that FO F° € HS(L?(S% 1)) and that cos® < 1. Furthermore, denote
by FY,FY and FY,FY the solutions of the least squares problems

FOE R0y Ry, Few, F) e, (3.11a)
B 2 o Flev, FeV,, (3.11b)

respectively. Then, for j = 1,2,

1

FO_FoI2. < — —
|| 7 ]HHS = 1—COS2¢9H

5
FO— Fllfs.
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Proof. We proceed as in the proof of [55, Thm. 5.3]. Due to the equivalence of (i) and (ii) in
Lemma 3.10 (d) the subspace Vi + Vo = Vi @ Vs is closed and consequently we can decompose
each G € HS(L?(S971)) uniquely into G = H + H* with parts H € V; @ Vs and H+ € (V; & W)+
that fulfill

1Glfs = [1H s + I1H " [Ifrs -

Here, (V1 @ V2)* denotes the orthogonal complement of Vi @ V, with respect to (-, -)ug. Due
to the least squares property (3.11) we have that (F) — F{) + (F — F9) € V; ® Vs as well as
that (FO — F°) — ((FY — FY) + (F — F)) € (V1 & V2) ™, so

IF° = Flfg = (FY = F7) + (F = F)fis + |(F0 = F°) = (FY = FY) + (F5 — F3))llfis
§ §
(FY = FY) + (F3 = F3) s -
Therefore, by using (3.10) and the arithmetic-geometric mean inequality we obtain
0 § 0 § 6
IF? = FOllfs > |1FY — FY llfis + 1FS — B lls — 21(FY — FY, By — Fy)s|
§ 0 14 §

> |F = Flls + 15 — Fylls — 2cos Ol FY — FY |[us||F3 — F3 |lus

> ||} = FYlfis + 1B — Follfis — cos® 0| FY — FY llfis — I1F5 — F3 lIfis

= (1 —cos?0)||FY — F{|lfs - (3.12)
Interchanging the roles of (FY—F?) and (F—FY) in the last estimate shows the second inequality. [

Given F € HS(L?(S9!)) solving the least squares problem as introduced above is equivalent to
seeking for F; € V;, j = 1,2, satisfying the Galerkin condition

(F,9)us = (F1,¢)us + (Fo,¢)us  forall g € Vi + V5.

Equivalently, we can also find Fj; € V;, j = 1,2, by solving

e PR [RE] 19
which is basically the associated normal equation oo/ (F, Fy) = o/*(F) for
AV x Vo — HS(L2(8471)) (F, Fy) — P+ PoFy,
and consequently
A HS(LA(STH) 5 Vi x Vo,  F — (P F,PF).

In principle, we could omit Ps in the first row and P; in the second row of the left side of (3.13) and
let the system unchanged. Adding these terms makes the linear operator on the left side of (3.13)
hermitian, since there holds (P1P2)* = (P2)*(P1)* = PoP1. Let (G, H) € HS(L%(S471))2\ {0}
and without loss of generality suppose G # 0. Provided cos# < 1 the positive definiteness of this
operator follows from

(G +PiPoyH,Gus + (PoP1G + H, H)us = ||GlAs + | HAg + 2Re(PyP1G, H)pg

> ||Glifs + 1H [[fis — 2 cos 0| G lus || H |ns
> (1-cos’0)[|Gllfs > 0,

V

cf. (3.12). Consequently, problem (3.13) can be solved numerically by using, e.g., conjugate gradients
(see Subsections 4.1.4 and 6.1.2). The solutions of (3.13) can for cos# < 1 also be computed explicitly
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FIGURE 3.3. Sketch of the solution (P F, Pyi F) of the general splitting problem.

Fi = PipF == (I —=P1P2) "Pi(I — P)F,
Fy = PypF = (I = PoP1) ' Po(I — P1)F,

cf. [55, Sec. 7], where the inverse operators on the right hand sides exist due to a Neumann series
argument since ||P1Pz| = [[PaP1]| = cos@ < 1. The operator Pj;, j # I, is the projection operator
onto V; along V;, which is visualized in Figure 3.3.

Finally, we generalize the above result for splitting a Hilbert—Schmidt operator not only into two
but into multiple J > 3 components. For this purpose, let Vi, ...,V; C HS(L?(S%')) denote closed
finite- or infinite-dimensional subspaces. Moreover, we denote by 6;; the minimal angle between V;
and V, for 5,1 € {1,...,J}, j # 1, as introduced in Definition 3.9. For guaranteeing the closednes
of V1 @ ... ®V; we assume that at most one of the subspaces is infinite-dimensional. This is needed
for the proof of Theorem 3.15 and shown in the proposition below. Since this will also be the case
later in all considered least squares problem formulations, it is a reasonable assumption.

Proposition 3.14. Suppose that cos;; <1 for all j,l € {1,...,J} with j # 1.
Then, Vi+...+V;=V1®...®Vy is a closed subspace.

Proof. From Lemma 3.10 (d) we already know that V; NV, = {0} as well as that V; + V), are
pairwise closed for j # [. Consequently, it must hold V; Nn...NV; = {0}, so it remains to
show that Vi +...+V; is closed. If all V; are finite-dimensional this is already clear. There-
fore, we suppose that Vj« is infinite-dimensional and that V; is finite-dimensional for all j #

J*. Then, V := @;.;+V; is closed and again finite-dimensional, which implies the compactness
of {G €V : ||G|lus = 1}. Since this set is also disjoint to V;« we have that

inf{d(G,V;<) : G€V, ||G|us =1} > 0,

due to the continuity of the distance mapping G — d(G, Vj«). The equivalence of (iii) and (ii) in
Lemma 3.10 (d) yields the result. O

The following theorem provides a condition number of the operator that splits F' into J > 3
components individually lying in one of the subspaces V;, j € {1,...,J}, by solving the associated
least squares problem. It is structured as in Theorem 3.13.

Theorem 3.15. Suppose that FO, F% € HS(L*(S?1)) and that for each j € {1,...,J}

Z cosf; < 1.
I#j
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Furthermore, denote by F]Q and Fjé for 3 €{1,...,J} the solutions of the least squares problems

J

FOL:SZFJO, Flev;,j={1,....J}, (3.14a)
j=1
J

FéL:SZFj, Flev,j={1,....J}, (3.14b)
j=1

respectively. Then, for j ={1,...,J},

—1
1O — Fo3s < (1 _ Zcosej,l> I1FO — P2 (3.15)
1]

Proof. We first mention that due to Proposition 3.14 the subspace Vi + ...+ V; =V & ... ® Vs is
closed, which guarantees the required existence and uniqueness of the orthogonal projection onto it.
We proceed as in the proof of [55, Thm. 5.8] and conclude from the least squares property (3.14)
that

2 2 J

Z(FJQ o FJ('S)

2
|70~ POl = >

HS

- H(FO — F%) - Ejj(FO —

=1

J
D (F) -~
j=1

HS j=1 HS
Therefore, using the arithmetic-geometric mean inequality and the sharpened Schwarz inequal-

ity (3.10) yields

5 ) 5
IFO = Flfs > ZHFO Fj HHS—ZZ\ — I )us
Jj= 11#
J
> > NF - Flfis — 226089 — F)|lus[|F — F |lus
j=1 J=11#j

Y
M~ T

0 6
> (15 X cost ) I - Filfs = 2305 costyal? - Rl
l#j Jj= 11753

.
Il
—

I
M~

.
I
=

I#j J 11#5

I
M~

(1_ZC05911)||F0 F5||HS_ ZZCOSHJIHFO Fj”%{S

I—ZCOSHJZ>’F F5HH8
l#j

.
Il
—

O]

Remark 3.16. In principal, one can apply above result for J = 2 components, too. However, this
clearly worsens the condition number. This observation as well as our numerical tests in Examples 4.4
and 4.5 for the conjugate gradient method suggest that the estimates in the proof of Theorem 3.15
are not sharp. O

3.4. SPLITTING IN BORN APPROXIMATION OF ORDER ONE
For p = 1, expansion (3.2) reduces to
<1) _ (<1 <1
Fq(* ) — Fc}f )+Fq(; )| (3.16)

and as already observed the term in brackets on the right hand side of (3.2) vanishes.
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From Theorems 2.11 and 2.19 we know that Fq(jgl) = Fq(].l) has a sparse approximation in the
subspace V]C\fj and a low rank approximation in the subspace W]C\fj of far field operators associated
to scatterers supported in Bg;(c;) with N; 2 kR; and for j = 1,2. We take expansion (3.16) as an
approach for solving the original far field operator splitting problem as introduced in the beginning
of this chapter, and we approximate the solutions of this problem by solving suitable minimization
problems. More precisely, we either search for them in these subspaces V]C\}J or W]C\;], 7 =1,2, or we
enforce their sparsity or low rank property in another way.

Remark 3.17. Using the procedure described above, we treat the Born approximation (of or-
der p = 1) of the scattering problem (2.1) exactly, so the linearization of this problem with
respect to g. We replace all ¢ dependent quantities ug, uy, ug® and Fy by their Born approxima-
tions uggl), uf}’(gl), ug (<Y and Fq(gl) of order p = 1, respectively, and we observe that the scattered

field uZ’(Sl)( -3 0) for fixed @ € S?~! then solves

Auf]’(gl)( 5 0) + k2ufl’(§)( 2 0) = —E*qu'(-;0) in RY,

so indeed is a solution of the source problem for the Helmholtz equation with source term —k2qu’( - ; ).
The splitting problem for this problem class has already been studied extensively in the case of single
far field patterns in [50, 54, 55, 56]. We note that the concept of far field operators does not exist
for source problems. Nevertheless, this link allows us to compare our results for far field operator
splitting to the corresponding results for splitting individual far field patterns (cf. Remarks 3.21 (ii)
and 3.25 (iii)). ¢

3.4.1. SPARSITY-SPARSITY SPLITTING
SPLITTING BY SOLVING A LEAST SQUARES PROBLEM

As a first approach, we seek approximations ﬁql € V]C\}l and F'qQ € V]C\?Q of the far field operators Fy,
and Fy,, corresponding to the individual components of the scatterer, satisfying the least squares (LS)
problem

F,2 F, +F, inHSL*S")). (3.17)

The following two propositions give related uncertainty principles, from which we can conclude
stability estimates for problem (3.17) due to Theorem 3.13. The notations that we use here have
been introduced in Notations 2.7 and 2.15.

Proposition 3.18. Let d = 2 and suppose that G € Vi and H € Vy} for some ci,¢c3 € R?
and N1, Ny € N. Then,

(G Hys| I TeaGllwseo I TeaH oo (2N + 1)@Ns + 1)

< < . (3.18)
1GlasllH [[us (kles — e1])3 (kler — eo|)3
If in addition ke — c2| > 2(N1 + Na + 1), then
T Gl po s p0 || Teo H || o g0
(G, H)pus| < \/H L Gllo ool Tey H || 0 50 < (2N1 +1)(2N2 + 1) . (3.19)

1Gllus|Hl[s kleg — ci = kel — o

Proof. Using the Holder’s inequality and the mapping properties (2.53) and (2.52) of 7. from
Lemma 2.24 gives

(G, H)us| = [(Te, G, Tea H) 2 xz | < [Ty Glleo oo | Ten Hl oo

= H7-C2—017-C1GH€°°><5°° ”7-C2HH€1><€1 < H7-61GH81><61 H7-C2HH£1><61

klco —e1))’
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_ Ve Gleoxe | Tes s
- (klea — e )3
o @M+ 1N +1)

(klez — ea])3

If in addition k|ea — 1] > 2(N7 + No + 1) and Ny, Ny > 1, then using (2.54) instead of (2.53)
gives (3.19). O

171 Glleze2 [ Teo H || 2 2

1Glas | H 1 -

Proposition 3.19. Let d = 3 and suppose that G € V}i}l and H € V]CVZ for some ¢1,co € R3
and N1, Ny € N. Furthermore, denote Wy := suppgo 0 (Te, G) and Wa := suppgo 0 (Te, H). Then,

1

(G, H)ns| (Z e 2m +1)%@n + 1)2)? (S mew, (2m + 1220 +1)?)

N

IGllns|Hllns — (kler — eo|)3
16 (N1 + 5) (N1 + (N1 + 3)(No + §)(No + 1)(N + 3) (3.20)
o9 (kler — eal)’
If in addition k|c; — c2| > 2(N1 + Na + 3/2), then
1 1
(G s _ (Sommem 2m+17Cn+1%)* (S e, (2m -+ 120 +17%)°
1G|us||H|las (kler — e2])?
_ 16 (Vi + 5) (N1 + (N1 + 5)(Na + 5)(Na + (N2 + 5) (3.21)
-9 (kler — e2)? ' '

Proof. We proceed similarly to the proof of Proposition 3.18 and use Holder’s inequality and the
mapping properties (2.60) and (2.59) of 7. from Lemma 2.25 to obtain

(G, H)us| = [(Te; G, Tea H)pzxez| < [ Te;Glless
= ||722 c1 C1G||f H,TQ H 1

1
L1 Xl 4 q
1

" (Klez —er])3

(Z(m,n)ewl (2m + 1)2(271 + 1)2)% (Z(m,n)eWQ (2m + 1)2(2n + 1)2)
(kler — ea))3

16 (N1 + 5) (N1 + D(N1 + 3) (N2 + 3)(Na + 1)(Ny + 3)

-9 (Kler — )3

[ 7e, H ||y

1
1/(2n+1) 2n+1 0, +1 %5041

1/(@2n+1) % 1/(2n+1)

[7e,Glle

1
ant1 43011

[ 7es H [l

1
2nt1 42011

D=

IN

17e, Glleze2 [ Teo H |l 2 2

|G [asl H s -

Here, we used that, due to the second formula of Faulhaber >27_; j2 = tn(n+1)(2n+1) (cf. e.g. [71]),
it holds for j = 1,2 that

1 N;
( > (em+1)2(2n+ 1)2) i <Y (2n+1) = g(Nj + DN+ D(N; +3), (3.22)
(m,n)eW; n=0

see the proof of [56, Thm. 4.3]. For (3.21) we again have to replace (2.60) by its improved
version (2.61). O

In the following theorem F,f denotes a noisy observation of the exact far field operator F,. We
assume that a priori information on the approximate location of the individual scatterer’s components
is available, i.e., that the balls Bg,(c1) and Bg,(c2) are known. Accordingly, we choose N1 2 kR
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and Ny 2 kRs in the least squares problem (3.17) and compare the results for exact and noisy far
field operators to establish a stability estimate. This generalizes the stability result for far field
patterns from [55, Thm. 5.3] in two dimensions and [56, Thm. 5.1] in three dimensions to far field
operators. The proof follows immediately from Theorem 3.13 and Propositions 3.18 and 3.19 under
consideration of Remark 3.11.

Theorem 3.20. Suppose that Fq,Fés € HS(L2(SY™Y)), and let c1,c2 € R? and N1, Ny € N
with N1 2 kR and No 2 kRy such that C < 1, where

NN 1) ifd=2.

C = (kler—e2))3
T 16 WD WNHD Wi+ Wt HNaA ) (Nat3) e s g
9 (Kle1i—ea)) ¥ ifd=3.

Denote by ﬁ’q ﬁqQ and 1551,}3’52 the solutions to the least squares problems

19

F,2F, +F,, Fp € V3, Fp eV2, (3.23a)
LS 7 = =~ ~
F,Z2F) +F), F) eV§l, Fo eV, (3.23D)

respectively. Then, for j = 1,2,
) - 5
1Fy, — Fy llfs < (1= C)7Y|Fy = Fylfs - (3.24)

Remark 3.21. If kle; — ca| > 2(N1 + N2 +d/2) in Theorem 3.20, then the stability estimate (3.24)
can be improved by replacing C' < 1 by C < 1, where

(2N141)(2N2+1) ifd=2
- (kler—eal) -
16 (N1+2)(N1+1)(N1+2)(No+3)(Na+1)(Na+2) fd—3
9 (K1 —cal)? ha=o.

This can be obtained by replacing (3.18) by (3.19) and (3.20) by (3.21) in Theorem 3.13, respectively.
%

SPLITTING BY SOLVING AN /! x /! MINIMIZATION PROBLEM

If a priori knowledge of the sizes R; of the individual scatterers D; C Bg,(c;), j = 1,2, which is

required to determine the cut-off parameters N; 2 kR; of the ansatz spaces in the least squares

formulation (3.17), is not available but at least the approximate positions ¢; and ¢z are known,
then (3.17) can be replaced by an £ x ! minimization problem. Let

Fy ~ F) + F) (3.25)

be an approximate decomposition of the exact far field operator with ﬁqol € V]C\}l and 156?2 € VJC\?Q
for some Ny 2 kR; and Ny 2 kRg, which could be the least squares solution of (3.17) but does
not have to be computed. In (3.11), we replaced the original ill-posed far field operator splitting
problem by a well-posed finite dimensional problem (cf. Theorem 3.20). The projection onto closed
ansatz spaces has a regularizing effect. We now take a different approach and consider a Tikhonov
regularization with an ¢! x ¢! penalty term.

In two-dimensional case, we obtain the following ¢! x ¢! penalized least squares problem. Given

the far field operator F, determine the solution (Fy,, Fy,) € HS(L?(S1))? of

.. = = 2 = =
H(%mrl%uz)e HFq — (Fy +Fq2)HHs +M(H7-C1Fq1H€1><€1 + H7-C2Fq2”£1><£1) . (3.26)
q1-+ 492
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Indeed the objective function of (3.26) is the Tikhonov functional of the following constrained ¢! x ¢!
minimization problem with Lagrange multiplier 1/u. Given the far field operator Fy, and a noise
level 6 > 0 determine the solution (Fy,, Fy,) € HS(L?(S1))? of

minimize || Te, Py e + [ TeaFosllorer subject to  |[Fy — (Fy, + Fog)llus < 6. (3.27)
(ququ)

In literature this approach is known as basis pursuit, cf. [38, 26]. A more detailed discussion of the
two problems (3.26) and (3.27) and how to solve them numerically can be found in Subsection 4.1.5.

In Theorem 3.23 below we establish a stability result for the ¢! x ¢! minimization problem (3.27).
For its proof we need the following lemma, for which we refer to [55, Lem. SM5.1].

Lemma 3.22. For J € N and a1,...,a5 € R there holds

J

J _ 2
SN ga <t (Ya) <U-DYa.

J=11#j j=1 j=1

As before, Fg represents a noisy observation of the exact far field operator Fj. The bound éy > 0
in (3.28) describes the accuracy of the approximate exact solution from (3.25), which in case of the
least squares solution corresponds to the error of the first order Born approximation and projection
errors as in (2.25) and (2.39). The optimization problem (3.30) seeks an approximate decomposition
of the given noisy far field operator Fg that is close to the approximate exact solution and, thus,
can be well approximated in the subspaces Vi, and V7 , without specifying N1, N3 > 0 in advance.
Here, the assumption (3.29) guarantees that the approximate split (3.25) is feasible. The noise
level & > 0 results from the data error combined with the accuracy Jp of the approximate exact
solution.

Theorem 3.23. Let d = 2 and suppose that F, € HS(L?*(SY)), let c1,co € R? and N1, Ny € N
with N1 Z kRy and Ny 2 kRy such that for j € {1,2} it holds C;j := 4(2N;j + 1)?(k|er — co))73 < 1.
We assume that Fgl € Vy, and F(% € Vy, are such that

1Py = (F + FQ)llus < 6o (3.28)
for some 69 > 0. Moreover, suppose that Fg € HS(L?(SY)) and § > 0 satisfy
8> o+ || Fy — Fy llus (3.29)

and let (ﬁgl,f’(g) € HS(L?(S'))? denote the solution to
minimize [|7e, By [lowe + [T Fopllixe  subject to  [[FY — (Fy + Fy,)llus < 9. (3.30)
(quFqg)
Then, N N
IES — Follfs < (1—Cj)~'48%,  j=1,2. (3.31)

Proof. We proceed as in the proof of [55, Thm. 6.1] and define Fy = f’gl — ﬁ(fl and Fy := ﬁ’% — ﬁé-
Moreover, we denote the /0 x ¢°-support of 721?7(?1 and 7'0215(92 by W1 and Whs, respectively. We
estimate for j € {1,2}
1Te, Fg llorxer = 1 Te;(Fgy = F)lawer = 1Te; (Fgy = Epllercerqw,) + 17e; Ejller xerwe)
= |7, (ng — Fp)llasew,) + 11 Te; Fillo o = 1 Te; Fjllorxer )
> ||7'ch(?jHelxel(W]-) + 17, Ejllorscer — 20 Te; Fillorxcer ) -
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Solving these inequalities for |7, Fj||ptxo and adding them up gives together with (3.30)

1 Te Fillocor + 1 TeaFolln g < 2(1Tey Fill e xeryowny + 1 Tea Fall e ey - (3.32)

By using (3.28)-(3.30), we obtain
462 > (|Fy — F.|lus + 6o + 6)?
(1Fy — Fllus + I|1Fy — (B + Fo)llus + I1F, — (B, + Fo)llus)? > I1Fy + Bllfis
> || Fillfis + | Fallfis — 21(FL, Fo)us| = (| Fullfis + [[Fallfis — 21(Tes—e Ter F1, Tey Fo)us | -

v

For a,b > 0 the inequality of arithmetic and geometric means shows that 4ab < (a + b). Further, it
holds (a + b)? < 2(a? + b?) by the second inequality of Lemma 3.22 for J = 2. This implies together
with (2.53), (3.32) and Holder’s inequality that

||7z2—617z1ﬁ1||€wa°°||7Z2ﬁ2||flxél
_2 =~ =
(kler — ea|) 73| Te, Fillonsn (| Teo Foll o e

1 ~ ~ 2
———— (I Tes Fillercer + [Ty Foll o s
4(kler — es))3 (ITer ol ol

! F ~ 2
T (172, Fallererwny + 17ex Faller s vy
1 — C2

1

(Kler — ea])
2

(Kler — e2))3

1 - -
= 5 (Cill Brllts + Cell llfs) - (3.33)

(Tep—ey Ter Fiy Te F2 ) uis|

ININ

IN

IN

IN

~ 1 - ~ 1 ~ 2
(1760 B g Pl + 12 Pl Pl )

IN

(17, Filleoxeo | Fa s + 117, Folleoxeol Fo s

Overall, this first gives N N
46% > (1= C)||Fills + (1 = Co)l|F2lfis

and then (3.31) by dropping one of the summands . O

In the three-dimensional case, we have to modify the considered minimization problem (3.27)
according to the mapping properties of the translation operator in Lemma 2.25. This leads to
the following weighted ¢* x ¢* minimization problem. Given the far field operator F, and a noise

level 6 > 0 determine the solution (Fql,ﬁ@) € HS(L?(S5?))? of

minimize H7-C1 ﬁth HZ%

+ ||7-C2Fq1‘|€%n+1><%n+l subject to HFq - (th + FQ2)HHS <9d.
(Fq17F‘Z2)

1
nt1 % f3n 41

(3.34)
In Theorem 3.24 below we establish an associated stability result, that is structured as in Theo-
rem 3.23.

Theorem 3.24. Let d = 3 and suppose that F, € HS(L?*(5?)), let c1,ca € R and N1, Ny € N
with N1 2 kRy and No 2 kRy such that for j € {1, 2},

_ 64 (N + 5)*(N; + 1)°(N; + 3)°

Cj:
9 (Kler — e2))3

<1.

We assume that 1?',?1 € Vﬁ}l and 1?'22 € V]C\?Q are such that
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for some g > 0. Moreover, suppose that Fg € HS(L?(S?)) and § > 0 satisfy
d >+ || Fy — FjHHs

and let (F?

5 ,
o, F2) € HS(L?(S?%))? denote the solution to

N . 5
IOIIINIZE H7-C1Fq1”6%n+l><€%n+l ""||7-02quH%nﬂxéénJrl subject to ”Fq _(Fq1 +Fq2)HHS <39.

a1y
Then,

IFS — Follfs < (1—-Cj)7'48%,  j=1,2. (3.35)
Proof. We define F = 15(?1 — Fq‘i and Fy = ng — F}g, and we denote the ¢° x (°-support of T, 15(?1
and 7, ﬁ% by W1 and Ws, respectively. Then, as in the proof of Theorem 3.23 (cf. (3.32)) we can

show

ITeFilley,, xes, ., T 1 Tea F2llgy

2n+1

< 2| Te Filley, , xen,, pown) + 1 TeaFolley,  xen,, yowa)) -
(3.36)
Analogously to (3.33), we obtain, by using (2.60) and (3.36) instead of (2.53) and (3.32), that

1
nt1 X841

[(Tes—e1 Ter Frs Tea Fo)ms| < N Tea—en Ter Filless x5 o 1 TeaP2lley | xat,

_5 =~ 1
(kler — ea) 73| Tey Fillgy [ TesEolley, ey

2n+1

IA

1
1 %3041

1 ~ ~ 2
P —
= A(Kler — cal) (ITer Filly et 17ePolly, )

1 ~ ~ 2
< = (17 Filley, ey, v + 1T Polles,  xes, o))

(kler —eal)3

1 ~ ~
5 (C1llFillfs + Cell ol lfs) -

AN

For the last step, we used that

1
~ 2 .
1T Fill, xasom < (2 @met12@n+ 1) 1B s
(m,n)eW;

4 ~
< SN + D + D + DI F s

for j € {1,2}, due to (3.22). Proceeding as in the proof of Theorem 3.23 yields the result. O

Remark 3.25. (i) If k[e; — ea| > 2(N1 + N2 + d/2) in Theorems 3.23 and 3.24, then the related
stability estimates can as in Remark 3.21 be improved by replacing C; < 1 by C; < 1
for j = 1,2, where

4(2N;+1)2 e 7
5/ k‘cljfcg‘ ifd=2 )
T ) s (N2 (N +3)2
9 (kler—e2])?

ifd=3.

(ii) Let C < 1 in Theorem 3.20 and C; < 1, j = 1,2, in Theorems 3.23 and 3.24. We com-
pare the asymptotic behavior of the stability bound (3.24) with those of the bounds (3.31)
and (3.35). For all choices of Ny, N2 and ¢, ¢a such that above assumptions hold, we have
that C' < C}, j = 1,2. This means, that at some point solving the least squares problem is
always more stable than solving the ¢! x ¢! minimization problem. This remains true, when
inserting the improved constants C and éj, 7=12.
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(iii) Recalling (2.7), it would be possible to split the far field operator Fj, by splitting the far field
patterns ug°(-; @) for each incident direction 6 € S9=1 individually. This can be realized by
applying the methods developed in [50, 54, 55], cf. Remark 3.17. However, comparing the
stability estimate of single far field patterns ug®(-; @) established in [55, Thms. 5.3, 6.1] for
two dimensions and in [56, Thm. 5.1] for three dimensions with the related stability estimate
for splitting of whole far field operator Fj, we find that the latter is more stable. The stability
estimates are of the same structure but the constants C, C , C; and éj, 7 =1,2, developed
in this work are the squares of the corresponding constants in [55, 56]. Considering the
additional improvement achieved by applying the reciprocity relation as will be outlined in
Subsection 3.6.1 below, this demonstrates a significant advantage of the algorithms developed
in this work when it comes to splitting entire far field operators. Furthermore, the improved
version of the splitting scheme, which takes multiple scattering into account and which we

discuss in the next subsection, is not applicable for splitting single far field patterns at all. ¢

3.4.2. RANK-SPARSITY SPLITTING

So far, we used that Fq(lgl) can be well approximated by a sparse operator in the subspace Vﬁ}l

associated to the scatterer’s component supported in Bpg, (c1) with N1 2 kR;. From Theorems 2.11

and 2.19 we further know that Fq(lgl) has a low rank approximation in the subspace W}i}l. Therefore,
again taking equation (3.16) as an approach, we replace the original far field operator splitting
problem by the problem of splitting F;, into a low rank component in WK}I and a sparse component
in Vf\/?z. In signal processing, such a problem, to decompose a given matrix into a low rank and
a sparse component, is known as Principal Component Analysis or robust Principal Component
Analysis if, as in our situation, possible additive noise is included in consideration. In this context,
the singular functions of the low rank component are called principal components (cf. e.g. [19,
Subsec. 1.4]). It will turn out that considering this problem has the advantage that only the
position ¢o of the second scatterer’s component needs to be known in advance for determining the
modulated Fourier basis with respect to which the associated far field operator component Fy, is
sparse. If it is the other way around, i.e., if only ¢; is known, switch the roles of ¢; and ¢». Thus,
compared to the ¢! x ¢! minimization problem (3.27), this further reduces the required a priori
knowledge on the scatterer’s location. The reason for this lies in the invariance of the rank and
the nuclear norm with respect to the translation operator 7.,. This is proven in the lemma below.
In contrast to that, the (weighted) £' x ¢! norm is affected by the translation operator, which is
indicated by formula (2.51) for the translated Fourier coefficients (for d = 2) or formula (2.58) for
the translated spherical harmonics components (for d = 3), respectively.

Lemma 3.26. For all ¢ € R? and G € HS(L?*(S%1)) we have, that
rank(7.G) = rank G and | 7eG laue = |Gllnuc -

Proof. Let (0p; Un, Vp)1<n<rank ¢ denote a singular system for G € HS(L?(8%1)) (see Theorem A.1).
Then, for arbitrary ¢ € R? there holds

rank G
7'CG = Z O'nTcun<'7TcUn>L2(Sd71)-
n=1
From
(Tetn, Teum) p2(ga-1y = (Te—ctn, Um) p2(ga-1) = (Un, Um) p2(gd-1) = Oy’ for all n,m,

we conclude that (Teuy, )y, as well as (Tevy, ), are again orthonormal systems. Thus, a singular system
for TG is given by (oy,; Tetn, Tevn)1<n<rank G, Which finishes the proof. d



56 CHAPTER 3. FAR FIELD OPERATOR SPLITTING

SPLITTING BY SOLVING A LEAST SQUARES PROBLEM

Based on the above observation, we consider as a first approach the following least squares problem,
which fits into the general framework of Section 3.3. Given the exact far field operator Iy find
approximations Fq1 € Wy, and Fq2 € Vy;, for the far field operators Fy, and Fy, such that

F,2F, +F, inHSL2(S™Y). (3.37)

We clarify that problem (3.37) is of no practical relevance, but for free after developing the
associated uncertainty principles in Propositions 3.27 and 3.28. Compared to the least squares
problem (3.23), it provides a worse stability bound that comes with the same a priori required
knowledge (cf. Theorem 3.20 and Corollary 3.30).

The following propositions give uncertainty principles that involve the subspaces WIC\}I and VJC\?Q

Proposition 3.27. Let d = 2 and suppose that G € Wy, and H € V@ for some ci,¢a € R?
and N1, Ny € N. Then,

[

G H
MGl g (S 2 kler - a1 Tea
CllaslH s = 252\, 2
2v/2N- 1(2.N- 1
<X 1+ 1( 2+) (3.39)
(ler — caf)3
Proof. Since we have G' € Wy , there holds 7.,G € Wy} ™. We estimate
‘<G>H>HS’ - ’<7-C2G7722H>€2X42’ < H7-02GH€°°><KO°H7-C2HH41><Z1
< W Pyyer—ea (Tea G) e e/ 1 Tea H [0 oo Tea H 111
1
< N+ DIPye ea (Tea@ll e | H s (3.39)
1

so it remains to bound [[P) ci—e; (Te;G)rooxeoe in terms of [|G|lus. We use the abbreviation
N1

¢ := ¢; — ¢ and proceed similarly to the proof of [25, Prop. 4]. Based on expansion (2.24), we
decompose the orthogonal projection Pye onto Wy, according to
1

Pwg, F' = Pyg oF + FoPye — Py oFoPye . Fé€ HS(L*(SY)), (3.40a)
where PV;\:,l . L2(SY) — L2(S') is given by PV]S1 = Yinj<hy T-cen(g, Tcen)r2(s1) (cf. Re-
mark 2.22) Consequently, there holds for arbitrary F € HS(LQ(SI)) and g € L?(S1)

(Pyg, o F)g = Pyg (Fg) = > Tcem(Fg,T-cem)r2st), (3.40Db)
|m|<N1

(FoPyg)g = F(Prg g = > F(T_cen)(g, T-cen)r2(s1) » (3.40¢)
I’I’L|<N1

<PV131 oFo PVJSH )g = ('ijcvl Z Z F(T_cey) T—cem>L2(Sl) T_cem(g,T_cen)L2(51) .

|m|<N1 [n|<Ny
(3.40d)

Using (3.40a) and the triangle inequality, we continue to estimate

[Pwg, (Te G)llese e < [[Prg 0 (Te; G)lleso e + (I = Prg ) 0 (Te; @) © P [lesoxces - (3:41)
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Bound for the first summand in (3.41): By expanding (3.40b) for g € L?(S'), we obtain that

Prg o(TesG)g = Y. Tocom((TesG)g T-com)r2(s)
m|<Ny

= > ( > (T_cem, o) 12(51){(Te,G)er, T c€m>L2(sl)> €o(g, er)r2(s1) -

0,l€Z \|m|<Ny

Together with the Cauchy Schwarz inequality and Parseval’s identity this yields

> (T-cem, eo)r2(51)((Te, G)er, T-cem) 12(s1)

IN

1 1

2 3

sup( Z \(T_cem,eo>Lz(S1)]2> sup( Z \((7'026')61,T_cem>L2(51)]2>
\m\<N1

0€Z <y |m|<N1

2
< SUP< > |<Tcem760>L2(Sl)’2> sup [|(7e,G)eil L2(s1) -

The second factor can be bounded by ||7c, G| < ||7¢,G|lus = ||G|lus by using the definition of
the operator norm, (A.7) and (2.52). For the first factor, we conclude from the Jacobi—-Anger
expansion (B.12) that

[(T_cem, e0>L2(Sl)| =

> (D) Tu(kle))e ™™ B (e, €0-m) L2(s1)

nez

= |Jo-m(kle])].  (3.42)

=05_m
All in all, the first summand in (3.41) can be bounded by
1 1
2 2
[1Pve o (Te; G)llemoxim < Sup< > Jomklel) ) 1Gllus = Sup< > an(k|0|)> 1Gms -
o€Z ‘m‘SNl 0€Z |m70|§N1

Bound for the second summand in (3.41): By expanding (3.40¢)—(3.40d), we obtain that

(I = Pyg )o (Tch)OPvc )9

Z Z (Te, G)(T-cen), T—cem>L2(51) T cenly, T—cen>L2(Sl) = Z bo,i eo(9, el>L2(Sl)
[m|>N1 [n|<N 0,l€Z

with

Z Z e, T-cen) 12(51)(T-cem, €0) 12(51){(Te; G) T-c€n, T-cem) 12(s1)
[m[>N1 |[n|<Ni

for 0,1 € Z. We apply the Cauchy Schwarz inequality to conclude

”(I_PVJSTI) o (7-02 )OPVC HEOOXZOQ = sup |b0l|

o,leZ

= sup Z Z (€1, T—cen) r2(51) (T-cm; o) 12(51) ((Tey G)T—cen, T—cem) r2(s1)
OAEL | |n|> Ny |n|<Ny
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[NIES

< sup( Z Z |<el,TCen>L2(Sl)<TCem,eO>L2(51)|2>

OLEL \ |m|> Ny |n|<Ny

X( > X |<(Tc2G)Tcen,Tc6m>L2(81)’2>

\m\>N1 \n|§N1

N

1
2
:sup( Z |<el,T_cen>Lz(51)\2> sup( Z |<T_cem,eO>Lz(S1)2>
[n|<N1

lEZ 0€Z ‘m‘>N1

X< Z Z ‘((7-02G)T—cen7T—cem>L2(Sl)2) .

\m\>N1 ‘1’L|SN1

By using Parseval’s identity, the first formula in (A.6) for the Hilbert—Schmidt norm, (3.42)
and (2.52), we further estimate

(I = Pyg ) o (Te, &) © Prg lece e

1 1
3 3
< sup( > Jf_n(kICI)) SlelgIeoHL2<SI)<ZII(Tc2G)Tcen!\%2(51)>

leZ ‘n‘SNl neL
1 1
2 2
= SUP( > Jﬁ(’ﬂd)) 17e,Gllus = Sup( > Jﬁ(Md)) IGllus -

Altogether, this yields

1

? 22N + 1
[Pwg,, (Te; G) o xeee < 2sup< > Jﬁ(’s\c\)) 1Gllus < =Gl

0€Z [n—o|<Ny (k‘c‘)g
due to the bound (B.8) for |J,(k|c|)|. Substituting this into (3.39) ends the proof. O

Proposition 3.28. Let d = 3 and suppose that G € Wﬁ}l and H € Vf\g for some ¢1,cy € R?
and N1, Ny € N. Then,

(G H)ys| _ 42N+ 1)\/2(NF + 2Ny + $)(2Na + 1)2(N + 2Nz + 3)
IGlus Hllus (Kler — cal)? '

(3.43)

Proof. We use the abbreviation ¢ := ¢; — ¢z and denote by Wy the /° x (’-support of Te, H. We
obtain similarly to the previous proof that

G, H < G|l yoo 00 H
(G, H)us| < [|Te, ||£<2n+1)—3/2X€(2n+1)—3/2HTCQ ||z:2n+1)3/2xe;2n+1)3/2
2
< . 3 3
_HPWNJ%G)W?:M3/2%;:”“)3/2( > @m+) <2n+1>) s -

(m,n)eWs

As in (3.22), we bound the second factor with the third formula of Faulhaber Y% j* = n?(n +1)?/4
(cf. e.g. [71]) according to

1
2 No
( > (2m+1)%(2n+ 1)3> < > (2n+1)° = 2(Na+ 1)*(N3 + 2N + 1),
(m,n)eWs n=0
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which yields

(G, H)ug| < 2(Na + 1)*(N3 + 2Na + 3)[|Pyve. (Tch)H(zg‘ | H ||us - (3.44)

+1)—3/2 X€(2n+1)_3/2

It remains to bound HPWJC\, (Tey G) |l e in terms of |G||gs. Similar to the previous

proof we decompose

(2n+1)73/2 €(2n+1>*3/2

Pwe F = P{, oF+FoPf§ —P§ oFoPf, FeHSLS%),
1
where Pye L?(S%) — L?(S?) is due to (B.16) given by

1

Ny n N1
m m 4m ike (w— -
Prgy0 = 3 3 (0Tl Tl = 3 5 IR w)g(w) ds(e).

n=0m=—n

Consequently, it holds for arbitrary F € HS(L?(S?)) and g € L?(S?)

Ny m
(Pvg, o F)g = P§,(Fg) = ZO Y TocY Fg, T-cYo) 252 (3.45a)
(FoPyg )g = F(P§,9) Z Z F(T_oYP) g, T-cYP) 1252y , (3.45b)
n=0p=—n
(Pyg o FoPye)g = (Pvc Fg (3.45¢)
= Z YD (F ), T-cYm)r2(s2) T-cYo (g, T-cY ) 12(s2y, (3.45d)

m,n=0 o=—m p=—n

see (2.37). As in (3.41) we have

H,PWC (fTCZG) Hgoo 82 xé(o;ﬁl)fs/z

< |lPvg, o(’@G)llew (I = Prg ) o (T, G) © Prg leee

1 (2n41)~ 32 (2n+1)_3/2'

(3.46)

+1)—3/2 €(2n+1)_3/2

Bound for the first summand in (3.46): Since the (7, s)th spherical harmonics component of the
operator in the first summand of (3.46) is due to (3.45a) and (B.19) given by

m

Z ST ,P%) s (52)((TeG) P T_.Y,2) 1252y

m=0o=—m

(2r+1)(2s+1
1672

we can estimate

||PVC 0(7;2G)||€( n41)=3/2 Z(2n+1)_3/2
1 1

T 1672 ek, V2r T 1)(2s + 1)
Z Z (T_eY,2, PP) sy {(TeG) PY T_eY,5) r2sey

(LLIS S

1
1 2
= 1672 ,,SeN (27’—}— 1 _/52 Z Z (T-cY, P >L2(S2)‘ ds(z ))

m=0o=—m

1
2 3

ds(0) ds(ﬁs))
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2
] 2
X sup (2”1/322 S (TeG)PE T oY 2) pagsny| ds(9)> .

5€No 0o=—m

By using Parseval’s identity, the definition of the operator norm and (B.17) we bound the second
factor by

| 1 1 1
<G)P?|22 g2 d 0> < < / Pl|2, g2 d 9> G
sup (57 [ ITCIP sy d4s0)) < sup (2 [ 1P s ds(6)) I

)IGllus = 47 Gllus .

< 4w sup <

SENO 28 + ].

For the first factor, we obtain using the Jacobi-Anger expansion (B.24), Lemma B.4, formulas (B.17)
and (2.63) and the bound (B.22) for |j,(k|c|)| that

m—+r

S° P2p+ 1)jp(kle)) (P, Y0, PR 12y

p=|m—r|

(T_.Y3, P® Yr2(s2)| =

m+r

Yallzas2y Do @p+ Dlip(kleDlI By llee (s 1P 22 cs2)

p=|m—r|
Var ey A2+ H2m+1)

— 2p+1) = 5
\/mwc\)sp:%_r,(p ) (klc[)s

Altogether, the first summand in (3.46) can be bounded by

IA

IN

- A\
Pye 7. < 2m+1 G
1Pvg, o (Te, )HZ< niny=3/2 " Gnyry-aiz = (k|c|)s <1nZ:O( mey > |Gl
(2N1 + 1)y/2(N? + 2Ny + 1)
= 5 H HHS .
(klc[)s

Bound for the second summand in (3.46): We expand (3.45b)—(3.45¢) by using (B.16) and obtain
that the (r, s)th spherical harmonics component of the operator in the second summand of (3.46) is
given by

o0 m n

(2r+1)(2s+1)
1672 Z Z Z Z (T-cYy, P L2(S2)

m=N1+1n=0o0=—mp=—n

X (P, T_YP) r2(s2) (Tey G)T-Y,P T oY) 1252
SO

I = Pvg ) o (Te, &) © Py [l

o0
(2n+1)—3/2 ><Z(2n+1>*3/2

SO Y Y T e

m=N1+1n=00=—mp=—n
2 1

ds(0) ds(:?:))

1 1
= su
1672 ,eho V2r + D25 £ 1) </52 /32

X (P, T-cYP) 12(52) ((TeG)T-YE, T-cYy7) 12 (s2)
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1 1 Ny n 0 2
D 2
< 5w (2”1/322 S (PO TP s ds(O))

s€No n=0p=—n

1
2

1 (e 9] m o /\ 9 R
X sup <2T+1/SQ SN (T PR s ds(w))

TENO m:N1+1 o=—m

00 N1 m n 3
(S 38 S meranraneer)

m=N1+1n=00=—mp=—n

With the same techniques, which we used in the first part of this proof, we can estimate the first
factor by

2Ny +1)y/2(N? + 2Ny + 3)
(klel)s

1 N1 n 0 ) % 47‘(‘(
sup (28+1/52Z S (PE, T oY) o) ds(0)> <

se€No n=0p=—n

and the second factor by

1
1 o m o g 9 R 2
sup <2r+1/52 S S (T, PR s ds(az)) < 4r.

r€No m=N;+1o0=—m

For the third factor we use Parseval’s identity and formula (A.6) for the Hilbert—-Schmidt norm to
bound

0o Ny m n N1 n
YD D > NI T TocYo) 2sn? < D0 Y (TG TeY P |72y < G llfis -
m=N1+1n=0o0=—mp=—n n=0p=—n

All in all, we obtain the same upper bound as for the first summand in (3.46). Substituting this
into (3.44) ends the proof. O

Remark 3.29. (i) If in Propositions 3.27 and 3.28 in addition k|c; — ea| > 2(Ny + Na +d/2), then
we have

2\/W(2N21+1) ifd=2
(G, H)us| _ (Kler—c2))2 ’

m o 4(2N1+1)\/m(QN2+1)2(N22+2N2+%) o ;
1 =9o.

klci—ca]

This can be shown by replacing (B.8) by (B.9) in the proof of Proposition 3.27 or (B.22)
by (B.23) in the proof of Proposition 3.28, respectively.

(ii) Provided the upper bounds in Propositions 3.27 and 3.28 are smaller than 1, then the derived
upper bounds in the uncertainty principles (3.18) or (3.20) involving the subspaces Vf\}l
and V]CVQQ are always smaller than the upper bounds in the uncertainty principle (3.38) or (3.43)
involving Wy, and Vi, respectively. This goes well with Vi C Wg (cf. Remarks 2.10 (ii)
and 2.18 (iii) and Definition and Corollary 2.21).

(iii) In literature (cf. [24, 25]), our notion of an uncertainty principle is substituted by the concept
of rank-sparsity incoherence. This is based on the quantities

§ = sup IGlleexee and  p = sup 1G]]
Gewgt ™2, |Gl<1 GEVNy; [|Glleoo xpoo <1

A sufficient condition for Wi NV = {0} or equivalently Wy~ N Vy, = {0} is then given
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by £u < 1. On the one hand, ¢ being small means that the Fourier coefficients of operators
in W]C\};CQ are ‘diffuse’ in the sense that they cannot become too large in scales of their largest
singular value. On the other hand, y being small means that the spectrum of operators in Vy,
is ‘diffuse’ in the sense that their singular values are small in scales of their largest Fourier
coeflicient.

Comparing our proof of Theorems 3.27 and 3.28 with the proof [25, Prop. 4] clarifies that {u < 1
is a more restrictive assumption. This suggests that our later developed stability estimates will
not be sharp. However, these upper bounds in (3.38) and in (3.43) have a concrete meaning
regarding the scatterer’s geometry. In terms of the wave number k, the sizes of the scatterer’s
components must be sufficiently small, and their mutual distances must be sufficiently large,
such that these bounds are strictly smaller than one. O

The following theorem provides a stability result for the least squares problem (3.37). This follows
immediately from Theorem 3.13 together with Propositions 3.27 and 3.28. As mentioned above, it
is of no practical relevance and is presented just for completeness.

Corollary 3.30. Suppose that Fq,F(f € HS(L?(S%1)), and let ¢i,co € R? and Ni,N, € N
with N1 2 kRy and Ny 2 kRg such that C < 1, where

2\/2N1+1(2N2l+1) ifd=2,
(kler—ez|)3

¢ = 1 2 1 20 N2 1

(2N1+1)4/2(N7+2N1+35)(2N2+1)? (N +2N2+35)

ifd=3.

5
(klei—e2|) 8

Denote by Fql, Fq2 and Fq‘sl,ﬁ’jz the solutions to the least squares problems

LS = | = = =
Fy = Fo + Fy, FQ1EWJC\7117FQ2€VJCV227
6 LS 6 =6 =6 c1 o co
Fq_Fq1+Fq2’ Fq1€WN1’FQ2€VN2’

respectively. Then, for j =1,2,
1Fg, — Fy llfis < (1= C*) M Fy = F)ls - (3.47)

Remark 3.31. If k[e; — co| > 2(N1+ N2 +d/2) in Corollary 3.30, then as in Remark 3.21 the stability
estimate (3.47) can be improved by replacing C < 1 by C' < 1, where

2V2N 12Nz +1) ifd=2,
5’ (klci—c2l)2
4(2N1+1) /2 N2H2N1+5) (2N +1)2 (N +2N2 +5)

klei—ez]

ifd=3.

SPLITTING BY SOLVING A COUPLED NUCLEAR NORM AND /! x ¢! MINIMIZATION

In this subsection, we restrict ourselves to two dimensions. In principle, the results below can also
be extended to three dimensions. However, since the two-dimensional case already turns out to be
highly technical and involved, we do not pursue this in this thesis.
We apply 7., on expansion (3.16) and obtain
<1 <1 <1

Te, F\SY = T, F{EY + T, FEY (3.48)
which we choose as an approach for the following investigation. This translation of the whole
equation is not necessary but improves the readability without worsening the results. For technical
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reasons in the later proof it turns out to be necessary to replace the exact translated far field
operator 7¢, Fy; by some finite-dimensional approximation. Our observations in Section 2.4 ensure
that suppg C Br(cz) for some R > 0 implies that F, can be well-approximated in V3? and
consequently 7¢,Fy in Vy with N 2 kR. As before, given Ny 2 kRy with supp g2 C Bg,(c2), we
further know that Fy, can be well approximated in V]c\,é, so Te, Fy, in Vi, € V. Finally, the fact
that F,, can be well approximated in 1/\/Cl for some N; 2 kR; with supp¢q1 C Bg, (c1) yields that
it makes sense to search Te, Fy, in Wy~ 02 We cannot even expect a general element of Wy~
and to be well approximated in Vy. Therefore we impose an additional assumption on the low
rank component to ensure that it can be well approximated in Vy.

This is reflected in the following framework. Let MY € Vy be an approximation of 7., F,, and let

MY ~ 9+ 8° (3.49)

be an approximate split into a low rank component I0¢e VVC1 2 and a sparse component S0 ¢ VN,,

such that the low rank component can be well approx1mated in Vcl “ for some M; > N;
with N > My + k|61 — Cz‘.

Remark 3.32. We cannot expect the decomposition (3.49) to exist in an exact way since M?, S € Vy
but probably Lo ¢ Vn. However, Proposition 3.33 below shows that under above addltlonal
assumption on L% and for N large enough L0 can at least be reliably well approximated in Vy. To
see this suppose ||LO L||Hs < ¢ for some L € Vi, © and € > 0. Then, Proposition 3.33 yields

(7 = Py ) L0llus < II(T = Pyy) Llus + (T = Py )(L° = L) |lus
1
2
< ”LHHS<2<2M1+1) Z Z n k\cl —C2)> +é&,
[n|>N |m|<M

and the first summand on the right hand side can be made arbitrarily small by choosing N large
enough. The operator (I — Py, ) is linear and thus cannot increase the rank of LY. Consequently,
above estimate further gives a upper bound for ||(I — Py, )L e according to

I = Pyy) L e < /rank((I = Py )LON(T = Pry)L¥lluss

< Vrank Z9)/( — Py ) EOllts = v/2N3 1)/ (1 — Py ) 2O

Proposition 3.33. Let M, N € N and ¢ € R?\ {0} such that N > M + k|c|. Then, it holds

%
H(I—M)GHHSSHGHHS(2<2M+1>Z > 2 k\c\> . GeVg.

[n|>N |m|<M

For |n| > N and |m| < M we have that [n —m| > N — M > k|c|. Consequently, according to the
proof of Theorem 2.11, the upper bound decays superlinearly in N, more precisely faster than any
power of N~1.

Proof. We assume G € V§; and expand
G = Z am,nT_cem< : ,T_cen>L2(51)
Im|,|n|<M

= Z Z amm(el,T,Cen>L2(51)<T,cem,eo>L2(S1)eo<- ,el>L2(Sl) .
0,l€Z |m|,|n|<M
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This yields as in (2.28) together with the Cauchy Schwarz inequality that

HG*PVNGH%IS = ||G77)VNG||§2><42
2

< Z ’ Z amnler, T—cen)r2(51)(T-cem; €o) L2(s1)
0EZ|l|>N " |m|,|n|<M
2
+ Z Z am,n<ela T—cen>L2(Sl) <T—cem7 eo>L2(Sl)
lo|>N,IEZ " |m],|n|<M
<2Glhs( X X lewTcembzsnP)( X X e Tcembiasyl?)
n€Z |m|<M [n|>N |m|<M
—2Glks( X X k) ( XX i)
n€Z [m|<M In[>N [ml<M
= 2GlseM 4+ D X5 2 ake)).
In|>N |m|<M

where we used that due to (B.10)

SN Roakle)= >0 > Jr L (kle]) =2M +1.

neZ |m|<M |m|<M neZ
This finishes the proof. O

The split (3.49) does not have to be computed explicitly. Our additional assumption on the
decay of the Fourier coeflicients of 7, — C2L causes that such an approximate split cannot be
obtained by solving the least squares problem (3.37), where we require only I0¢e VVCI1 2. However,
since Vi~ C Wy~ (see Remark 2.10 (ii)) it can e. g be obtained by solving problem (3.17),
where we require LO € V§, . Due to Vi~ + V]C\}l_]\cé V]%?NICZ C Wy (cf. Theorem 3.5),
Subsection 3.5 below pr0v1des an alternative least squares problem (3. 67) for computing such a
split. The required decay of the Fourier coefficients can be justified as in Proposition 3.33. At this
point, we also refer to Subsection 3.6.2, where it is explained how the procedure of this Subsection
can be transferred to Born approximations of order p > 2.

As proposed in [101], L% and S° can be approximated by solving robust Principal Component
Pursuit (RPCP), i.e.,

r{nm)mlze | L[ nuc + Al[S ||t ser subject to |M° — L — S|jys <0 (3.50)
L,S

for some coupling parameter A > 0 and some noise level § > 0, which is combination of the
approximation errors for 7¢, Fy, and 7T, Fy,. As before, this choice of the objective function promotes
sparsity of the Fourier coefficients of S0 An overview of possible alternative minimization problem
formulations is given in [13].

In the following, we fix a singular system (oy,,; wn, vn)1<n<an,+1 for L9 and the Fourier coefficients
(@m.n)ml,jn|<N, Of SO to define the operators

2N1+1
amn
A = Z Un< . 7vn>L2(5’1) and Y o= Z |a |em< y en>L2(5’1) . (351)
n=1 Iml,Jn|<Np 1O

Given MY := L% + S° and A € (0,1) the pair (L° S°) is the unique solution of the Principal
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FIGURE 3.4. Geometric visualization of the dual certificate W as introduced in (3.53).
The dashed lines mark the four involved orthogonal projections of W 4+ A. Each of these
projections must fulfill an optimality condition. Intuitively, it seems easier all conditions
to be satisfied simultaneously if the minimal angle 6 between W := W = and V := Vy,
is large, i.e., if ||PyPyy || is small. Here, we mention that Py (W 4+ A) = W.

Component Pursuit problem

__minimize I L% uc + AlISC g1 er subject to M°=1°+5° (3.52)
(L°,S0)eHS(L?(S1))?

if [[Pyy, PWJCVFCQ | < 1/2 and if there exists a dual certificate W € HS(L?(S')) satisfying
1

PW1‘31762W:07 HWH < %,
1Pyy, (A+W = AD)|lus < 7, (3.53)

1T = Pry, (A + W)l < 5,

cf. [19, Lem. 2.5 and (2.4)]. The optimization problem (3.52) has also been investigated in [25].

We again mention that L° ¢ Vy and consequently M° ¢ Vy. The proof of [19, Lem. 2.5] is
formulated for the matrix case. The matrix dimension does not come into play at any point in this
proof. Furthermore, the subdifferential of the nuclear norm and ¢* x ¢! norm remains structurally
unchanged when transitioning from matrices to Hilbert—Schmidt operators (cf. Example D.2).
Consequently, this proof can be directly applied to the infinite-dimensional case.

Above optimality condition (3.53) is visualized in Figure 3.4, and it plays an essential role in the
development of a stability estimate for problem (3.50) as it is done in Theorem 3.34 below, which
is of a similar structure than Theorems 3.23 and 3.24.

The operator M° represents an approximation of a noisy observation of Te, Fq(gl) in Vy. The
bound dp in (3.55) below models the accuracy of the approximate exact solution. In case of (3.49)
this consists of the error of the first order Born approximation and all involved projection errors.
Particularly, 6y controls how far the approximate exact low rank component LY is from lying in V.
At this point, we refer to Subsection 3.6.2, where it is examined that in fact, only the error of the
second order Born approximation plays a role, provided we are only interested in the reconstruction
of Fy, and not of Fy,. The total noise level § consists of the data error and twice the accuracy dg of
the approximate exact solution. The proof of Theorem 3.34 is similar to the proof of [101, Prop. 4].
We mention that, on the one hand, some modifications are needed since W,‘i}l_CQ Z Vn and, on the
other hand, the assumption [|Py,, PWJCVI —ep|| < 1/2 in [101, Prop. 4] is replaced by our uncertainty

1

principle from Proposition 3.27.
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Theorem 3.34. Suppose that M°,M° € Vy for N € N with N > kR, and let c¢1,c3 € R?
and N1, Ny € N with N1, Ny < N, N1 2 kRy and N2 2 kR, such that C < 1/4, where

2IN, F1(2Ns + 1
C = 112N+ 1) (3.54)
(kler — e2f)3

We assume that L° € W and 59 € V, are such that
1M — (L + 8l < b0, MO = (L + 5 e < b0, N = Pry)Llle < d0 (3.55)

for some 8y > 0 and that there exists a dual certificate W € HS(L?(S1)) satisfying (3.53).
Moreover, suppose that § > 0 satisfies

6> 200 + || M° — M ||us (3.56)
and let (L°,S%) € V¥ for A =1/v/2N + 1 denote the solution to

mi(nLirél)ize | L aue + AllS et s subject to |M? — (L + 8)|jus < 9. (3.57)

)

Then, for j =1,2,

I2° = D)t < 2(1+40 (14201 - O)7) (2N +1)%) 82, (3.582)
18° — §%|1%¢ < 2 (1 +40 (1 +2(1— C)*l) (2N + 1)2) 5. (3.58b)
Proof. We use the abbreviations L:= 10— E‘s, S = S0 _ 55, W = f\}l_CQ and V := Vy, and

estimate by using the parallelogram identity

- ~ ~ 1 ~ =~ 1 ~ -
5
15° = S°llfs < [ LIffs + [1S1Ifs = §\|L+5||%s+§IIL*SII%s

1.~ = 1 ~ o~ ~ o~
I+ Slis + 5 (IPV(L = S)lis + IPw(L - 9)lfis)

7 (IPy2 (@ = B) s + [P (£~ B) s (3.59)

The term ||L° — L?||%4 can be controlled by the same upper bound. In the following, we estimate
the three summands in (3.59) individually.

Bound for the first summand in (3.59): As in the proof of Theorem 3.23, we obtain by using (3.55)—
(3.57) and (A.7) that

1~ - 1 I o 2
§HL+5H%JS <3 (”MO — (L% + 5°)|lss + 1M — M°||s + | M° — (L° + Sé)”Hs) < 26%. (3.60)

Bound for the second summand in (3.59): Let 0 < C' < 1 be given as in (3.54). We conclude
from the uncertainty principle (3.38) and from a? 4 b> — 2Cab > (1 — C)(a? + b?) for all a,b > 0
that

IPv(L - S) = Pw(L - 9)ls

= [I1Pv(L = 9)llfs + IPw(L — 8)llfs — 2(Pu(L — 8), Pw(L — 5))us
IPv(L = 9)lfis + IPw(L = 9)|Ifis — 2C|Pv(L — ) |lus|[Pw(L — S)|lus
(1-0) (”PV(E — 8)|lfs + IPw(L — §)||12{s) :

Y

v
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This is equivalent to

1

1 (IPv(Z = )lfis + IPw(E = S)lfs) < 17—

IPv(L = 8) = Pw(L — 9)|fis -
Since we can decompose
0=(L-S8)—(L-25) = Py(L—5)—Pw(L—-S)+Pyp(L—5)—Pyp.(L-S5)

we deduce from the parallelogram identity that

1 - - - - 1 - - -~
1 UPoZ = Slis + IPw(E = S)llEs) < 57— 1Pvr (L= 5) = P (L= s
1

< s =gy (IPv- (= Slss + 1Pw (L = S)lls) -

The obtained upper bound is a multiple of the third summand in (3.59). Thus, it remains to bound
this third summand in (3.59).
Bound for third summand in (3.59): We use (A.7) and || - |lus < || - [l <2 (since ¢* C £2), and

we choose A = 1/4/2N + 1 to obtain

1 T2 T a2 1 7 _Q 7T _Q 2
1 (IPos (L = S)ls + 1P (L= S)liks) < 5 (I1Pv+ (L = S)lass + [Py (L = S)ls)

1 -~ ~ o~ 2
< ¢ (VAN FTIPy (L = )l + [Py (£ = )l )

2N +1 ~ ~ -~ 2
= = (IPvs @ = 8l + NPy (£ = S)llixr)

Since we can decompose
~ 1~ ~ 1 = ~ 1~ = 1~ =
we conclude with the reverse triangle inequality that
1L = Lllnuc + M S® = Sller e

0 1~ - 1. = SO R (U
= 10+ 5(5~ ) = 5(E+ B)lue + AIS* + 5(E — 8) = £ (F + )l

~n 1~ =~ 1~ = 1/~ =~ -~
> |2 + 55 = Dl + MIS® + S(E = Dl = 5 (1L + Slwic + MZ + Slerer) -
From
1M = (Pyy L0 + 8% lus < | M° — MO||us + |M° — (20 + %) [lus + [|(T — Puy ) LO||us

[ M° — MO|js + [ M° — (L% + S [lus + |(I = Pyy )L ||nue
| M — MO||gs + 260 < 6,

VARVAN

due to (A.7), (3.55), and (3.56), we know that (Py, L°, S°) is feasible for (3.57). Thus, (3.55) gives
us that

IZ° = Lllnuc + AIS® = Sllaxer = (L% lwue + MlSNeaxer < 1PyyLOlnuc + Ao xar
< ||L0Hnuc + )‘HSOHélxKl + H(I - PVN)LOHHUC < ||L0Hnuc + )‘HSOHélxel + 50 .
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We choose H| = —Hy = %(5’ — L) in Lemma 3.35 below and obtain that

& (1P (T = S)llwe + NPy (£~ 5 er)
<+ 55 = Dloue + AIS® + 5 (E = 8l — (1l + B et
< HLD Ellue + MIS® = Sllercer = (IE%1lnue + Al + o)
t3 (HE + Sllnue + AL + Sllaxe + 250)
< 5 (V4 Sl + MIE + Sl +280)
SO

1 ~ o~ ~  ~ 2 ~ o~ ~ o~ 2
7 (1P (2 = S)llne + APy (£ = D)™ < 4 (1L + Slloue + AIL+ Sllrxr +260)

which yields by using (3.55) for the fourth estimate, A(2N + 1) = v/2N + 1 for the first equality
and (3.56)—(3.57) for the sixth estimate

7 (1P (T = B)lfas + 1P (T~ 3 is)

< N+ 1) (IPye (T = $)lluse + NPy (L = 3)llier)
< 4@N +1) (I + Slhuse + AL + Slloer +260)°
< A@N + 1) (IM° = (L% + §%) e + A MO = (L% + 8% g
MO — (20 + 5% e+ 340 — (£ + 5 11 + 200)
< 42N +1) (VEN F1IMO = (£ + §%) s + A@N + 1) 10 = (L% + 5°) s + 430
= 42N +1) (2V2N + 1| M° - (5+§5)|!Hs+450)2
< 4@N + 1) (2VEN F T(1MO — M s + |1M° — (B + 5°) ass) +409)
< 4N +1) (2V2N T 1(26 — 8y) + 4d0) " = 42N + 1)(av2N T 15— 2(VIN 1 - 2)5)”.

>0 >0

Since there holds (a — b)? < a? + b% for a,b > 0 and Jy < § because of (3.56), we further estimate

L (IPys (@ = 8)lis + [Py (E ~ B)lfhs) < 42N +1) (162N + )8 + 4(VIN +1 - 23

< 4(16 +4)(2N +1)26% = 80(2N + 1)%62,
(3.61)
where we used that (a — 2)? =4 — 4a + a® < a® for a > 1 and &y < 4.
All in all, summing up (3.60)—(3.61) finishes the proof. O

The following lemma is similar to [101, Lem. 5] and is needed as an auxiliary result in the proof
of Theorem 3.34 above.

Lemma 3.35. Suppose A < 1/2 and that C as defined in (3.54) satisfies C < 1/4. Moreover,
let W e HS(L2(SY)) be a dual certificate associated to L° € Wy and S0 € Vy, as introduced
n (3.51) and (3.53).
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Then, for all Hy, Hy € HS(L?(S')) with Hy + Hy = 0 we have that
HEO + Hilnue + )‘Hgo + Hallp e
> L flnue + AlIS°lexer + 7 <||(I Pyygp=ea ) Hi e + Al = PVNQ)H2|elle> -

Proof. We use the abbreviations W := Wy~ and V := Vy, and suppose that Z; € O L0l nue)
and Z € 0)|5°)y1 1. From Example C.2 and Lemma C.3 we know that these subdifferentials satisfy

Zy = A+W with PwW' =0 and w<t,
Zy = MX+F) with PyvF =0 and HFHgongoo <1,

where A and ¥ are defined as in (3.51) in dependence on a fixed singular system (o,,; Un, Un)1<n<2N;+1
for L° and on the Fourier coefficients (am n)|m| n|<N, Of S0 , respectively. Furthermore, due to
Definition C.1 of a subgradient we have

120+ Hi e+ M5O+ ol 2 12l + A8t s + (20, Huss + (2o, Hous
Consequently, it remains to show
1
(Z1, Hy)ms + (22, Ho)ms 2 o (1Pwe Hillnue + AlPys Halen) - (3.62)
We rewrite Z; and Zs by adding and subtracting the dual certificate W from (3.53) and us-

ing PWwW =0 as well as W' =Py, Z1, Pyyr A = 0, Pp(AX) = AX and AF = Py. Zy according
to

A+W)+ (W' =W) = (A+W)+Ppi(Z1 —A-W),
(A+W) = (Po(A+W) = AE) + (AF = Pp (A+W))
(A+W)=Pp(A+W = AE)+Pp(Za —A—-W),

||
—~

which yields

(Z1, Hi)us + (Z2, Ha)us
= (PwL (Zl — A - W), H1>Hs + <PvL (Zg —A - W), H2>HS — <'Pv(A + W — AE),H2>HS . (3.63)

Here, we used that Hy + Hs = 0. In the following, we bound the three summands on the right hand
side of (3.63) individually.

Bounds for the first and second summand in (3.63): Since we know that || - || and || - ||nuc as well
as 1/A|| + |leeoxee and A|| - [[p1 41 are dual norms, respectively, we have that
1PywiHillnue = sup (G, Py Hi)us and M| Py Hallpgp = sup (G, PyiHa)nus
IGlI<1 1Glgoo x o0 <X

Consequently, we can choose Z; and Z3 such that || Z1]] < 1, || Z2||geexpee < A,
<Z1,PWJ_H1>HS = HPWJ-Hlnnuc and <ZQ,PVJ_H2>HS = >‘HPVJ-H2||€1><€1 .
For the first summand in (3.63), this implies together with the first line in (3.53) that

<Pwi (Zl —A- W)7H1>HS = <Z1,PwLH1>HS — <PwL (A + W),PwLH1>HS
1
2 (1= [Py A+ WD) 1Py Hillawe = (1 = WD) [PyrHillawe = 51Pws Hillaue . (3.64)
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For the second summand in (3.63), we obtain analogously by using the third instead of the first
line (3.53) that

A
(Pyi(Ze = A= W), Hojus 2 (A= [[Pyr(A+ Wlleexeeo) [PyrHallnxer 2 SlPyrHlloe -

Bound for the third summand in (3.63): We can use the second line in (3.53) to estimate

A
(Po(A+ W =A%), Ha)us = (Pv(A+W =A%), PvHz)us < L [|PvHzns -
From ||PyPw| < v/C and ||Py|| < 1 we further conclude that

[PyHs|us < |PvPwHzlus + |PyPy Hallus < VC||Hallus + [Pyyr Ha|lns
= VO (|[PyHz|us + |Py. Hallus) + | Pyyr Ha|lns -

We solve this inequality for ||PyHz|lus and obtain together with ||PyrHallus < ||PyrHallnuc
(see (A.7)) and || Py Hallus = [Py Hillus < [Py Hillpxp (since £1 C ) that

A AWC
m“PWLHIHﬂxel + 11— vO)

1 A
< ZHPWJ-HlHElxél + ZHPVLH2||nuc- (3.65)

(Py(A+W — A\X), Ha)s < Py Ha||nuc

Finally, we add (3.64)—(3.65) to obtain the upper bound in the lemma. O

Remark 3.36. (i) We first observe that the stability bound (3.58) depends linearly on (1 — C)~!,
i.e., it depends in the same way on the bound C for the cosine of the related minimal angle as
before. Furthermore as expected, less a priori knowledge on the locations of the scatterer’s
components comes at the expense of poorer stability properties compared to the other schemes
(cf. Theorems 3.20 and 3.23).

(ii) If kler —ca| > 2(N1+Na+1) in Theorem 3.34 then the stability estimate can, as in Remarks 3.21
and 3.25, be improved by replacing C' < 1 by C < 1, where

6’ L 2\/2N1 -+ 1(2N2 —+ 1)
(kler — ea))?

(iii) The assumptions in Theorem 3.34 suggest to choose N large enough so that the data error is
sufficiently small and the exact low rank component LOis sufficiently well approximated in Vy,
but at the same time not larger than necessary. The reduced stability with increasing N is
unsatisfying, since a larger N is linked to a better approximation of the full far field operator,
i.e. of the data. Since we can already resolve the far field operator in Vy sufficiently well
for N 2 kR with R > 0 denoting the radius of the smallest ball containing D (cf. Example 4.1),
it is a tolerable restriction. Our numerical tests in Chapter 4 clarify that the dependence of
the stability constant in (3.58) on NN arises due to the specific choice of A = 1/4/2N + 1. By
selecting A as optimally as possible through trial and error, we can eliminate this dependence
in practice. It is ongoing research to improve above stability theorem in this regard . O

3.5. SPLITTING IN BORN APPROXIMATION OF ORDER TWO

We consider the quadratic approximation of the scattering problem (2.1) with respect to ¢, that
is obtained by replacing all ¢ dependent quantities ugq, ug, ug® and Fy by their Born approxima-
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(<2

tions ug™ ), u;,(§2)’ ugo’(SQ) and Fq(§2) of order p = 2, respectively.
Expansion (3.2) then reduces to

Fq(SQ) — F(=2) F(<2) (F() + F®

q1 q1,92 q2, q1) )

(3.66)

which we take as an approach for our investigation in this section. In contrast to (3.16) the term in
brackets on the right hand side of (3.2) does not vanish, i.e., multiple scattering is included (at least
partly) in our consideration. From Definition and Corollary 2.21 we know that Fq(].g) = (1) + Fq(J 7)%
has a sparse approximation in the subspace V;,j of far field operators associated to scatterers
supported in Bg,(c;) with N; 2 kR;, for j = 1 2. Furthermore, we know from Theorem 3.4

that Fq(f )qz and F,g)ql have sparse approximations in the related generalized subspaces Vf\}l’cﬁb
and V]CVQQ’ Ny» respectively. In the following, we proceed similar to Section 3.4 before, but we

additionally include the subspaces Vcl’c22 and VCQ’Cl into our schemes.

SPLITTING BY SOLVING A LEAST SQUARES PROBLEM

Analogously to (3.17), expansion (3.66) motivates to consider the following least squares problem
formulation. Given the far field operator Fy, we seek approximations Fy, € Vi, and Fy, € V2 of
the far field operators F,, and Fj,, corresponding to the individual components of the scatterer,
satisfying

Fy = Foy + Foo + Fyy o + Fopq1 in HS(LQ(Sdil)) (3.67)

for some Fy, 4, € Vi %, and Fppar € Vo n, - To discuss the conditioning of (3.67), we need the
following uncertalnty pr1n01ples Wthh 1nvolve the generalized subspaces from (3.4). They are
generalizations of Propositions 3.18 and 3.19.

RN

Proposition 3.37. Let d = 2 and suppose that G € Vcl’c22 and H € V3, /N, for e1, ¢y, co, ch € R?

and N1, N{, No, N} € N. Then,

V@Ni+1)2N2+1)2N{+1)(2Nj+1) . , d ,
(2le1 4 lea—; )b Fearzamiesa,
G, H ey e il
NG, Hjus| = \/(QNI+l)(2N2+1)(,2N£+1)(2N2+1) if c1 # ¢} and ca = ¢, (3.68)
1Glusl H ||ns (kler—¢; )3
\/(2N1+1)(2(J]:f|2+1)(/2|1)§+1)(21v5+1) ifer—c and e 4 ).
CQ*CQ

Proof. Suppose that ¢; # ¢} and ¢y # ¢,. We proceed similarly to the proof of Proposition 3.18
and use Holder’s inequality and (3.8) and (3.7) from Lemma 3.8 to obtain

(G, H)us| < [[Te;—ercp—es TereaGlleso e | Teg e Hll o1 e

1
< 1TeresGllet e 1 Ter o Hlltcn
(kler — e )3 (Kleg — )3 el

(<¢Wh@mwwﬂﬂdﬂmww
(kle — €4])3 (klea — €))s
V(@N1 + 1)(2N; + 1)(2N] + 1)(2N] +1)

= G | H s -
(Kler — €)])5 (klea — ch)s

1 Ter,caGllezxe | Ter e H | 2 xe2

This shows the first inequality in (3.68), and the other two inequalities follow by using the corre-
sponding estimates in (3.8) in above calculation. O
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Cl,

Proposition 3.38. Let d = 3 and suppose that G € Vcl c2 and H € V / N/ for e1, ¢y, e, ch € R3
and N1, N{, No, N5 € N. Then,

16 Ty /D)o ) (V4 D) (g )
9

5
(K?|e1—ellea—cy))®

if c1 # ¢} and 3 # ¢,

(G, Hyus| Enle\/(NH-%)(Nz—l—%)(N{—i—%)(Né—&-%)
IGllusl|Hllas — | 9 (kler—c, )8

if c1 # ¢} and ca = ¢,

GTL 1\/N1+ Nz+2><N' LYy +5)
(klez2— C2|)

if c1 = ¢} and c2 # .

Proof. As in the previous proof, adapting the proof of Proposition 3.19 by replacing the mapping
properties (2.60) and (2.59) of 7. from Lemma 2.25 by the corresponding mapping properties (3.9)
and (3.7) of Tp . from Lemma 3.8 yields the result. O

The following theorem gives a stability result for the least squares problem (3.67), which should
be compared with Theorem 3.20.

Theorem 3.39. Suppose that Fy, th € HS(L?(S%1)), let c1, c2 € R and Ny, Ny € N with Ny > kRy
and Ny 2 kRo, and define

(2N1+1)(2N22+1) ifd=2,
O = (klei—c2])3
. 1961_[1 1 N1+ )(N2+ ) ’ifd:3.
(kler— C2|)

We assume that, for all (j,1) € {1,2}2,

v {mﬁw(w\wl)) <t =2,
T WVOWOHSTIL(N +5) < 1 ifd=3.

Denote by ﬁql,ﬁ’qQ, ﬁqhqz, F’q%ql and Fgl,F(g, Fgl 02 F(g @ the solutions to the least squares problems

LS = | = |, = ~ 7
Fg=Fo+Fo + Foi g0 + o015 EVNa qj,qlevjc\?(;l\rl (3.69a)
9 LS Y Y 70 70 6 cj,c
F)=F, +F,+F, .+ Fg Fy EV Fy quVNJ,lel, (3.69b)
respectively. Then,
I1Fy, — FolBs < (1= M) YFy— Fol3s, =12 (3.70)

Proof. We choose Vi =V, Va = V2, V3 = Vcl’c2 and V; = ch’cl in Theorem 3.15. Summing
up the upper bounds from Propositions 3.37 and 3. 38 for the cosine of the minimal angle between
these subspaces as specified in the stability estimate (3.15) yields the result. O

Remark 3.40. Provided kle; — ¢a| < 2(N1 + Na + d/2), the stability bound can be improved by
replacing C < 1 by C' < 1 with C' given as in Remark 3.21. O

SPLITTING BY SOLVING AN /! x ¢! MINIMIZATION PROBLEM

As in the previous section, we can replace the least squares formulation (3.67) by a (weighted) ¢* x ¢*
minimization problem. This again has the benefit, that only a priori knowledge on the positions c¢; of
the individual scatterers D; C Bg;(c;) is required, not of the cut-off parameters N; 2 kR;, j = 1,2.
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Compared to (3.27) and (3.34), we modify the objective functions by adding penalty terms, which
promote sparsity in the subspaces VCLCQ and VCQ’Cl Given the far field operator Fj; and a noise

level § > 0, we seek (Fy,, Fy,, ﬁquqz,qul) € HS(LQ(Sd_l))4 as the solution of
_  Ininimize \Ij(ﬁn ) ﬁqy ﬁh,%’ ﬁQ2,q1)
(FQI 7FQ27F‘117‘12 ?FQQJII)

subject to HF[f - (ﬁcn + ﬁqz + ﬁqwz + ﬁqz,tn)HHS <4, (3.71)

where for d = 2

\Ij(Fanqw Fq1,Q27 Fq2,Q1) = ||7:11FQ1 ||€1><€1 + ||7Z2FQQ ||€1><€1 + ||7217C2FQ1,Q2 ||€1><€1 + ||7Z2,C1FQQ,Q1 Hﬁlel
(3.72a)

and for d = 3

\P(FQI ’ FQ2> Fql’q2’ qu,fh)
= H7:21Fq1||£1 +|’7;2Fq2||€§ x 01 +||7;1,62FQ1,(12||£

2n+1><e2n+1 +1 %2041 2n+1><£2n+1

+||7;2701FQ27611 Hé

2n+1 X€2n+1 ’

(3.72b)
Theorem 3.41 below gives a corresponding stability result, which is structured as in Theorems 3.23
and 3.24.

Theorem 3.41. Suppose that F, € HS(L2(S97Y)) and let 1, c2 € R? and N1, N € N with N1 2> kR
and Ny > kR such that for all (j,1) € {1,2}?,

12ENADENHD fd=2,
o (Her-ea)d
] = 3 3 1
SN E N NSCIES HCVES TR R Y
(kler—e2|)©

We assume that FO € VNI, F0 € VN27 € V]c\}l"jfb, and FO € V]c\?g”cji,l are such that

Q1 q2 q2,91

1Py — (B + FQ + FL g + FO 4 llms < do (3.73)
for some 69 > 0. Moreover, suppose that Fg € HS(L2(S%1)) and 6 > 0 satisfy
0>y + HFq — FgHHS .

Let (Ffl»F§27 F(fl qngqJQ @) € HS(L2(S%1))* denote the solution to

minimize ‘II(FQH Fgo, Fay g2 quh)
(Fql ’F‘12 ’an CI27Fq2 ql)

subject to HF(? - (ﬁQI + ﬁq2 + qup + Fq2,q1)‘|HS <40 (3.74)

with ¥ from (3.72). Then,
- 7 -1 .
IFy, — Fy llis < (1-Cjy) 46%,  j=1.2. (3.75)

Proof. For j,l = 1,2, j # I, we use the abbreviations ﬁ] = }~70, — f’gj and ﬁ})l = FO _ F9

a5,41 q5,91°
Moreover, we denote the £ x ¢O-support of Te; Fy FO and of Te; e F, q o by Wj and by W, respectively.

We estimate as in the proofs of Theorems 3 23 and 3.24 for d = 2

(P, Py, Fio, Fan) < 2(17e, Fill o ey + 1 Tea Foll o xnywa)
ey e P12l xerywy 2) + [ Tezier Follr xerywa,yy) - (3:76)
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and for d = 3

U(Fy, Fo, Fig, Fon) < 2([Te Pl ) F 1 Tes 2l xes, yowa)

) 1 Teser Fon

1
nt1 X450 01)

1 Tere2 Fr2lle

@, %, Wan) - (BTT)

1 1
21 X454 1) (W2 2n+1

Using (3.73)—(3.74) and (3.8), we obtain in the two-dimensional case

46% > || Fillfis + | Fallfis + [ Fr2llfis + [1F2 s
— 2|(F1, Fo)us| — 2|(F1, F1 2)us| — 2|(F1, F2.1)us|
— 2|(Fy, F12)us| — 2|(F2, Fo1)us| — 2[(F1,2, F2.1)us|

> | Filifis + [1F2llfis + I F2llfis + I1F21 ) s
9 _ _ _ _
— 5 (ITe, Filloxe | Tea Fallxor + 11 Teren Fr2ll o xer || Teg e Fotll o <)
(kler — e2])3
2 ~ ~
— —————— (ITe, Fillo x| Tey 2 F 2
(kler — eal)

‘leél + H7-01F1H€1><61H7-62761F271H€1><£1

Wl

1 Teo Folloxar | Tereo Fr2llecer + 1 Tea Follerser [ Tegien F21 ller xen)

> ||Fullfs + P2 llfis + 1Pzl + (P20l

9 N N N N
- ﬁ(HTchlﬂﬂxel||722F2||elxe1 + (| Ter e F12ll0r ot | Teg,en Fo,1ll o1 xn)
C1 —C2|)3

Htrclﬁlelxﬁl “7-01,021%‘1,QHZ1><€1 =+ H721}~71szlxel H7-C2,01ﬁ2,1H£1><€1

+ H7-02F2H€1><£1 ||7-017C2F172 \zlle + H7-62F2H£1><€1||7-62761F271H61><£1) .

According to Lemma 3.22, we have that 237, 37, ; aja; = >3, 30,4 ajaj < % (3, ai)? <35, a? for
all ay,as,as,as € R. Together with (3.76) and the Cauchy Schwarz inequality this implies

N N - N 3 IO
46° > || Filffis + |1 Fallfis + 1112l + 1 Foalfis — mmz(FhF%Fl,%Fm)
C]1 —C2|)3
> | Fillfis + [1F2llfis + I F2lifis + I1F21 01
3 _ _
— 1 (ITe Fillerscer oy + | Tea Fallor seor owy)
(kler — eal)3
~ ~ 2
+ 1 Terea Fralle e owrg) + 1 Tesser F2aller st ()
> || Fi s + | Pollfs + | Fu2lifs + 1| B2 1
> || Flfs >|lfrs 12/l fs 2.1 |lf1s
3 1~ 1, = 1~ 1~ 2
— ———— (IW12[|F1lus + [Wal 2 || Fallus + [Wiel2 | Fiellus + (Wl 2 || Follas)
(kler — cal)3
> || Fillfis + [1F2llfis + I FL2llfis + I1F21 s

12 _ B ) ~
= e aps Wil + WllBolfis + Waall ool + el o
Cl —C2

= (1-C10)||Fillfis + (1 — Co2) | Pollfis + (1 — Cu2) (|| Fi 2

f1s)

2s + I1F2 ) - (3.78)

In the three-dimensional case, we do the same calculations, but we replace (3.8) by (3.9). We further
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n=N
N =N
- N §
\\ 7
N n(m) m %0 m(n) m=mn — 1
=<n+1|m(n) m=|N /
4
N 7
=0 N = n(m) ,*
na>-m+1 .
N /,
N 7
N 4
N
N Zm+1
-N+ N ,/
0
N 0 N 0 N
m m

FIGURE 3.5. Summation over index set of operators in Vy for two (left) and three (right)

dimensions.

use (3.22) in the last step. This gives (3.78) with the constants

16 & 64T (N; + L) (N; + &
——551_[ @>=—H"1( )Nt S) o,
g :

;) =
(kler — ca)) 3 (kler— eal)s

3.6. GENERALIZATIONS AND FURTHER IMPROVEMENTS

3.6.1. TAKING THE RECIPROCITY RELATION INTO ACCOUNT

The reciprocity relation (2.8) of the far field pattern u2® carries over to the /th summand (2.15) in its

Born series expansion of the far field as well as to its component (3.1) for I > 1 and j1,...,5; € {1,2},
SO
> D(@;0) = w2 (-0;-2)  and ugﬁlwxa;e)_.u%fQ%g-a;—a) (3.79)

for all &, € S?1. This principle states that it is equivalent to illuminate the scattering object
along 6 and measure the generated far field (or far field component) along &, or to illuminate
along —& and measure along —0. This symmetry property carries over to the associated expansion
coefficients as we show in the following.

First, we examine those far field operator components where only a single component of the
scatterer is involved. For d = 2, let the Fourier coefficients (2.21) of ugo’(l) be denoted by (a,(f),n)m,n.
We have for z,0 € S! that

7(l) Z Z mnem TL( i)
MEZnEL
= > S ()Y e (@)e— (@) = > (- a), _em(@)en(0).
mEZneL mEZneL

The reciprocity relation (3.79) then gives by equating coefficients

ag)m = (—1)m+”a(_l)717_m for m,n € Z. (3.80)
The same holds for the Fourier coefficients of ugo

Analogously for d = 3, let ag@),n denote the (m,n)th spherical harmonics component of ugo’(l).

From (B.15) we conclude with the chain rule that P, (—t) = (—1)"P,,(t) for t € [—1, 1]. This yields
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together with (2.50)

. m—n 2m+1 2n+1 in—m
o0, (~0; ~3) = (- O LG [ [ atw) - atw)

X By — Y1) Pu(yy — Y1) dm (Kl dn (kly, ) (PE, P%Z>L2(S2)<Pn ) Pn1>L2(52) dy; --- dy,

for Z,0 € S%. Again, the reciprocity relation (3.79) gives by equating coefficients

al) = (=1 for m,n e Ny, (3.81)

m, n,
as well as the same for the spherical harmonics components of ug°
Now, we turn our attention to the far field components that model multiple scattering, potentially

involving different scatterer’s components. Suppose d = 2 and let (a,(ql%) n)m,n denote the Fourier

l l
coeflicients of uqng ) ’,(..).,qjl.

as above shows that

., and (bg%n)m,n the Fourier coeflicients ug;)l Then, the same calculation

aff?,n = (—1 )m+nb(_l)n m for m,neZ. (3.82)
In the same way, we obtain for d = 3 that
o, = (=1l for m,n € No, (3.83)

(D)

where ozgl)m and ﬁ,@?n denote the (m, n)th spherical harmonics component of ugf gy, and of ugz RO

......
respectively.

We can take the symmetry properties (3.80) and (3.81) into account when defining the related
subspaces of sparse far field operators.

In two dimensions, any G € Vy with

GQ = Z Z Qm,n em<g, en>L2(Sl) , gc LQ(SI)’

|m|<N n|<N

that satisfies (3.80) can be rewritten as

—m—1
Gg = Z Z Ammn€m gaen L2(S1) + Z Z am,n€m gaen>L2(51)
[m|<N n=—m [m|<N n=—
—-m—1
= Z Z Am,n€m g en) L2(sh) + Z Z m+na—n,—mem<gven>L2(Sl)
|m|<N n=-m [m|<Nn=—N
N N
= > Y ammem{gien)zsnt+ D, >, (D)™ amaen(g,em) s
|m|<N n=—m [n|<N m=—n+1
N N
= Z Z am,nem<g76n>L2(Sl) + Z Z (_1)m+nam,na<ga%>L2(Sl)
[m|<N n=—m [m|<N n=—m+1

N
1
= > X amvn(l - §5ﬁm) (em<9’ €n)r2(si-1) +(—1)m+"€7<ga@>L2(sl)) :

|m|§N n=—m

Here, 9,,™ denotes the Kronecker delta. We did index transformations in the third step and changed
the summation direction as shown in Figure 3.5 (left) in the fourth step. Accordingly, we define for
any ¢ € R? and N € N the finite-dimensional subspace

= {G € HS(L*(S")) | TeG € Vn} (3.84)
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with

Uy = {G e ns(rA(sh) |

Gg = Z iv: am,n(l - %577”) (em<g>en>L2(Sl) + (—1)m+"67<g,%>p(51)) s Gmn € (C}.

mI<N n=—m

(3.85)

Analogously in three dimensions, any G € Vy with

N N
Gg = Z Z /52 amn(-30)9(0) ds(0), g € L*(S?),

m=0n=0

that satisfies (3.81) can be rewritten as

N N N m-—1
Gg = 3 3 [ anal-0)9(0) ds(0) + 3 3 [ aunal-:0)9(0) ds()
m=0n=m m=0 n=0
N N N m-1
-2 2 /s G (+:0)9(8) ds(6) + 3° 3~ (<™ [ ctun(+:0)9(6) ds(6)

3
IS
S
I
3
3
IS
3
IS

I
M=
hE
tg\
o
3
5
“Cb
Ry
<
o
<
_.l_
M=

3
]
o
3
I
3
I~
]
o
3

v
na(-30)9(0) ds(0) + 3 Y

I
hWE
M=

—

3
I
[en)
i
3
3
I
[en)
3
[
3
*

[
™=
™=

() =07 [ anal-10)9(0) ds(6).

3
Il
o
i
3

Here, we changed the summation direction in the fourth step as shown in Figure 3.5 (right). As
before, we define for any ¢ € R® and N € N the finite-dimensional subspace

V§ = {G e HS(L2(S?)) | TeG € Y},
with

Vn = {G e HS(LX($?)) |

N m
Gg =Y > (1+(-)m) /S Cmn(+:0)9(8) ds(8) , qum € Vi, x Yi 1. (3.86)

n=0

o

m=

For both cases, d = 2 and d = 3, we have that 1713\, CV§-

Example 3.42. We illustrate above observations by a numerical example, and we consider the
same kite shaped scatterer D C R? as in Examples 2.5, 2.14 and 2.23, i.e., we have that k = 2.5
and ¢ = 2xp. In Figure 3.6 (middle), the real part of the corresponding discretized far field
operator F is plotted for L = 256 equally distributed observation and illumination directions. The
symmetry axis

{(z,0) € S' x S| arg@ = arg(—2)} = {(,0) € S x S'| arg@ = arg @ + 7}

is added by two dashed black lines. The expansion coefficients (am n)mn of TeF, with respect
to the basis from (3.85) are shown in Figure 3.6 (right) on a logarithmic color scale. Here, we
choose ¢ = (1,2)" and R = 2.2, which leads to N = [ekR/2] = 8. The support of the expansion
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Ficure 3.6. Left:  Support of scatterer D (solid) and ball containing D
(dashed). Middle: Real part of discretized far field operator F; with symme-

Right:
cients (m,n)m,n With respect to basis from (3.84) of far field operator 7.F, together

try axis {(%,0)]| arg = arg(—x)}. Absolute values of expansion coeffi-

with dashed triangle corresponding to its sparse approximation in )7N for N =8.

coefficients belonging to the sparse approximation of T.F; in Vy is marked by a dashed black
triangle, and it is nicely confirmed that these are essentially support in this triangle. %

For d = 2 and G € Vy given as in (3.85), (2N + 1)(N + 1) Fourier coefficients are required
to represent G, so approximately half as many coefficients compared to (2.22). Accordingly,
given ¢1, ¢y € R? and Ny, Ny € N, and replacing Vy, and Vi@ by 17]?,11 and f}]c\é in the least squares
problems (3.23) yields the improved constants

o .- YN DN+ )N, + 1Nz + 1)

(Kler — ea])3

O = VN + 1)(Ny + 1)(2Ng + 1)(Ng + 1)

kler — el

in (3.24). These constants are better by a factor of about 1/2. The same qualitative improvement
can be obtained in Theorem 3.23.

For taking the symmetry properties (3.82) and (3.83) into account, we further define in case
of d =2 for b,c € R? and M, N € N the finite-dimensional subspace

Viey = {G e HS(L3(sY) \
Gg = Z Z am’n(Tbem<g,Tcen>L2(51) +(—1)™ ey, Tb%)Lz(Sl)) , Qmop € (C} . (3.87)

[m|<N |n|<M

In case of d = 3, we set for b,c € R® and M, N € N
Hbe L 2/ a2
Viey = {G e HS(L2(5?) |

M N
Gg =2 > /5 (To.e + (=)™ Tep) umn(-:0)9(8) ds(8) , cumn € Vi, x Yi } . (3.88)

m=0n=0

By replacing Vy,, Vy7, and Vjc\,ll’%b @ Vﬁé’ﬁiﬁ by \7]6\,11, )716\,?2 and ﬁﬁl’cﬁ& in the least squares prob-

lem (3.69), we again can improve the constant C by a factor of about 1 /2, and the same can be
done in Theorem 3.41.

In three dimensions, the stability gain described above is even more significant, but technically more
involved. To see this, we replace W; C [0, N;]? in the estimate (3.22) by W; C {(m,n) € W, |n < m}
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and obtain
NJ’ m 1 N]
2m+1)2(2n+1)% < om + 1)? om+1)72 == 2m+ 1)%(m+1)(2m+3
> | )*( ) mZZIO( );( ) 3;::0( )°( ) )

(m,n)eﬁ/j
1

= 35N+ D(N; + 2)(16N; + 62N} + 62N, + 15), (3.89)

where we used the upper bound from (3.22) as well as the first four formulas of Faulhaber. The

fourth formula of Faulhaber reads >77_; gt = 3—1071(71 +1)(2n +1)(3n? + 3n — 1) (cf. e.g. [71]). To

examine by what factor the stability constants improve when replacing W; with W}, we divide the
square root of the upper bound in (3.89) by the upper bound in (3.22). Here, we obtain a term that
decreases strictly monotonically in IV; € N, so achieves its largest value for N; = 1. This yields that
the constants C' in Theorems 3.39 and 3.41 can be improved by approximately a factor of 1/4. We

further recognize that the order of these constants in Nj can be reduced from O(N?) to O(N j5/ %).

3.6.2. SPLITTING IN BORN APPROXIMATION OF HIGHER ORDER

Our criterion from Section 3.5 for identifying multiple scattering effects involving both ¢g; and g2,
namely that the corresponding summands have sparse representations in the subspaces V]C\}l’fﬁfz
or VJC\?Q’%N see (3.66), no longer works for scattering orders p larger than 2. This is because a
scattering process is no longer uniquely determined by which component the wave was first scattered

on and last scattered on. For example, the summand Fq(p,q%ql can no longer be distinguished from
F(Sp)

q1 ’
which is associated to ¢, i.e., Fq(f?%ql is wrongly assigned. To get an impression of how many
summands are incorrectly assigned, we write out the expansion (3.2) for p = 3 and p = 4, and we
mark these wrongly assigned summands with boxes. For p = 3 we obtain

the summand Fq(f?ql,ql in the expansion (3.2). They are both assigned to the far field operator

B = RS 4 B + (Pt + R
+ Fq(i)qhqz + F(1(137)‘127(I1 + Fq(i)qz,qz + Fq(i)qlm + Fq(zg,)quQ + Fq(i)qQ:‘h)
and for p =4
FED = FEY 4 FED + (F, + B,

+ Fq(i)ql,qz + Fq(i)qmm + F<1(i)q27q2 + Fq(i)qhm + Fq(z?’,)quqz + Fq(237)‘127q1
+ Fq(i)qhqhqz + Fq(ﬁ)QLQZQI + Fq(14,)ql,q2,q2 + F(J(;{)‘J%QLQI + Fq(147)l]27111a(I2
+ Fq(i)qz,qzm + Fq(ﬁ)qz,qz,qz + Fq(;l,)ql,qhm + F‘1(24»)(11’(I17€I2 + FCI(;)QLQZHI
+ Fq(247)q1,qz,q2 + Fq(24,)q2,q17q1 + Fq(247)qz7q1,qz + Fq(24,)qz,q2,q1) :

We conclude that for arbitrary scattering order p > 3 in total absolutely

p

2y (2% -

p—2
1) =2> 2" —2(p—1) =2 -2
=3 =0

and relatively
2 —2p 2P —2p

P2l optl 2

N[
S~—

=
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summands of the expansion (3.2) are wrongly assigned, so in the limit case p — oo half of the
summands in the Born series expansion, splitted half-half between Fy, and Fy,. These considerations
relate to the problem formulations from Subsection 3.4.1 and Section 3.5.

For the RPCP formulation from Subsection 3.4.2 the situation is different. We modify the
aim of this problem formulation, namely to recover the far field operator Fj, corresponding to
the second scatterer’s component from Fj; by approximating this component in VX,?Q and the
difference F, — Fy, in Wcll, cf. (3.48). Particularly, we no longer suppose the low rank component

to approximate F,. For p > 3 only summands of the form Fq(Q'..,ql,u.,qz are wrongly assigned
since summands of the form F(I(R._,,ql, Fq(f?..,,qQ and Fq(zl) q can be well approximated in Wy , see
Theorems 2.11, 2.19 and 3.5. As above, we conclude that for arbitrary scattering order p > 3 in

total absolutely (2P — 2p)/2 = 2P~1 — p, so relatively

gor

»~t—p 271 —p € [L
5’21 ol 7 9p+l _9 14

)

PN

and in the limit case p — oo quarter of the summands in the Born series expansion are wrongly
assigned. Of course, for the operator part Fy,, which we want to reconstruct, this means the same
number of incorrect assignments as before.

At first glance, it seems unattractive to use our developed methods for high values of p or even
for the full far field operator Fj due to the large ratio of wrongly assigned summands in the Born
series expansion. However, if we look at the formula (3.1) for uZZ’S_l,),,qjl, we realize that due to the
decay behavior of the fundamental solution (cf. e.g. [31, (3.105)] for d = 2) and the disjoint support
of the scatterer’s components, each change of the scatterer’s component during a scattering process
leads to a damping of the corresponding summand in the Born series. For those summands that
are incorrectly assigned, such a change of the scatterer’s component occurs at least twice and the
average number of changes per summand in the Born series also grows with p. This leads us to
assume that, although for the full far field operator Fj half or quarter of the summands in its Born
series expansion are wrongly assigned, these summands only make a little contribution already for
moderate values of p. In fact, this is validated by our numerical tests in Chapter 4.

3.6.3. GENERALIZATIONS FOR J > 2 SCATTERER COMPONENTS

In this section we no longer restrict ourselves to the case J = 2 but permit the scatterer D to consist
of J > 2 components, see Assumption 3.1.
In this situation, the Born far field operator of order p € N associated to ¢ can be expanded as

J P
< < I
Fq(_p) - Z Fq(j_p) - (Z Z Fq(jf,...,qu> ’
j=1 =1 (1 ensit) €41, I\ (U {5})
which reads for p = 2
J
<2 <2 2
FD = YR 4 ( 3 Fq(jl)ml) . (3.90)
j=1 (J1,92) {1, T3\ (5.4) 11<5< T}

Based on (3.90), we consider a similar least squares problem as (3.67), for which the theorem below
gives a stability result. For J = 2 this theorem coincides with Theorem 3.39.

Theorem 3.43. Suppose that Fy, F? € HS(L?(S41)), let ¢; € R and N; € N with N; 2 kR;
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for i =1,...,J and define for j #1

(2N;+1)(2N; +1)

ifd=2,
o) Wemedd
T ) el Nt Wik g)
9 5 Zfd = 3 .
(klej—cil) 3

We assume that, for j=1,...,J,

l§‘\/Cj’l(\/Cj,l+2(2Nj—l—l)—l— > \/Cj7m) <1 ifd=2,
J

m#j , m#l
J o ) ’
l; VCia(Cia+ 8T (N + 5) + #z B JOm) <1 ifd=3.
J m#j,m

Denote by F Fq q and F F5 a0 JU=1,...,J,j #1, the solutions to the least squares problems

J J

S B T c,cl
Fq:Zqu+Z Foj s F EV ) q],qzevj

Jj=1 J=11#j

5 J J
§ LS ) ) cj cj,c
Fq _Zqu+Z quz’ GV 50 ngzEVNWz’

Jj=1 J=11#]

respectively. Then,

= e - 5 :
1Fyy — Fy llfis < (L= My)7HEF — Fyllis,  j=1....J.

Proof. Choosing V; = vaf'j for j = 1,...,J, and Vyp1 = ViR, 5+, V2 = V%!, in Theo-
rem 3.15 and summing up the upper bounds for the cosine of the minimal angle between these
subspaces as given by Propositions 3.37 and 3.38 yields the result. 0

Analogously to (3.71), we further consider a related (weighted) ¢! x ¢! minimization problem,
whose stability is covered by the theorem below. For J = 2 it coincides with Theorem 3.41. For this
purpose, we modify the objective function ¥ : HS(L2(591))(7*) — [0, 00) by

\II(FQU . ‘7FQJ’FQ17(I2’ te ’F(IJv(IJ—l)

J ~ J ~
21 ||7'CjFQj||Zl><fl + 2 Z Hﬂj,chqj,qunggl ifd=2,
=17 ” (3.91)
Zl ||7-Cg HZ% Jrl><£ + Z Z ”7:2],cl qj,qug ifd=3.
J:

2n+1 2n+l><£2 +1

Theorem 3.44. Suppose that F, € HS(L?(S41)), let ¢; € R? and N; € N with N; 2 kR;
forj=1,...,J, such that

4(J2—1)(2N;+1)?
T
mingm (kle;—em|) 3

6as2-1)  [Io, (Ny+5)?

5
mingz, (kle;—cm|) 6

ifd=2,
C; =

<1 ifd=3.

We assume that F0 € VN and F , € V]C\;’Cji,l i, 0=1,...,J, j#1, are such that

(Z A ER, <
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for some 69 > 0. Moreover, suppose that Fg € HS(L?(S% 1)) and 6 > 0 satisfy

§ > 6o+ ||Fy — Flllns,

and let (ﬁgl, e ,ﬁgJ,l?’gl7q2, . ’ﬁgJ,qu) € HS(L2(S41))7*) denote the solution to
NminimiZGN \IJ(FQN s 7FQJ7 Fq17q27 tee 7Fq(]7qJ*1)

(F‘Il ""7F‘ZJ7FQ11C127"'7FQ(]1C1J71)

J J
F) - (Zqu +Z qu,ql>HHS <6

subject to ‘

with ¥ from (3.91). Then,
~ ~ -1 .
Py — Fyllfis < (1=Cy)” 46%,  j=1,...,J.

Proof. The theorem follows similar to Theorem 3.41 from the mapping properties (3.8) and (3.9) of
the generalized translation operator and from Lemma 3.22, see also the proof of [55, Thm. 6.5]. [

Remark 3.45. (a) As before, provided k|c; — ¢| < 2(N; + N;+d/2) for j,l =1,...,J, j #1, the
stability bounds in Theorems 3.43 and 3.44 can be improved when replacing C;; by

(2N;+1)(2N;+1) i
= 3 i

1611 (Ni+5)(Nit3) ..

0 W d=3,

and C; by

4(J2—1)(2N;+1)? <1 ifd=2,

1
~ mlnl;ém(klclfcmD 2

C; = 3 Qg
64(72-1) [[i, (Vi+3) (<1 ifd=3.

9 ming 4, kle;—em

(b) Further improvements can be obtained by taking reciprocity into account as it is described in
Subsection 3.6.1. This involves replacing the subspaces V]c\fj and V]C\f]c]lvl EBV]C\}Z’S{,j forj,l=1,...,J

with j # I, by Vi, from (3.85)-(3.86) and by Viy'y, from (3.87)-(3.88), respectively.

The RPCP formulation of the far field operator splitting problem from (3.50) can be generalized
to J > 2 scatterer’s components by modifying the objective function similar to (3.72). In order
to do so, we suppose d = 2, and we assume to have a priori knowledge on the location of K < J
scatterer’s components D; for j € {j1,...,jk}, such that there exists a ball BpLr(c'?) satisfying

DjQBRLR(CLR),jE{1,...,J}\{j1,...,j[{} and ’CLR—CJ">RLR+Rj,j:j1,...,jK.

This assumption is similar to Assumption 3.1, and it is visualized in Figure 3.7 for a concrete
example, where J =4, K =2, j; = 1 and jo = 4. As a consequence, Fy,; can be well approximated
in the subspace V]C\ij with N; 2 kR; for j = ji,...,jk and the remaining part of the far field
operator Fy — 3. cii icr4(Fg; + Fy;q) can be well approximated in WX,TR with NMR > ERLR.
Here, Fy, 4, are the approximations of multiscattering components in VX,]JC]{[Z for j # . This motivates
to modify the objective function in (3.57) for A > 0 according to

(L, F,

s Fyy s Fay o Faj gy - - ,quKil,qu)

= e+ A 30 (I17e Fyllaxe + 1 Te; e Foyallaxe) -
],lG{]L»]K}J?ﬁl
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FIGURE 3.7. Scatterer consisting of J = 4 components D;, j = 1,2, 3,4, (solid) with
balls containing D;,D4 and Dy U D3, respectively (dashed).

By solving the associated minimization problem we obtain approximations of all far field operator
components Fy., j = ji,...,jk, with a priori known position. The remaining far field operator
components are assigned to the low rank component and thus not accessible. As the stability
analysis was already technically involved for only one sparse component, we do not establish a
stability result for this approach, but we provide a numerical example, see Example 4.7.






CHAPTER 4

NUMERICAL TESTS FOR FAR FIELD OPERATOR SPLITTING

Before we present and discuss concrete examples to illustrate the performance of the far field
operator splitting methods proposed in Sections 3.4 and 3.5, we comment on their numerical
implementation. At this point, we restrict ourselves to the two-dimensional case. With exception
of the final Example 4.7, the scatterer D = Dy U D5 is supposed to consist of two well-separated
components, i.e., Dj C BRj(cj) for some ¢; € R? and R; >0, j=1,2, with |1 — 2] > Ri + R»
(cf. Assumption 3.1). We set ¢; := ¢|p, and ¢2 := ¢|p,. To simplify our simulation of the far field
operator, cf. Example 2.5, we assume ¢ to be piecewise constant by considering constant functions ¢;
and ¢o.

4.1. REMARKS ON THE IMPLEMENTATION

4.1.1. SIMULATION OF THE (NOISY) FAR FIELD OPERATOR

Let N € N be large enough such that N > kR, where R > 0 satisfies supp ¢ C Br(0). We simulate
the exact far field operator F, by a Nystrom method as described in detail in Example 2.5 to obtain
an approximation

27 = bt
Fyi= T (5 @oit) 0 €S

Here, we set L := 2(N + 1) and
~ . T . 277'
Z; = 0; := (cosy,siny) with ¢y := (I — 1)f forl=1,...,L.

This choice of L guarantees L > 2N + 1 and L even. Moreover, we specify a relative noise
level d,¢ € [0,1) and simulate a complex uniformly distributed random matrix N € CX*% | whose
Frobenius norm is given by &;e1||Fy|/ns. By setting Fg := F,+ N we obtain a noisy version Fg
of F; to the absolute noise level 01|/ Fq|rs-

We also simulate the far field operator components

2 o LxL ,
FQj = f (ugj(mm’en))lgm,nSL € (C ) J= 1727

corresponding to the two scatterer’s components individually by using the Nystrom method for the
choices ¢ = ¢;, j = 1,2, and we compare them to the results F,, j = 1,2, of our reconstruction
methods by evaluating the relative reconstruction errors

HFth - FthHHS

[ Fyllas
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4.1.2. DISCRETE FAR FIELD OPERATOR TRANSLATION AND FOURIER COEFFICIENTS

Given ¢ € R? we define the discrete version of T, from (2.45) by
F— T.F for F e CF*L with T. := diag (eikgl'c, e eik;L'C) e CxL,
Given b, c € R? we then obtain the discrete version of Ty from (3.3) by
F v Ty F := T,FT;  for F € C'*F
with T% = (T¢)" = T = T_. denoting the conjugate transpose of T.. We further write T := Tec-

For having access to the Fourier coefficients A = (am—N—2n—N—2)1<m,n<r, Of a far field matrix F'

as introduced in the beginning of Section 2.4 we define for the Lth root of unity w := e ¥ the
Fourier matrix

[0 - (NHD) m2(N+1) L~ (NHD)(E@N+1) T
W0 wN 2N . W NENtY)
' W0 Wl w2 o W (@NTY) .
FL = 0 0 0 ecC .
w w w w
w wl w W2N
W0 W W2N+1 WN@N+1) |

We then have the relations A = Fp F and F = FglA by using the definitions
F1LG = 2 F,GF; d  F'G = ~FiGF, for GeClL
L = ﬁ L L an L = % L L or € .

Here, we mention that due to the choice of L as an even number, the (0,0)th mode in the Fourier
space is at the position m =n = L/2+ 1 = N + 2. Practically, Fr, (and fL_l) can, up to scaling,
up to swapping halves of each column in the definition of F'y, as indicated by the horizontal
line, realized by the (fast) Fourier transform. Since we fixed the basis ((Z,0) — e (Z)e—n(0))mn
of L?(S' x S1) and not ((Z,0) — €,,(Z)en(0))m.n in the beginning of Section 2.4, the here generated
Fourier coefficients must be mirrored at the axis {n = 0}.

4.1.3. MATRIX NORMS

We are consistent with our norm notations of the previous chapters as introduced in Notation 2.7,
i.e., the matrix norms used here coincide with the operator norms noted in the same way when
interpreting a matrix F € C**! as a finite dimensional operator. In this sense, we mean by || F ||y
the entrywise ¢! x ¢! norm of F7F, so of the matrix of Fourier coefficients of F. We further denote
by ||F||s the Frobenius norm of F, by || F|| the spectral norm of F, so its largest singular value,
and by || F||nue the nuclear (or trace) norm of F', which is the /! norm of its singular values. Finally,
we denote by ||F| ;1 the entrywise £* x ¢! norm of F.

4.1.4. SPLITTING BY THE CONJUGATE GRADIENT METHOD

We assume approximate knowledge about the locations of the individual scatterer components
to be given, i.e., we assume to know ¢; € R? and R; > 0 such that D; C Bpg,(cj), j = 1,2. To
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ensure N; 2 kR;, we make the choice
Nj = [%k‘Rj-| for j = 1,2, (41)

which in earlier works turned out to be suitable, cf. [50, Lem. 3.2], see also Remark 2.12 (i) and
Example 4.3 below.

In the following we use the abbreviations V; := V]c\}] and V;; = ]C\;j”c]i,l for j,1=1,2,j#1, and
introducing the truncation or cut-off functions Qn; and Qn; n, for j,l = 1,2 by

fmn iflm—N—=2<Njand [n— N —-2| <N,

for F = (fm,n)lgm,nSL
0 else,

(QNj,NZF)m,n = {

and Qy; := Qn; n,;. With the help of these definitions, we decompose the orthogonal projection
onto V;; on the discrete level by

Py CH L — clxl F — Py F = (T_¢;—c, 0 F ' 0 Qn, N, 0 Fr o Tey ) (F)

and the one onto V; by setting P; := P; ;.
We know from Section 3.3 that the least squares problems (3.17) and (3.67) are equivalent to solving
the corresponding linear block system, cf. (3.13). For (3.17), this leads to computing F'1, Fy € CE*E

such that 5
I P1Pa Fi| _ Png . (4.2)
PPy I Fy P F,
Analogously, the least squares problem (3.67) can be tackled by computing Fy, Fy € CF*! such
that

1 PiP2 PiPi2  PiPa2 F, P1F§
P12P1 P1poP2 I P12Pan Fi, Py o F° '
Po1Pr PaiPy PoiPio I Fs, Paa Fy

for some Fy9, Fo1 € CEXL. Since the block operators on the left hand sides of (4.2) and (4.3)
are hermitian and positive definite under the assumptions of Theorems 3.20 and 3.39, we solve
these systems with the conjugate gradient (cg) method. This is described for the second system in
Algorithm 1, cf. e.g. [60]. Here, we denote the block operator on the left hand side of (4.3) by M.
The block structure can be realized by using cell-arrays and defining customized functions for the
Frobenius norm and inner product, the addition and the product with scalars. The a priori known
data error is given by 0 = 0yel||Fg¢|lns. Since Fg is not necessarily in Vi + Vo + Vi 2 + Vo1 and
therefore not necessarily in the range of the block operator M, we use the discrepancy principle as a
stopping criterion for preventing data overfit, cf. [44, Sec. 7.3]. We cannot expect our reconstructions
to be arbitrarily accurate. On one hand, this is due to the fact that the exact far field operators F'y;,
that we aim to recover, are not in V;, j = 1,2. On the other hand, as explained in Section 3.6.3,
some parts of the Born series expansion (3.90) are wrongly assigned when solving the least squares
problem (3.67).
To incorporate the reciprocity relation we define

1
Ri:CHE s ehh F o RiF = (F + P.«flip((flip(F,2))",2)) ,

where .x denotes the elementwise (or Hadamard) product of matrices, P := ((—1)""")1<mn<L,
and flip(-,2) mirrors a matrix along its second dimension. The operator Ry ensures the symmetry
of the Fourier coefficients according to (3.80). Consequently, we obtain for the exact discretized
far field operator that R1F, = F,. Furthermore, this symmetry according to (3.80) is preserved
under addition, under scalar multiplication or under application of projections P; and P;; + P ; for
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Algorithm 1 Far field operator splitting by conjugate gradient method

Input: Noisy far field matrix F‘S wave number k, a priori knowledge on locations ¢; , co, R; and
Ry, maximum number of fcg 1terat10ns Imax, absolute noise level § > 0 and fudge parameter 7 > 1.
Output: Approximations Fq1 and Fq2 to far field matrix components F'y, and F'g,.
1: Set N;j = [ekR;/2] for j =1,2.
% Initialize RO — [Png,PQFg,Pl,gFg,Pg,ng], D = RO and F© = [0,0,0,0].
3: for [ =0,1,2,--- ,lhax dO
4:  Update a; = ||R D)124/(DO, MDW)yg,

5: FUD) = pU +akD()

6: RHD = RO — qp MDW),

7 B = IRV /IIRD % and
3 D+1)_R(l+)+5D()

9. if |[R™Y|lgs < 76 then

10: Set lpax = (.

11: end if

12: end for

13: Set [Fq17ﬁ1q27 ~, N] — F(lmax+1)'

J, 1 =1,2, 5 # 1. If the exact far field operator F is provided in Algorithm 1 as an input, then
the cg approximations satisfy the symmetry (3.80) as well and no modification of the algorithm is
required.
If, on the other hand, a noisy version F(S is given, replacing F5 by R1F5 enforces the approx-
$5C5,C

imations to fulfill (3.80). Alternatively, projecting onto the modlﬁed subspaces VN and VN N,
from (3.84) and (3.87), j,l = 1,2, j # [, can be used for noise filtering. Here, we replace Pj.j by

P CE*l sl F s Py F = (Toe, 0 F o R10Qn, 0 Fr o Te,)(F).

For taking (3.82) into account we consider the pair (F'1 2, F'2.1) as one object. We simply evaluate
P12 and use its result to determine the related evaluation Po ;. This means that we leave Pq o
unchanged while substituting P» 1 with

Py : CXE XL F s Py F i= (Tocyc; 0 F; L 0Ra0FL 0 Tayer)(F). (4.4)
Here, R5 is given by
Ry :CXL s cE*E | F s RyF := P.«+ flip((flip(F,2))",2).

In case of J > 2 scatterer’s components, a modification of the block structure is required. The block
system (4.3) then becomes

i ... P1Py P1P1,2 oo PiPrga ][ Fa i [ Png ]
PP N | PsP12 oo PyPri- F, _ | PsFy
P12P1 oo PPy I oo PP Fio P1LoF?

| Prg-1P1 ... Pjj-1P; Pjj-1Pi2 ... I 1L Fr-1 | P F) |

Accordingly, every cg iterate can be realized by a cell-array consisting of J? matrices of dimen-
sion L x L.
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4.1.5. SPLITTING BY FAST ITERATIVE SOFT THRESHOLDING

Algorithm 2 Far field operator splitting by FISTA

Input: Noisy far field matrix Fg, wave number k, a priori knowledge on positions ¢; and cg,
maximum number of FISTA iterations ly.x, regularization parameter p > 0, initial guess
F=[F,Fy,Fi5 Fy 1] tolerance € > 0.

Output: Approximations Fq1 and Fq2 to far field matrix components F,, and F,.

1: Set w = 1/5.
2: Initialize HO = [HY, HY, H) HY)] = F,

3 FO = [F, FY F{), F{)] = F,
4 RY =F) —(H" + HY + H{") + H})) and
5: t1 = 1.
6: for l =1,2,--- ,lnax dO
7. Update FO = [F{) FY F) F{)] with F{) = Moy, e (HY +wR®),
8: FY = Myyeye,(HS 0 +wRD),
9: (1l)2 = Mupere 2(H1 —i—wR(l)) and
1
10; F = Maycren (HS), +wRD),
2
11: tii1 = T/ 144t \/214_4%’
19: ) — [H(l+1) H§l+1) H(l+1) H(l“)} = O 4 %(F(’) _F(zf1)) and
13: RO+ — Fg (H(l“)+Hg’+1)+H(l+1)+H§’j1))
14:  if |[RUV||gg < e then
15: Set lpax = L.
16:  end if
17: end for

18: Set [Fyy, Fyy,r,~] = Flmas),

We only assume approximate knowledge on the positions ¢; € R? of the scatterer components to
be given, i.e., we do not need any knowledge about their sizes R; > 0, j = 1,2. As proposed in
Sections 3.4 and 3.5 we can then solve the £ x ¢! minimization problems (3.27) and (3.71), whose
Tikhonov functionals read on the discrete level

(F1,F3) = ||F = (F1 + Fo)llis + o[ Tes Fallo e + [T, Fallocer)

and

(F1, Fy, 1, Fy1) = |Fy— (Fy+ Fa+ Fia+ Fa)llis + (176, Fillon
+ | Tea Fallorcor + 1 Terea Fr2llercer + 1 Teier Pl )

with || - ||g1xe given as in Subsection 4.1.3. For a suitably chosen regularization parameter p > 0,
it is equivalent to compute the unique minimizer of these related Tikhonov functionals, cf. [49
Prop. 2.2]. From (D.2) together with Example D.2 (ii) we know that these minimizers satisfy the
fixed point equations

Fy | (T_clo]—“L—loswoJ-“LoTcl)(Fler(Fg—(F1+F2)))
Fy | | (Tee, 0 Frl 08up 0 FiLoTe,)(F2 + w(Fy — (F1+ F2)))
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for 0 <w < 1/2 and

F1 ( 01O~FL OSU_,MO./—"LO%I)(Fl—Fw(Fg (F1+F2+F12+F21)))
Fy . ( CQO‘FL OSwuofLO%Q)(Fngw(F (F1+F2+F12+F21)))
F1’2 o (Tcl_CQO.F oSwuo]:Lo'TchQ)(F12+w(F (F1+F2+F12+F21)))
Fi. (T-ep—cy 0 Fp ! 0Suu 0 FL o Teye)(Fon+w(Fy— (F1+ Fo+ F12+ Fa1)))

for 0 < w < 1/4, respectively. Here, the nonlinear thresholding function S, is given as in (D.3).
To simplify the notation we define for j,l = 1,2 and wp >0

Mwu,cj,cl = 7-—cj,—cl o fL_l o Swu oFrpo 7-63',61 . (45)

The minimizer of the previously defined Tikhonov functionals can be approximated as in (D.5) by
the Iterative Soft Thresholding Algorithm (ISTA), which in its original formulation computes for an

initial guess F(©) = [F§0)7 Fgo)] a sequence of iterates according to

l l l l
FU+D) _ [ ne ] = [MW’CM(Fg)+M(Fg_(F§)+Fg)))) 1=0,1,2,...

F{Y Moppeses(FY +w(FS — (F + FP)))

and in the second situation for an initial guess F(©) = [Fgo), Fg ), Fg% go

i+ Moeren(FY) +w(Fy = (FY) + Fy) + Py + Fi))

pe) _ ﬁfﬂ B LWQMF$+MF2<F“+F“+FQ+FQM
_ =

S Moperes(FUy +w(FS — (FV + FY 4+ F, + F{)))

.%T’ Meperer(FO 4+ w(F — (FO + FO + FO, 4+ FO))

for i =0,1,2,.... In [34, Thm. 3.1] the strong convergence of the ISTA iterates to the unique
minimizer is shown. As suggested in [6], this method can be accelerated by applying Mup,ej e, in
each step not to the previous iterate, but to a carefully selected linear combination H ) of the two
previous iterates. This leads to the Fast Iterative Soft Thresholding Algorithm (FISTA), which is
described in Algorithm 2 for the second situation. As in the previous subsection, the iterates and
auxiliary iterates can be realized by cell-arrays, which requires customized functions for the addition
and the product with scalars. We use Morozov’s discrepancy principle as a stopping criterion. The
case of J > 2 scatterer’s components can be implemented similarly to the previous method by
modifying the cell-arrays no longer consisting of 4 but of J? matrices each. The reciprocity relation
can be implemented by replacing Muy.c;.c; by

N 1 )
Mwu,cj,cj = T—Cj,—Cj O-FL ORI OSL«J/L OFL 07:23',0]' ) J= 1727

and by viewing (F'12, Fa,1) as one object, letting My,c; ¢, unchanged and substituting Mo,cs,c;
by Pa1 from (4.4).

4.1.6. SPLITTING BY SOLVING RPCP wiTH A FISTA TYPE METHOD

We further lower our required knowledge on the scatterer’s geometry in the sense that we only
assume to know the position ¢y € R? of the second scatterer’s component, i.e., the position ¢; € R?
of the first component is unknown. As proposed in Section 3.4 we then can solve RPCP by solving
the coupled minimization problem from Theorem 3.34. The choice of A in this theorem corresponds
to A = L~3/2, due to scaling of the Fourier transform. As before, for a suitably chosen regularization
parameter p > 0, it is equivalent to minimize the related Tikhonov functional

(L.8) = IF) — (L + )l + (1L e + M| Tes Slerer)
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Algorithm 3 Far field operator splitting by solving RPCP via FISTA type method

Input: Noisy far field matrix Fg,

number of proximal gradient iterations lmax, regularization parameter p > 0, coupling parame-
ter A > 0, initial guess F' = [F'1 2, F'5], absolute noise level § > 0 and fudge parameter 7 > 0.

Output: Approximations F@ and Fquqz to far field matrix component Fg,, and to differ-
ence F'y — Fy,.

wave number k, a priori knowledge on position cs, maximum

1: Set w = 1/3.

2. Tnitialize HV = [H" HY)] = F,

3 FO = (L0 §0) = F.

4z R =F —(HY + HY) and

5: t1 = 1.

6: for {=1,2,--- ,lnax dO

7. Update FO = [LO, §0] with L = D, (HY +wR®) and
8: st — Mw)\,u,CQ,cz(Hg) —i—wR(Z)),

14/ 14487

9: tl+1 -

10: HD — [12{%+1)’Hg+1)] = F0 4 %(F“) _ F(Z‘I)) and
1 R — RO (HTY 4 HUTY),

12 if |[RUV||gg < 76 then

13: Set lpax = L.

14:  end if

15: Set [Fyy g0, Fop] = FUmas),

16: end for

to obtain an approximation S of F'y,. From (D.2) and Example D.2 (ii)—(iii) we conclude that the
unique minimizer of this functional fulfills for all 0 < w < 1/2 the fixed point equation

L| | DuuL+w(F—(L+S))
) B Mw}\%c2,c2(s +W(Fg - (L + S))

with singular value thresholding function D,,, given as in (D.4) and M, .., given as in (4.5).
The resulting method, as it is proposed in [100, 79], is described in Algorithm 3 below. We further
implement the acceleration from [79]. Alternative methods for solving RPCP numerically are
collected and compared in [13].

In general we cannot expect to reconstruct the far field operator F'y; to the first component, unless
we are in the situation that the Born approximation is already a sufficiently good approximation
to the full problem. Therefore, in most of the cases it does not make sense to compare the
approximation thqz of the low rank part from Algorithm 3 with F,,. What we are actually
approximating here is F'; — F'y,. For this reason, we do not plot 53e1 in our numerical tests for this
method and instead calculate

1,2 ||(Fq - qu) - thqz”HS

el ”Fq - quHHS

€

as a measure for the reconstruction quality of the low rank component. The situation of J > 2
scatterer’s components, of with K < J locations are known a priori, can be realized as described in
the end of Subsection 3.6.2. This involves the implementation of cell-arrays consisting of K2 + 1
matrices each, one matrix for the low rank component and one matrix for the sparse components
each.
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FIGURE 4.1. Top left: Geometry of scatterer (solid) and a priori information on

location and size of components (dashed) for varying number L of discretization

points (Example 4.1), varying wave number &k (Example 4.2) and varying relative noise

level d,e1 (Example 4.6). Top right: Relative errors of far field operator splitting for
RPCP formulation in Example 4.1 for varying A and fixed L = 128. Bottom: Relative
errors of far field operator splitting for varying number L of discretization points in
Example 4.1. Left: Choice of A = L~3/2 according to Theorem 3.34. Right: Optimal

choices of A by trial and error up to accuracy 10~%.

4.2. NUMERICAL TESTS

We study the accuracy of our numerical reconstructions by the three methods as described in
Subsections 4.1.4-4.1.6, depending on the different quantities that occur in the associated stability
results in Chapter 3. Although all these methods are based on simplified situations, we choose the
full discretized far field operator F; (cf. Examples 4.1-4.5) or its noisy version F' g (cf. Example 4.6)
as an input, i.e., we do not replace this operator by its Born approximation of order two. We have
discussed in Section 3.6 that by this procedure a large number of components in the Born series are
nevertheless assigned correctly, and the components that are not only have little impact, which is
reflected by the resulting relative reconstruction errors. To get an impression of how large the effect
of multiple scattering is in the individual examples, we also compute the relative error

HFq — (Fq1 + FQ2)||HS

gl

9
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FIGURE 4.2. Eigenvalues A of Fy (left) and of S, = I +ik/(47)F, (middle) for the
scatterer from Example 4.1 for L = 94. Right: Errors of F, being normal and of S,

being unitary for varying L.

and we add it in gray into the error plots. We create double logarithmic plots for those examples
for which we want to analyze orders of the relative errors in certain quantities. Otherwise, we only
present the relative errors on a logarithmic scale.

In the first three examples we fix the same geometrical setup for the scatterer as depicted in
Figure 4.1 (left). Here, we set ¢ := —0.5Xp, + Xp,, i.€., the associated index of refraction n? is
piecewise constant with value 0.5 on Dy, value 2 on Do and value 1 outside D. The actual sharply
chosen size of both objects is Ry = Re = 5, and their distance is |¢; — c2| = 60. We investigate
the performance of our methods for varying number of discretization points L, for varying wave
number k and for varying quality of the a priori information. Hereby, the investigation depending
on the radius also involves the investigation of the rule (4.1) for choosing the subspace dimension in
the cg method.

We mention that in all examples below the assumptions of the related stability Theorems 3.39, 3.41
and 3.34 are not fulfilled. Nevertheless, the three methods converge in all considered cases, which
suggests that our developed stability results are not optimal.

Example 4.1 (Varying number L of discretization points). As a first example, we study the
sensitivity of our methods with respect to the number L of discretization points. We fix £ = 1. The
minimal radius R > 0 such that supp g C Br(0) is approximately given by R = 46. Consequently,
choices of L larger than 93 are meaningful and we choose different values of L between 94 and 200,
as shown in Figure 4.1 (bottom).

Before discussing the results of our methods, we want to substantiate that it is sufficient to resolve
the far field operator Fy with L = 94 or at least with L = 128 = 2([ekR/2] + 1) discretization
points, where the latter is suggested by (4.1). Doing so we plot the eigenvalues of the far field
operator F; and of the scattering operator S, from (2.9) for L = 94 in Figure 4.2 (left, middle).
From Proposition 2.4 (d) we know that the eigenvalues of F; lie on the circle of radius 47 /k centered
at 147 /k in the complex plane and that S, is a unitary operator, so its eigenvalues must lie on
the complex unit circle. This is visually fulfilled for both plots. From Proposition 2.4 (c) we also
know that F'; is a normal operator. Therefore, we further plot the relative errors, measured in the
operator norm || - ||,

[Py = FyFy 18,5~

14 Fl 1545l

for F'y being normal and for S, being unitary, respectively, against L in Figure 4.2 (right). It can
be seen that both curves decay rapidly in L, and that they already reach very small values of the
order of magnitude of 1072 at L = 94 and of 10713 at L = 128. The locations L = 94 and L = 128
are marked by vertical gray lines.

We make the following assumptions and parameter choices. For the cg method we assume the
dashed circles in Figure 4.1 (left) to be known a priori, and we choose according to (4.1) as subspace
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FIGURE 4.3. Relative errors of far field operator splitting for varying wave num-
ber k in Example 4.2 and L according to (4.1), i.e. L = 2([ekR/2] + 1). Left: Choice
of A = L3/2 according to Theorem 3.34. Right: Optimal choices of A by trial and error

up to accuracy 1074

dimensions 2N; + 1 = 2Ny + 1 = 2[5¢/2] + 1 = 15. For FISTA we assume the positions marked by
crosses in Figure 4.1 (left) to be known a priori. We further choose p = 3 x 104, Finally, for the
third method, we assume only the position marked by a cross inside the kite to be known a priori,
and we choose A = L™%/2 and 1 = 3 x 107%/\.

The relative errors of the resulting reconstructions are shown in Figure 4.1 (bottom left). It can
be seen clearly that the results of the first two methods are nearly independent of the choice of L,
whereas the third method is very sensitive in regards to this choice. The RPCP method works best
for small L, but does not achieve the accuracy of the other two methods in all cases for this choice of
A. The accuracy of the cg method and FISTA is at about 1% relative error. This described behavior
of the relative errors is consistent with the dependence on N in the stability bounds (3.70), (3.75)
and (3.58). The dotted gray line illustrates O(L), which is the theoretically expected order of the
error curves for the RPCP method. The difference F'; — F, for small L is also well approximated
by this method, as can be seen from the purple curve.

To examine whether the choice of A given by Theorem 3.34 is optimal, we fix the number of
discretization points at L = 128 and run the third method again for A € [3 x 1074 21 x 1074].
This choice of L is marked in the other two error plots by vertical gray lines in order to link
the three plots with each other. The results are shown in Figure 4.1 (top right). The suggested
choice A = 12873/2 ~ 7 x 10~* from Theorem 3.34 and the optimal choice A = 1 x 10~ are marked
by vertical gray lines. For the relative error associated with the kite we observe a reduction of the
relative error of around 5% to 0.7% when reducing A from X = 1287%/2 to A = 1 x 1073. It is an
open question how such an optimal choice of the regularization and coupling parameter can be
generally constructed.

Consequently, we test the RPCP method against L for a second time. This time, we do not
choose A as in Theorem 3.34 but instead determine it as best as possible through trial and error, up
to an accuracy of 107%. The plots of the resulting errors in Figure 4.1 clarify that the RPCP method
is, with a few exceptions, nearly independent of L when proceeding as described, and it produces in
most of the cases comparably good reconstructions of the second far field operator component to
the other two methods. In both error plots in Figure 4.1 (bottom), a peak in the error curve of the
RPCP method stands out at L = 118, which cannot be explained by our stability Theorem 3.34. ¢

Example 4.2 (Varying wave number k). We further study the performance of our methods for
varying wave number k. We again fix the geometrical setup as shown in Figure 4.1 (left), and
we choose k uniformly distributed between 0.5 and 4.5. For each k we define the number L of
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discretization points according to (4.1), i.e. L = 2([ekR/2] + 1) for R = 46, and we assume the
same a priori knowledge as in Example 4.1. For FISTA, in all runs we set x = 3 x 10~ and for
the RPCP method we set as a first test A = L™%/2 and u = 3 x 107*/) and as a second test we
maintain this selection rule for u, but choose A optimal by trial and error up to accuracy 1074
The results are shown in Figure 4.3. We first note that all three methods work best for small
values of k, which is reasonable due to the associated stability bounds, but it is difficult to identify
an order in k from the plots. The cg method yields, especially for larger values of k, slightly better
reconstructions than the other two methods, and these reconstructions are satisfying up to k = 3.5.
FISTA already starts generating unsatisfying results for k£ = 2.5. When comparing the left and the
right plot, we again observe that for the RPCP method, the selection rule for A from Theorem 3.34
is not optimal. In the right plot the RPCP method reaches a similar accuracy to FISTA. Another
interesting observation is that the relative measure of the multiple scattering effects oscillates slowly
with values between 12% and 25% and remains at the same level on average. In the right plot,
all relative errors appear to approximately follow these oscillations, but they increase on average.
This illustrates the correlation between the approximation quality of the solutions of the splitting
problem by the solutions of the minimization problems and the amount of multiple scattering.
Numerical tests, that are not shown here, clarify that the relative measure for multiple scattering
effects tends to zero for k& — 0. O

Example 4.3 (Varying quality of a priori knowledge B R; (¢j), j =1,2). In the previous examples,
we assumed very sharp information about the localizations of the scatterer’s components. It may
not always be possible to obtain this. Therefore, we next investigate how sensitive our methods
are to less optimal knowledge on the position and on the size of one of the components, see
Figure 4.4 (top left). We again fix k = 1. The radius of the smallest ball Br(0) containing all
dashed circles in Figure 4.4 (top left) is approximately given by R = 52, so we choose in all
tests L = 2([ekR/2] + 1) = 144 discretization points. In the first test, we assume to have access to
the black marked circle around the nut shaped scatterer, and at the same time we vary the assumed
knowledge on the position of the kite shaped scatterer marked in gray. Hereby, we only change
the first coordinate ¢ € R of ¢y, and we choose Ry as small as possible such that the kite shaped
scatterer is still contained in Bg,(c2). If we were to leave Ry unchanged, the cg method would be
at a clear disadvantage. This can be seen from the second test in this example: We fix the black
marked information about the localization of the kite shaped scatterer, and at the same time we
vary the known size of the nut shaped scatterer as marked in gray. This means we change R; while
leaving ¢; unchanged, which clearly only affects the cg method.

In the first test, we run all three methods, and we plot their relative errors against ¢ as shown
in Figure 4.4 (bottom). At this point, we select the regularization and coupling parameters as
in Examples 4.1 and 4.2. For the RPCP method this means two scenarios, setting A = L~3/2
(cf. Figure 4.4 (bottom left)) or choosing A optimally by trial and error (cf. Figure 4.4 (bottom
right)). As expected, all methods yield their best reconstruction for the kite shaped scatterer
for ¢ = 35, since this choice leads to a circle with the smallest possible radius R, which is reflected
by the best possible sparsity property of the associated far field operator component. For smaller
and larger ¢ the reconstruction quality of the kite shaped scatterer gets gradually worse, where the
cg method and the RPCP method are more sensitive than FISTA. The reconstruction quality for
the nut shaped scatterer seems to be relatively robust in the cases of the cg method and FISTA. By
comparing the left and right plots, we observe that the RPCP method achieves the accuracy of the
other two methods only when the optimal choice ¢ = 35 is used. All in all, the RPCP method in
particular, but also the cg method, turn out to be sensitive to the choice of c.

Since only the cg method requires a priori knowledge on R1, we only run this method for the second
test. We compute N; according to (4.1) and plot the relative errors against Nj. This is shown in
Figure 4.4 (top right), and it also allows us to decide whether our selection rule for N; is appropriate.
The reconstruction quality for the kite shaped component remains unchanged provided R; and
thus N; are chosen large enough to ensure D; C Bpg,(c1) and N1 > kR;. For Nj € [5,13] the
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FIGURE 4.4. Top left: Geometry of scatterer (solid) and varying quality of a priori
information on locations Br, (c;) of its components (dashed) in Example 4.3 (optimal
choices highlighted). Top right: Relative errors of far field operator splitting by cg
method for varying a priori knowledge on size of nut shaped scatterer in Example 4.3.
Bottom: Relative errors of far field operator splitting for varying a priori knowledge on
position of kite shaped scatterer in Example 4.3. Left: Choice of A = L~3/2 according
to Theorem 3.34. Right: Optimal choices of A by trial and error up to accuracy 104

approximation quality for the nut shaped scatterer is convincing, whereas the choice N1 = 7, which
comes about due to (4.1), leads to the smallest relative error. This optimal choice is marked by a
gray vertical line. It turns out to be less problematic to choose Nj too large then too small, where
we can choose it about twice as large as necessary until the reconstruction gradually fails. %

So far, we have always considered the same geometry of the scatterer. We now change this by
first varying the distance between the two components in Example 4.4 and then varying the size of
one of the components in Example 4.5, and we analyze how the relative errors of the reconstructions
are affected by this. Here, we choose k = 1 and the regularization and coupling parameters in the
same way as before.

We briefly comment on how the orders in R;, j = 1,2, and |c; — ¢2] in the stability bounds
from (3.70), (3.75) and (3.58) link to the slopes of the error curves when plotting them on
a logarithmic scale. For s € {Rj, Rs,|c1 — ca|™!} these bounds are qualitatively all of the
form g(s%) := (1 — as?)~1/25 with s# € (0,1/a) for some a, 3,6 > 0. For s small enough, ex-
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panding In g(s”) as a Taylor series around s? = 0 yields
Ing(s®) =nd+ %sﬁ +0(s%9).

Actually, we observe for certain areas of the error curves dependencies of the form Slns. These
cannot be linked to our theoretical results, but enables a comparison of the three methods with
each other. We reiterate that in all tests, we are not in situations where the assumptions of our
stability theorems hold, i.e., in the above modulation, as® < 1 would not be guaranteed.
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FIGURE 4.5. Geometry of scatterer (solid) and a priori information on location and size

of components (dashed) for varying distance |¢; — ¢o| in Example 4.4 (|e; — e2] = 60

highlighted) and for varying size of nut shaped component in Example 4.5 (R; = 5
highlighted).
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Example 4.4 (Varying distance |c; — c2| between scatterer’s components). We study the accuracy of
our numerical reconstructions depending on the distance |¢; — ¢2| between the two components of the
scatterer. We fix their sizes as well as the position of the nut shaped scatterer and vary the position
of the kite shaped scatterer as shown in Figure 4.5 (left). The radius of the smallest ball Br(0)
that contains all dashed balls is approximately given by R = 85. Therefore it is meaningful to
run all tests with I = 150 discretization points. For the cg method we assume the dashed circles
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component in Example 4.5. Left: Choice of A = L~3/2 according Theorem 3.34. Right:

Optimal choices of A by trial and error up to accuracy 10~4.

in Figure 4.5 (left) to be known a priori. Accordingly, we choose the subspace dimensions given
by (4.1) as 2N; +1 = 2Ny + 1 = 2[5e¢/2] + 1 = 15. For the FISTA algorithm we assume the
positions marked by crosses in Figure 4.5 (left) to be known a priori. Finally, for the RPCP method,
we assume only the positions marked by crosses inside the kites to be known a priori.

In Figure 4.6 the corresponding relative errors are shown. As can be assumed from the related
stability estimates in Chapter 3, all reconstructions improve with increasing distance between the
components. The errors of the cg method behave for distances |¢; — ca| larger than about 30
like O(|e; — e2|7!). The FISTA errors decrease a bit more slowly for increasing distance. As a
consequence, the cg method yields slightly better reconstructions than FISTA for |¢; — ¢ large
enough. However, FISTA seems a bit more robust for smaller values of |¢; — ca|. It is nicely
confirmed that our relative measure for multiple scattering also decreases for increasing values
of |e1 — ¢o|. For the far field operator of the kite shaped scatterer, the RPCP method reaches the
same accuracy as the other two methods, when setting A optimally by trial and error. An order
in |e; — ¢l is hard to identify from the plots for this method, but it seems comparable to FISTA in
case of the kite shaped scatterer. %

Example 4.5 (Varying size R; of the first scatterer’s component). Next we investigate the
reconstruction quality depending on the size of one of the scatterer’s components by varying the
size of the nut shaped scatterer while leaving the kite shaped scatterer unchanged as depicted in
Figure 4.5 (right). Here, we fix |¢; — ¢2] = 60, and we choose

Ry € {3,4,5,6,7,8,9,10,11,12}, SO Ny € {5,6,7,9,10,11,13,14,15,17}
according to (4.1) in the cg method. We resolve the far field operators by L = 150 discretization
points, which is meaningful since the whole scatterer is contained in the ball of radius R = 46
centered at the origin. For FISTA and the RPCP method, assume the a priori knowledge on the
positions of the components as in Figure 4.5 (right).

The associated relative errors are plotted in Figure 4.7 on a double logarithmic scale. As expected
from the stability bounds in Chapter 3 the errors grow with increasing R;. In case of the cg method
we observe both error curves to behave more or less like O(R;) for Ry small enough. In the case
of FISTA both error curves increase a bit more slowly in R;. For the kite shaped scatterer the
stability bound (3.75) suggests the related relative error to be independent of R;, which we clearly
do not observe. At least for the kite shaped scatterer the third method reaches the accuracy of the
other methods when defining A by trial and error. All reconstructions appear to be successful up to
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approximately R; = 9. For larger values of Ry, in particular the cg method starts to fail, whereas
the other two methods seem to be more robust for larger values of R;. The RPCP method provides
worse reconstructions of the low rank component for smaller values of R, which is not explainable

by our theory.

O

We proceed by investigating in Example 4.6 below how the reconstructions change when we
include additional noise in the data.
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FIGURE 4.8. Relative errors for varying relative noise level d,¢; in Example 4.6, best (left)
and worst (right) results of 15 runs.

Top: Choice of A = L=3/2 according to Theorem 3.34. Bottom: Optimal choice
of A =9 x 10~% by trial and error.

Example 4.6 (Varying relative noise level d¢). We fix the same geometrical setup as in Ex-
amples 4.1, 4.2 and 4.3, which is shown in Figure 4.1 (left), and we assume the same a priori
knowledge on the scatterer’s location as in Examples 4.1 and 4.2. Further, we specify uniformly
distributed relative noise levels 0o between 1% and 10% and we simulate for each of them a
related noisy version Fg of F; as described in Subsection 4.1.1 for L = 150 discretization points.
Here, for every 6,¢ we run our three methods 15 times, in each run generating a different complex
uniformly distributed noise matrix IN, and we calculate the relative errors of the best and the
worst reconstructions. As a stopping criterion in the cg method we use the a priori known absolute
noise level § = 41| Fyllns. For FISTA we choose the same regularization parameter as before,
so jt = 3 x 1074, and for the RPCP method we set A optimally for the noise free case as investigated
in Example 4.1, i.e. A =9 x 1073 and p = 3 x 107%/\. The results are shown in Figure 4.8.

It can be seen that both FISTA curves as well as the error curve of the low rank component of
the third method increase with the same order 1 in ¢, and that the other error curves grow less
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quickly. For all methods we expect their errors to behave like O(6ye1) = O(6) = O(||Fy — Fg||HS),
see (3.70), (3.75) and (3.58). While for the second and third method, the curves of the best and
worst cases look nearly the same, the cg method slightly depends on the actual pattern of the noise
not only on its magnitude measured in the Frobenius norm. The third method again does not give
useful reconstructions for A = L=3/2. O

The final example below covers the generalization of our methods to more than two scatterer’s
components as described in Subsection 3.6.3.

Example 4.7 (Three scatterer’s components). We consider a scatterer consisting of three com-
ponents, a nut shaped scatterer D;, a kite shaped scatterer Dy and an elliptic scatterer D3 as
shown in Figure 4.9 (top left) by defining the contrast function ¢ = 0.5(xp, + XD, + XD;). We
fix the wave number k£ = 1, and we vary the individual distances between the scatterer’s compo-
nents by varying the first coordinate ¢ of the position ¢ = (¢, —25)" of the kite shaped scatterer
between ¢ = —50 and ¢ = 50. For all runs we choose L = 160 discretization points, which is
meaningful since the ball of radius R = 58 centered at the origin contains all dashed balls in
Figure 4.9 (top left). For the cg method we assume the dashed circles from Figure 4.9 (top left)
to be known a priori. According to (4.1), these choices Ry = R3 = 3 and Ry = 4 lead to the
subspace dimensions 2N; +1 = 2N3+ 1 =7 and 2Ny + 1 = 9. While the distance between D1
and Ds is fixed at |c; — e3] = 60, the distances between Dy and Dy and between Dy and Ds vary
with smallest values of about 42.4 and largest values of about 85.4, respectively. For FISTA we
assume all three positions marked by crosses in Figure 4.9 (top left) to be known a priori and
we choose ;1 = 13 x 1079 as a regularization parameter. For the RPCP method we only assume
the positions of the kite and the elliptic shaped scatterer to be known a priori. Furthermore, we
set A = L~3/2 according to Theorem 3.34 and p = 13 x 1075/X as a first test and then, as a second
test, 4 = 13 x 107° /X and X optimally by trial and error up to accuracy 10> such that the relative
error of the kite shaped scatterer is as small as possible. The resulting relative errors can be found
in Figure 4.9 (top right, bottom left). Finally, we set A and p as in the second test, but we add 5%
complex uniformly distributed noise to the data as described in Subsection 4.1.1. The results are
shown in Figure 4.9 (bottom right). For the cg method and FISTA we further calculate the relative
reconstruction errors 5f’e1 of the third component, and for the RPCP method we compute

b3 . H(Fq —Fy - qu) - (Fq1,q2,q3 + Fy 0 +Fq2,q1)HHS
el |[Fq—Fg — Fo,|lus

instead of 5%6’% as a relative reconstruction error of the low rank component. The gray curve, as a
measure for the magnitude of multiple scattering effects, corresponds to

HFq - (Fm _FQ2 _F%)HHS
1 Fql[ms

It can be clearly seen that for all three runs the cg method works best, followed by FISTA. For
the kite shaped component, the RPCP method produces slightly worse reconstructions, but for the
nut shaped component, the reconstructions of the RPCP method and FISTA are almost equally
good. Even for optimally chosen A by trial and error, see Figure 4.9 (bottom), the relative errors of
the kite shaped component are for the RPCP method worse than for the other two methods. The
here achieved improvement is for all three curves less significant than in the previous examples.
Concerning FISTA, the minimal distance of a scatterer’s component to the other components seems
to slightly affect the reconstruction quality of the related far field operator component in the noise
free case. For example the FISTA curve of €2, has little bumps for ¢ = —30 and ¢ = 30, which
corresponds to the nearest positions of the kite to the ellipse and to the nut, respectively. The
bump for ¢ = —30 is also observable for the related error curve of the RPCP method. On average,
the ellipse’s far field operator component reconstruction of FISTA becomes better the further away
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FIGURE 4.9. Top left: Geometry of scatterer (solid) and a priori information on location

and size of components (dashed) for varying position of kite shaped component in

Example 4.7 (¢ = (0, —25) T highlighted). Relative errors of far field operator splitting.
Top right: Noise free data, choice of A = L~3/2 according Theorem 3.34. Bottom left:

Noise free data, optimal choices of A by trial and error up to accuracy 10~°. Bottom

right: 5% complex uniformly distributed noise added to data, optimal choices of X in

noise free case.

the kite is. Both no longer occurs in the noisy case, where no ¢ dependence of the FISTA curves is
observable. There is no clear trend concerning the ¢ dependence of the cg errors curves identifiable
in the noise free case. In the noisy case we observe little bumps of the cg error curve of the kite
shaped scatterer around ¢ = —30 and ¢ = 30, and the reconstruction quality of the other two
components improves as the distance between the kite and these components increases. %






CHAPTER D

FAR FIELD OPERATOR COMPLETION

Assumption 5.1. We suppose that the scatterer D C Bpg(c) is contained in some ball with
radius R > 0 centered at ¢ € R, Here, the scatterer may consist of several disjointly supported
components but, unless otherwise assumed, is viewed as one component.

Moreover, we assume that ug® cannot be observed on some 2 C Sa=1 % S4=1 We mention
that (x,0) € Q means, that far field measurements cannot be observed along direction & when
illuminating along direction 6.

Definition 5.2. Given the non-observable set Q C S! x S' we define the infinite dimensional
subspace

Vo = {G e HS(L3 (s \ Gg = / xo(+,0)a(0)g(6) ds(6), a e L5 x s+h},
Ga—
which we refer to as subspace of non-observable far field operators. With Py, : HS(L2(S9™1)) — Vo
we mean the orthogonal projection onto Vg with respect to (-, - )pg, which restricts the integral
kernel of a Hilbert Schmidt integral operator onto {2.

We define the associated restricted or observable far field operator by Fylqge := (I —Py,,)F,. With
this notation, the goal of far field operator completion is to recover Fy, from Fj|qe. Particularly,
this involves the restoration of the non-observable part By := Fy|qec — Fy.

From formula (2.6) we can conclude for fixed 8 € S9! that the far field pattern u®(-;0) is
a real analytic function on S% ! as a multiple of the Fourier transform of qug( -;0) restricted
to kS, Due to the reciprocity relation we further obtain analyticity of ug®(2; - ) on Sa=1 for
fixed & € S !. In [52] it has been shown that u,® is even joint real analytic on Sd=1 x gd-1
which indeed is a stronger result that cannot be deduced from the analyticity with respect to
both variables individually. Consequently, the completion problem has a unique solution as long
as (S9! x §91)\ Q has an interior point, and this solution can be obtained by analytic continuation
due to the identity theorem for analytic functions (cf. [61, Cor. 1.2.9, Thm. 2.2.6]). Nevertheless,
this is a well-known ill-posed problem due to the non-continuity of the related inverse, i.e., small
errors in the observed data can lead to big errors in the completed data (cf. e.g. [78, Chap. 2] or [59,
Chap. 3]). This justifies the need for regularization.

Since we view D as one individual scatterer this problem is already linear and, consequently, it is
not necessary to take the Born series into account when solving the completion problem only. This
is investigated in Section 5.1.

However, it turns out that solving the splitting and the completion problem simultaneously, which
is covered by Section 5.2, improves the stability of the developed problem formulations for certain
configurations of the scatterer. This again requires a consideration of the associated Born series
due to the nonlinearity of the problem. The results stated here are a combination of the results
obtained in Sections 3.4 and 3.5 for splitting only and Section 5.1 for completion only.



104 CHAPTER 5. FAR FIELD OPERATOR COMPLETION

2r 2
£ S £
2o 2w 2
< < <
0 0
0 s 2m 0 T 27 0 T 27
arg & arg & arg &

FIGURE 5.1. Non-observable set 2 before (gray) and after (black) taking reciprocity
into account together with corresponding symmetry axis (blue). Left: Missing far field
measurements for certain 8. Middle: Missing far field measurements for certain Z.

Right: Missing backscattering data withing certain angular range.

Assumption 5.3. In order to take the reciprocity relation (2.8) into account we impose a further
assumption on ), namely that its complement Q° := (S9! x S4=1)\ Q is symmetric in the sense of
reciprocity, i.e.,

Q=% with QY = {(-0,-%) € S x S| (7,0) € QY. (5.1)

If this is not the case we can extend the kernel of the observable far field operator Fylqge by (2.8)
from Q° to Q%". Consequently, this is no restriction.

Example 5.4. We illustrate the extent to which taking the reciprocity relation (2.8) into account
reduces the size of the non-observable set ) in two dimensions by three examples, as shown in
Figure 5.1. In all situations the original €2, with Q¢ possibly not satisfying (5.1), is plotted in gray,
and the reduced 2, by extending the data by reciprocity as it is described in Assumption 5.3, is
plotted in black. Furthermore, a blue line marking the symmetry axis for the reciprocity is added
to the plots. In Figure 5.1 (left) we choose
Q= {(2,0) € $' x §'| (arg @, arg 0) € 0,27] x [¥, 7},

which corresponds to missing far field data along illumination directions @ for arg @ € [27/3,77/6].

By taking reciprocity into account the relative size |Q|/(47?) of  is reduced from 1/4 to 1/16 so by
a factor 1/4. In Figure 5.1 (middle) we choose

Q= {(2,0) € 5 x | (arg@,arg ) € [5, 5] x [0,27]} .

This means that for all illumination directions 8 € S%! the far field is non-observable along &
with arg & € [r/2, 57/6]. In this situation, taking reciprocity into account reduces ||/ (472) from 1/6
to 1/36 so by a factor 1/6. In the last case as shown in Figure 5.1 (right) we choose

Q= {(572,0) € St x S'||arg@ — (argz + 7)| < %} .

This corresponds to missing backscattering data within an angular range of 27 /5. Since (2 is already
symmetric to the blue line, the relative size |[Q2|/(47%) = 1/5 of Q cannot be reduced by taking
reciprocity into account. O
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FicURE 5.2. Top left: Support of scatterer. Bottom left: Real part of discretized full far
field operator F;. Middle: Real parts of discretized observable far field operator F'y|qe
before (top) and after (bottom) taking reciprocity into account. Right: Real parts of
discretized non-observable part B, before (top) and after (bottom) taking reciprocity

into account.

5.1. COMPLETION ONLY

Before we proceed to our theoretical investigations, we consider a numerical example for the
underlying split of the far field operator completion problem in two dimensions.

Example 5.5. Suppose d = 2 and choose the wave number k& = 0.5 and the contrast function ¢ as
in Example 3.2, i.e., ¢ = xp, +2XDp, for a kite shaped scatterer D; and a nut shaped scatterer Dy as
shown in Figure 5.2 (top left). We simulate the discretized far field operator F'y with L = 150 equally
distributed illumination and observation directions, which is shown in Figure 5.2 (bottom left). In
contrast to Example 3.2 we assume that we cannot observe all entries of F';. We suppose to have
no measurements of the far field pattern available for illumination directions € with arg € [r/2, 7]
and for observation directions & with arg® € [r,57/3], i.e., the non-observable set is given by
Q= {(@,0) € $" x §'| (arg @, a1g ) € ([r, 7] x [0,2]) U ([0, 27] x [F,7]) } -

We define the discretized observable far field operator Fy|qge := (fimn)m,n as it is shown in Fig-
ure 5.2 (top middle) by

fm,n =

0 if (Z,,0,) € Q,

with Z;, 0; given as in Example 2.5, ] = 1,..., L. By setting the related non-observable part
as B, := Fy|qc — Fy (cf. Figure 5.2 (top right)) we have that
F,loc = F,+ B,.

We further extend Fy|qc as described in Assumption 5.3 by taking the reciprocity relation into
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account, see Figure 5.2 (bottom middle). The corresponding non-observable part is shown in
Figure 5.2 (bottom right). O

From Definition and Corollary 2.21 we know that Fj, can be well approximated in V§;. Furthermore
by definition, non-observable part of the far field operator fulfills B, € V. We will exploit these
two properties in the following. We begin again with a least squares formulation, followed by a
(weighted) ¢! x ¢! minimization and a coupled L; and ¢! x ¢! minimization.

5.1.1. COMPLETION BY SOLVING A LEAST SQUARES PROBLEM

Given the observed far field operator Fy|qge, the non-observable set Q C S9! x §9~1 and N € N
such that N 2 kR, we seek approximations F € V§ and B € Vq of the far field operator F, and
of its non- observable part B, satisfying the Ieast squares problem

Flo, 2 F,+ B, inHS(LA(S% ). (5.2)

As elaborated in Section 3.3, the condition number of (5.2) is given by the cosecant of the minimal
angle between V5 and Vg, which can be related to an uncertainty principle. This is given in the
proposition below.

Proposition 5.6. Suppose that G € V5 and H € Vq for some c € R? N €N, and Q C 8§91 x §4-1,

Then,
G Hyus| [P =2,
[GlusHlus = | Qe02VEl g g

Proof. For d = 2, using Holder’s inequality, (2.52) with p = oo, (2.55) and the Cauchy-Schwarz
inequality yields

1
(G, Hins| = (G, H) 2| < IGlleelHllzs = [1TeGllrellHlpr < o l1TeGllaxa | ]l

| TGl 00| H]| 1o 1T
: d 2m 17eGllezxel| Hl2 < (%r)\m

|G s | H [|zs -

For the last estimate we used that ||TeG|[poxm < (2N + 1)? according to Remark 2.10 (iii).
For d = 3, we set W := supppyn(TeG) C [0,N]? (cf. Remark 2.18 (ii)). Then, the same

calculations but replacing (2.55) by (2.62) lead to

1
€2 2
(G, H)ns| < HTcGHel et N Hl < Y. Cm+1)@2n+1)) |GlluslHllns
(m,n)eW
\/ (N +1)2/]Q
D5 2 Dicusl s = S0V .
n=0
Here, the last equality follows due to (2.38). O

In the following theorem, Fg|Qc denotes a noisy version of a restricted far field operator Fy|qe,
which cannot be observed on  C S9! x §9=1. This means, that F[;;|Qc = (- 77\;Q)F5S for some
noisy version Fg of F,. We assume that a priori information on the approximate location and size
of the scatterer is available, i.e., that the ball Br(c) is known, and we establish a stability estimate
for the least squares problem (5.2) for N € N such that N 2 kR. This can be concluded from
Theorem 3.13 together with Proposition 5.6.
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Theorem 5.7. Suppose that Fy, FY € HS(L*(S471)), QC S x $%1, N € N with N 2 kR
and ¢ € R¢ such that C < 1, where

¢ - {(QNH)\/@ ifd=2,

2

WHPIOL g g,

4

Set Fg’QC = - PVQ)Fqé and denote by F, and ﬁg the solutions to the least squares problems

Fq|QCL:Sﬁq+Eq7 ﬁqGV]C\[,EqGVQ, (5.3&)
LS 75 |, & ~ ~
Floe = F) + B, Fo eV, BSeva, (5.3b)
respectively. Then,

2

=5 2
1Fy — Fyllas HS

.
1By = Byllfis

IN

(1= C*) Y Flac = Fyloe
(1= Y Flac = Fylos

IN

2
HS "

5.1.2. COMPLETION BY SOLVING AN /! x ¢! MINIMIZATION PROBLEM

If a priori knowledge of the size R of the scatterer is not available, but at least its approximate
position ¢ is known, we can as before replace the least squares problem (5.2) by an associated
(weighted) 1 x £ minimization problem. Let

be an approximate decomposition of the exact restricted far field operator with F’g € V5 and Eg € Vaq,
e.g., obtained by solving the least squares problem (5.2). Furthermore, let Fq‘s\ qc denote a noisy
version of the restricted far field operator and define the objective function by

~ = T.F, ifd=2,
U - (Hs(L2(Sd71)))2 N [0, 00)7 \I/(Fq,Bq) — ” c~qH€1><£1 ' - (55)
| TeFyl| o ol ifd=3.
V2n+1 V2n+1

Theorem 5.8. Suppose that F, € HS(L?(S% 1)), Q C S971x 891 N € Nwith N 2 kR and c € R?
such that C < 1, where
. (2N:21)|Q| ifd=2,
= 4
QDT i = 3.

We set Fylqe := (I — Py,)F,, and we assume that ﬁg € V5 and Bg € Vq are such that
| Fylos = (F7 + Byllus < &

for some §9 > 0. Moreover, suppose that F5|Qc = (I - PVQ)F(;S for some F[f € HS(L*(S4 1))
and § > 0 satisfies
§ > 8o + || Fylae — Fylocllns

and let (Fg, B,) € HS(L?(58971))2 denote the solution to

minimize W(Fy, B,) subject to [F7 | — (Fy + Bg)|lus < 6 (5.6)
(FQ7BQ)
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with U from (5.5). Then,
~ ~ —1 ~ ~ -1
IF) — Follis < (1—-C) 46> and  ||BY — Bl|lfis < (1-C) 467, (5.7)

Proof. This proof is structured as the ones of Theorems 3.23 and 3.24. We set F = ﬁg — ﬁ’qé

and B 1= Eg — Eg, and we denote the ¢ x £O-support of 7;}?’(? by W. As in the proof of Theorem 3.23,
we can show for d = 2 (cf. (3.32))

ITeFllpxe < 20TeFlloxaw)
and for d = 3 (cf. (3.36))

I17E, o, < 2TeF|p (W) -

1
NorEs \/2n+ NorEs \/2 F1

Proceeding as in the proof of the same theorem, further yields
46 > || F|lfs + 1 BllEs — 21(F, Byus| = [IF s + |1 Bllfis — 2(TeF, TeB)us| -
For d = 2, we conclude with Holder’s inequality, (2.52) and the mapping property (2.55) that
- - - - - - 1.~ -
46" > | Flifis + 1Bllfis — 21 TeFlle=1TeBllrr = 1Fllis + [ Blliis = —[ITeFlle | Bl
- - 2 - - - 2 - -
171 + 1| Bllfis — —MWTeFllerxe w1 Bllza = IF1fis + I Bllfis — —VIWIQIIFus | Bllns

_ - 1 ~ 2
> (1= 0) |1Flfas + (IBllus — —/IWII11F s )

For d = 3, we obtain with the same calculations due to Holder’s inequality, (2.59) and (2.62) that

v

45 > |Flfs + 1Bs — 2ATeF I TeBlle > WFls + 1BIs — 5o ITeFlla o 1Bl
+
> 1Fls +1Bls — 1Pl o lBll
~ ~ 1
> | Flls + 1Blks - 7( X em+) 2n+1) V190 F sl Bl
(mn)GW
2 WPl + 1Bl - 3 Cn+ 11001 s Bl

= |Fll&s + |1 BllAs — =(N + 1)/ Fllus|| B
|l + 1Bl ﬂ( + 121001 Flls | Blns
~ ~ 1 ~ 2
2 2
> (1= ) |1Flfhs + (I1Blus - 5-(V + 12 [l Fllas)

where we used (2.38) in the last equality. In both cases, dropping the second summand yields the
first inequality and interchanging the roles of F and B in the last estimate the second inequality. O

In the following remark, we collect some observations related to the question of how the low rank
property of F, can be utilized to solve the far field operator completion problem.

Remark 5.9. It is ongoing research to adapt techniques from the proofs in Subsection 3.4.2 for
developing an uncertainty principle that involves W5 and Vg or equivalently for bounding HPWJCV Py |-
In particular, this would be necessary to investigate the stability of an associated (coupled or non-
coupled) nuclear norm minimization problem in the manner of the previous stability theorems.
In this remark, some approaches are collected to derive such an uncertainty principle, and it is
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explained why they are not appropriate.
Suppose G € W§; and H € V. On the one hand, we can estimate that

(G, H)us| < [|Glloel[HI| < Vrank G||Gllus| H]|,

where rank G < 2N + 1 for d = 2 and rankG < (N + 1) for d = 3 (see Lemma 3.26 and
Remarks 2.10 (iii) and 2.18 (v)). However, it is not clear how to bound ||H|| in terms of || H ||ug for
generating a prefactor smaller than one. One the other hand, Lemmas 2.24 (d) and 2.25 (d) suggest
to start estimating

Q .
I - 12ci Y A ifd=2,
(G, H)us| < [|Gllz=|H]/Lr < \/‘ﬁ . . o

17eGlle o |Hlus ifd=3.

Unfortunately, this produces, compared with the proofs of Propositions 3.27 or 3.28, two additional
sums over infinite dimensional index sets, which cannot be controlled. The most promising attempt
is the following. For simplicity we consider d = 2 but the same can be done for d = 3. Given a
singular system (oy,; Un, Vn)1<n<rank G for G, we can expand u, and v, in terms of (T_ce;)n and
(T_ce;); and compare the resulting formula with (2.24) to conclude that

U (Z) v, (0) Z Z/\ Tcen(z Z2)T_.e(0) + Z Z A T—cem(Z)T-ce(0)

Im|<N I€Z |m|>N |l|<N

for some coefficients A7, ;, € C. Again according to Lemma 2.24 (d) this yields

ﬁrankG
(G, H)us| < [|Gllr=[|H] 1 < Z m)mitllerxcer | H s -

By Parseval’s identity we have that

[ il = lllzzgss onllzzsny = 1 for 1< n < rank .
but, unfortunately, it is not clear how to use this for bounding the factor S5"F & ||(A?, Dmitllerse in
terms of ||G||lus. All in all, the problem lies in the combination of G belng only expandable as finite
sum along one dimension and of the additional sums that come into play when not starting with

‘(G H>HS| < HTCGHKOCXZOOH HHélxél )
which is not appropriate in this situation, since we know nothing about the support of the Fourier

coefficients (d = 2) or of the spherical harmonics components (d = 3) of H. O

So far we have not yet been able to develop a stability theory for a nuclear norm minimization
problem for far field operator completion. However, we have investigated another third scheme,
which we describe in the next subsection.

5.1.3. COMPLETION BY SOLVING A COUPLED L! AND /¢! x ¢! MINIMIZATION PROBLEM

If in addition to the unknown size R of the scatterer the non-observable set {2 is unknown as well,
we can adapt Theorem 5.8 in the sense that we add a penalty term to the objective function that
prevents the L%-support of Bg from becoming too large. Doing so, we follow [55, Cor. 6.4] and
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define for some coupling parameter A > 0

1 ' D .
- = 5 SNTeFylloxer + Al[Byll 1 ifd=2,
PSP e e {lnﬁ lo o+ MByl ifd=3
MPERQNE oy X oy alL )

(5.8)

Corollary 5.10. Suppose that F, € HS(L*(S41)), Q C S9! x §-1 N € N with N > kR
and ¢ € R? such that it holds Cl, Chro <1, where

2(2N+1)? ifd=2
Cy = mA? va=s and Crq =
A {(N+1)4 zfd:37 A0

A2

2 g =2
M =3,

We set Fylqe := (I — Py,)F,, and we assume that ﬁg e V5§ and Ef]) € Vq are such that
| Falor = (Fg + B)lns < do

for some d9 > 0. Moreover, suppose that F‘?’QC = I - 731;9)F(;S for some Fg € HS(L?(S4Y))
and 6 > 0 satisfy
§ > 6o+ || Fylae — Fylocus

and let (ﬁg, B,) € HS(L?(58971))2 denote the solution to

minimize Wy(F,, B,) subject to ||F§’Qc — (Fy+ By)|us < 6 (5.9)
(FWBLI)

with Wy from (5.8). Then,
IFQ — Flts < (1—Ch) " '48%  and  ||BY - Bl|s < (1 - Chg) 1482, (5.10)

Proof. As before we set F := 15(? — ﬁg and B := Eg — Eg. For the case d = 2 we obtain similar to
the derivation of (3.32)

- . 1 ~ -
VAP, B) < 2({1Flxeq) + AlBl ) (511)

Proceeding as in the proof of Theorem 5.8 yields the result since using (2.55), 4ab < (a + b)? for
a,b>0and (5.11) we can bound

- - - 1, ~ . 11, ~ -
2(Tel, TeB)us| < 2 Tel o= |TeBllo < _NTeF | Bl = —S1TeFlloxn Al B L1

1 /1, ~ - 2 1 ~ -
< o (§1TeFlloxe + NBll ) = S WA(F.B)

1 - _ 2
<~ (5ITeFloxnqw) + A Bl

2
W - ~
(/R + i

Wl g ;
(5 17eF s + X191 Blfs)

<

<

A0 A= J

Here, for last step we used the second bound in Lemma 3.22. The case d = 3 follows immediately
by adapting the corresponding mapping properties of the translation operator. ]

Remark 5.11. As explained in [55] the coupling parameter A\ balances how good or bad the approxi-



5.2. SPLITTING AND COMPLETION 111

mation quality of ﬁ}f and Bg should be at the cost of the other.

Furthermore, it can be increased for compensating a large N and decreased for compensating
a large [Q2|, provided the other of these two quantities is comparable small at the same time,
respectively.

A symmetric choice that ensures C) = C) q is given by

2N +1 N +1)?
2:7—1_ford:2 and )\2:( +1)

~—— ford=3.
Y 12

5.2. SPLITTING AND COMPLETION

In this section we solve the far field operator splitting and completion problem simultaneously,
i.e., we aim to recover the far field operator Fy or the far field operators Fy,, and F;, corresponding
to the two components of the scatterer from the observable far field operator Fj|ge. For this
purpose, we combine the results from Section 5.1 with those of Chapter 3, and we suppose that
Assumptions 3.1, 5.1 and 5.3 are fulfilled. We directly restrict ourselves to the framework of
Section 3.5, and we recap the second order Born series expansion of Fy, cf. (3.66), which was the
core equation of Section 3.5, namely

<2 <2 <2 2 2
Fq(_ . Fq(l_ )+Fq(2_ )+(Ff1(1,)tI2+Ft1(2,)ql)'
We further recap that for [ # j the component Fq(jg) can be well approximated in vajj, while
the component Fq(f 7)ql can be well approximated in V]C\fjcji,l By writing Fq§2)|Qc = - PVQ)F(Q)
and Bég) = Fq(S2)’QC — Fq(SQ) the expansion above reads
<2 <2 <2 2 2 <2
Fy=2loe = Fge? 4 FED 4 (Bt + Fly,) + B, (5.12)

where Bég) € Vao.

Example 5.12. We extend the far field operator split from Example 5.5 for illustrating the far
field operator splitting and completion problem. Here, we directly assume 2 to be symmetric in
the sense of reciprocity. By setting D := Fy — (Fy, + F,), which is the component that models
multiple scattering effects involving both scatterer’s components (cf. Example 3.2), we have that

FQ|QC = F(I1+Fq2+D+BQ'

The discretized far field operators components in this equation are shown in Figure 5.3. %

5.2.1. SPLITTING AND COMPLETION BY SOLVING A LEAST SQUARES PROBLEM

The following proposition gives an uncertainty principle involving a generalized subspace V]If/fN and
the subspace Vq.

Proposition 5.13. Suppose that G € V]l\)fN and H € Vq for some b,c € R4, M,N € N,
and Q C S9! x §9=1 Then,

JEDEN D}
1Glnsl|Hllms — %ﬂ“)\/@ ifd=3.
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FicUre 5.3. Top left: Supports of the scatterer’s components. Real parts of discretized
observable far field operator F'j|q- (top middle), of discretized far field operator com-
ponents F, (top right) and F,, (bottom left), of difference D = F, — (Fy, + F,)
and of discretized non-observable far field operator B,
Proof. We proceed as in the proof of Proposition 5.6 and obtain for d = 2
[ T5,cGlloxeo || H [ o VM +1D(2N + 1[Q]
(G, H)us| < \/ 1T6,Gllezxe2 | H| 12 < G las || H [|s -
27 27
For d = 3, we set W := || TcG|| 0«0 and conclude
1
(G, H)us| < : 7G|l [Hll < &l Y, @m+1)En+1) Gl ]
9 HS| > 47T c A 2n+1><fl T L1 > 47T m n HS HS
(m,n)eW
v :
< ( @m+1) Y 20+ 1) |G| H s
m= n=0
( )( +1D)vIQ|
= G las || H g -
O

Based on representation (5.12) we modify Theorem 5.7 in the sense that we no longer search an

approximation of Fy in V§, but in the subspace Vy L+ Vi T V](i}l’c]ffz + V]C\é’%l.

The following can be deduced from Theorem 3.15 by makmg the choice J = 5 with
Vi = V]CVll , Vo = VN2 V3 = V]cvll’?@ Vy = V]cvzz,c]%[l and V5 = Vg .
Here, we use the related uncertainty principles from Propositions 3.37, 3.38 and 5.13.

Theorem 5.14. Suppose Fy, F) € HS(L*(S71)), e1,e; € RY, Ni,No € N with Ny 2 kR,
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and Ny > kRy and Q C S4 1 x S41. We define

(2N1+1)(2N2+1) o

W ifd=2, V@2N;+1)(2N;+1)[Q ifd=2
C = i i and Ci = am ’

%HLI(N1+§)(N2+§) ifd=3, gl (Nj+1)(1;f;+1)\/\ﬂ| ifd=3.

5
(kler—c2])3

where (j,1) € {1,2}%. We assume that, for all (j,1) € {1,2}2,

M, = \FC(\WCJF (2N; + 1) + (2N + 1)) +Cy <1,
Ci1+2C12+Cop < 1.

Denote by Fy,, Fy,, Fyy g0 Fgo 0, Bg and Fgl,FgQ, thqQ, Fq‘;,ql,BfJS the solutions to the least squares

problems

Cj,C|

LS ~ = = = o 7 i >
FQ|QC = Fq1 + Fq2 + th,qz +FCI2741 +Bq’ FCIj € VJC\/Zj ’ Fq]',fn € VNj,Nl ’ Bq €Va, (5'133)

S| LS &6 | p6 70 6
Floe = F), + F, + I, + F

no 70 Cj 770 Cj,C no
w2 T Fgpg T By, Fg €VN, Fy 4 € VNZ_JZW, B, €Vq, (5.13b)

q5,4q1
respectively. Then,
~ ~ -1 .
1By, — Follts < (1= (M +Cy) I, — Fillks,  =1,2, (5.142)
~ ~ -1
1By — Byllfis < (1= (Cr1+2C12+ Ca2))” |IFy — F s - (5.14b)

Remark 5.15. (i) Provided kle; — e2| < 2(N1 + Nz + d/2) the stability estimate (5.14) can be
improved by replacing C' < 1 by C < 1 with

2N1+1)(2N2+1) e
: @N1+1)(2No+1) Ik:\cl—cQ\Q ifd=2,
= 3 i i
16 [[—, (Mi+35)(Not35) .. .
9 1(k|C1—202|)2 22 ifd=3.

(ii) Considering the same scattering object we always have that N > Nj + Ny when comparing
Theorems 5.7 and 3.39. For sufficiently large |c; — ¢2| the stability constants in (5.14) become
smaller than the one in (5.4). Consequently, for the scatterer’s components being near to each
other it makes sense to solve problem (5.3), whereas for them being far away from each other
it makes sense to solve (5.13).

(iii) As described in Section 3.6.1, we can further improve the stability of problem (5.16) by

. . . . . . . C1 co C1,C2 C2,C1

takljlg t}ie re(31pr0~01ty relation into account, i.e. by replacing Vi, , Vi, and V' 'y @& Vi v,
C1 C2 C1,C2

by Vi, Vi, and VNI,NQ. O

5.2.2. SPLITTING AND COMPLETION BY SOLVING AN /! x ¢! MINIMIZATION PROBLEM

Let

Fyloe ~ FQ + FO + FQ . + F2

0
q1,92 92,91 + Bq

be an approximate decomposition of the exact restricted far field operator with f’gj € VJC\;J
and FO € V]c\;]c]{,l for j # [ and Eg € Vq, e.g., obtained by solving the least squares prob-

4;,q1
lem from Theorem 5.14. We slightly modify our objective function ¥ from (3.72) according
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to W : HS(L?(S%1))® — [0, 00) by for d = 2

2
\I/<ﬁq17ﬁ1q2> ﬁqnqm ﬁqzquéq) = Z (H7-cjﬁ‘qj ”Zl x gt T H7-ijczF~1q]':QZ HZl ><€1> (5-153)
]}l;ll
and for d = 3
2
\Ij(ﬁfh’ﬁqzﬂ ﬁmm?ﬁ%,mvéq) = jlz:l <|%jﬁ4j Hél\/mxéf/m + ||TCj,Czﬁf1j,QZ |£1/m><ébm> .
J#l

(5.15b)

Theorem 5.16. Suppose that F, € HS(L?(S%1)), Q C S9! x §4=1 Ny, Ny € N with Ny 2 kRy
and Ny > kRy and c1,cy € R? such that it holds for j,1 = 1,2 that

LONADCNAD 4 L foN; + DEN+ 19 <1 ifd=2,

(klei—e2|)3

Cji = 3N (N
s leaCor2)Cia) 4 (N 4 (N + D)V < 1 ifd =3,

5
(klei—e2])®

and

Cq = * jim \/(QNj+1)(2Nz+1)\Q! <1 ifd=2,
(N (I +1)VIQ <1 ifd=3.

We set Fy|qe := (I—Py,, ) Fy, and we assume that f‘cg € Vf\?] and ﬁc?,-,ql € V]C\;ﬁi,l forj #1and Eg €V
are such that

| Fylae — (Fy + FQ, + Fy oy + Fo

0
q1,92 aq T Bq)HHS < do

for some &g > 0. Moreover, suppose that Fg‘gc = (I—PVQ)Fl;S for some Fq‘s € HS(L?(S?)) and § > 0
satisfy
§ >80 + | Fylae — Floc|lus

and let (ﬁq‘i,f’é,ﬁq&hqw ﬁé’ql,ég) € HS(L?(S?))® denote the solution to

U(F) L FS Y L, S BY)

minimize g1’ 7 g2’ 7 41,927~ q2,q1°

s s 5 5
(Fql ’Ff12 ’Fqug ’Fq2,q1 ’Bq)

subject to ||ﬁg|ﬂc — (}7‘51 + ﬁg +FS L FS

91,92 a2,q1 +§3)HHS < 4§ (5.16)

with ¥ from (5.15). Then, for j =1,2
~ ~ —1 ~ ~ -1
IR — Bl < (1-Cyp) 48 and  |BO—Bils < (1-Co) 48, (5.17)

Proof. We proceed as in the proof of [55, Thm. SM4.4]. We set F' := F, — F(f, B:= Eg — Eg and

for j,1 =1,2, 5 #1, F; = 1?'(2_ — 1?'5]_ and Zf*:'j’l = ﬁ’%m — ﬁ'cfj’ql, and we denote the ¢° x -support

of Te, F’(g and 7;].76[13’%7% by W; and W, respectively. Similar to (3.76) and (3.77) we can show for
d = 2 that
U(Fy, Fy, Fra, Fy1, B) < 2(|Te, Foll (i sy + I Tea B2l (e ey ()
+ 1 Ter.ea Frall @ ety o) + 1 Tesier Foall o xetywap)) - (5-18)

and for d = 3 that
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‘I’(FlanaFlvaZl)<2(||721F1|| (0 gyl (W) )+ 1 Tea Pl (0 W 0 (W)
c1,e (0 e X0 ) (W2) ez,e1 (61/|2n+lxei/m)(wz’l))‘ (5.19)

Using the same arguments as before yields

45% >

— 2|(Fy, Fy)ps| — 2\(F1,F1 2)us| — 2!<F1,F2 Dis| — 2(F1, Bus|
— 2|(Fy, F12)us| — 2(Fy, Fy1)us| — 2|(Fy, B)us|
— 2|(F12, Fo1)us| — 2(F12, B)us| — 2|(Fa1, B)us| -

For d = 2 we obtain due to Holder’s inequality, (3.7) and the mapping properties (3.8) and (2.55)
that

46 > | Fillfs + 1 Fellfis + 1 Fr2lifs + 1P lifs + 1 Bllfs
2

_ W(”’EnFlelxélH7-C2F2||£1><Z1 + | Teyca Fr2ll oot || Tes,er F2,1 |1 x o)
Ci — C2|)3
2 il o -~ ~
_ ﬁ(|’%1F1"€1xfl||7Z1702Fl,2”£1><£1 + ||7VCIF1”51><51 co,c1 , 0l
C|1 —C32|)3
+ ”7—021?‘2HZ1XZI €1,€2 2 ) ﬁ2”21><£1 c2,c1 F ) )

1 - e -
— ;\I/(Fl,F27F1,27F2,laB)HBHL1 .

As in the proof of Theorem 3.41, we use 23,3, ;a;a; = 35,3 ;4 < %(Z
for a1, a9, as,aq4 € R, (5.18) and the Cauchy Schwarz inequality to bound

2 ~ ~ ~ ~
—%|f@%ﬂMwWM%mwﬂmmﬂﬂmmmmﬂﬂmﬂ
Ci —C32|)3

2 ) 7 = ~
_ ﬁ (||7—C1F1||€1 wor [ Ter,eaF1 2\l et seor + | Ter Fillorseen || Te,er F2,1 ||t st
Ci1 — C2|)3

HTea Pollereer | Tes s Pl + 1 Tes Bollr xr | Teasen Fotlleren )

2

> (ITa Fillaco 1T Bllocer + 1 TereoFualloncer [ Tepe Pot Lo
(kler — c2|)3
+ ||721ﬁ1||ﬁlxél |‘7;1,C2F1,2||Zl><£1 + ||721F1||£1><€1 ||7-02,61F271||61><61
+H7-C2F2H€1><€1 ”7-01702F1,2H€1><€1 + H7:22F2HZ1><€1H7:12,61 , xél)
3 o o~ o~ -~ ~
> —————— V[, Fy, Py, by, B)
4(kle; — e2])s
3
>~ (1T Fill e + [ Tea Pl xennn)
(kler — c2l)3

~ ~ 2
+ [ Ter,ea P12l ceryown o) + H77:z,c1F2,1H(zlle)(w2,1))

z—w |1@mﬂmhﬁ¢Wﬂmm+JMHMﬁm+ﬁ%”Bm@
Cl*CQ 3
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12 ~ ~ ~
> - (|Will|FiliEs + [Wal | Balls + [Waal | Fi o
(kler — e2f)

s + [ Wa |l P s ) -

wl—=

Furthermore, we estimate due to the Cauchy Schwarz inequality, (5.18) and 2ab < a?+b? for a,b € R

o 1 - - - _
V(Fy, Fo, Fr 9, Fy1,B)|| Bl > —;\I’(FlaF2aF1,2,F2,1aB)\/’Q|||B”HS

3=

) B _
zZ = (I17es Fillecenyowsy + I Tes Pl cenyomay
e W0) + [ Terer Patlnenyoway) v/ 19011 B s

2 1 ~ 1~ 1 ~ 1~
z — ((!QHW1|)4IITchllle(IQ\IW1|)4HBHHS + (|QWa]) 1| Te, Follus (12 W) | Bl ns

+H7-61762ﬁ1172

1 ~ 1= 1 ~ 1=
(AW 2])3 | Ter e Fr 2l (AW o)) 5 [ Bllus + (91 Wat )7 [ Tes,e P s (191 W1 )7 Bl )

\/‘Q| 12 112 R 2 ' 2
> Y Willl F: Wo || F: W F W I
= - (\/! Ul F s + v/ IWelll Fallis + /W2l Fiellis + /W2l P s
+(\/”“H\/|”2‘+\/|”172’+\/\WQ,1)\B~||12{s>-

Altogether, we obtain for the case d = 2 that
467 = (1= Co)l|Fi s + (1 = Co)lI el + (1 = Cr2) (1P

fis + HF2,1H12—IS) + (1= Cqo)|Bllfs -

For d = 3 we do the same calculations replacing (3.8) by (3.9) and (2.55) by (2.62) and using in the
last step

2 2
< 3 (2m+1)(2n+1)> < (N;+1)° and ( Dy (2m—|—1)(2n—|—1)) < (N4+1D)(Ni+1),
(m,n)EWj (m,n)EWN
(cf. (2.38)) for j,l = 1,2, j # I. This yields the result. O

Remark 5.17. We make similar observations as in Remark 5.15.

(i) Provided k|ep — ea| < 2(Ny + Nz + d/2) the stability estimate (5.17) can be improved by
replacing C;; < 1 by C;; < 1 with

BENINENED 1 L foN; + )N+ 1)) ifd=2,
C.p = (kler—c2|)2 ‘
” a8 [T, (N5 +5) (Vi)
3 k|c1—ea|

+ (N + DV + 1)V ifd=3.

(i) When comparing Theorems 5.8 and 5.16 we recognize that the first is more stable for
small |¢; — c2] and the latter is more stable for sufficiently large |¢; — c2f.

(iii) Our findings from Section 3.6 for far field operator splitting remain valid when considering far
field operator completion and splitting. Particularly, this involves the generalizations to J > 2
components and to higher scattering orders. As described in Remark 5.15 (iii), we can further
improve the stability of problem (5.16) by taking the reciprocity relation into account. O



CHAPTER 0

NUMERICAL TESTS FOR FAR FIELD OPERATOR COMPLETION

In this section, we provide numerical examples to illustrate the performance of our far field operator
(splitting and) completion methods from Chapter 5. We first apply them to synthetic data in
Section 6.2, as we already did in Section 4.2 for the far field operator completion problem. In
Section 6.3 we test our methods on real data provided by the Fresnel Institute, see [7]. Finally, in
Section 6.4, we combine our methods with the factorization method for solving the inverse problem
of reconstructing the shape of the scatterer on the base of incomplete far field data.

6.1. REMARKS ON THE IMPLEMENTATION

6.1.1. SIMULATION OF THE NON-OBSERVABLE SET

Let in the following d = 2. We simulate the exact far field operator as described in Example 2.5
and Section 4.1.1 by choosing L € N sufficiently large and even, equally distributed illumination
and observation directions

P
Z = 0, := (costy,singy)T  with ¢y = (z—1)f7T fori=1,...,L.

The resulting matrix is denoted by F, € CEXL | and by adding complex uniformly distributed
random relative noise IN at relative noise level d,¢1 € [0,1) we obtain a noisy version Fg =F,+ N
of Fy. Of course, it is also possible to choose different numbers of illumination and observation
directions, as will be the case with the real data in Section 6.3, but we do not consider this here for
simplification.

Let Q € S' x S! model the non-observable set. On the discrete level, the associated orthogonal
projection Pq : CEXL — CEXL is given by the pointwise multiplication with the matrix

Pq = (XQ({I}WﬁGn))lgm,ngL € {0, 1}LXL7

by means of which we can write the observable part of Fg, i.e. the given data, as Fg|Qc = Fg — PQFg
and its non-observable part as B, := —PQFS.

According to Assumption 5.3 we suppose that the complement ¢ of 2, which models the observable
set, is symmetric in the sense of reciprocity, i.e., it satisfies (5.1). As a consequence, 1 — P is a
symmetric matrix after swapping either the two halves of each column or of each row, which can
be realized by either using the MATLAB functions fftshift(-,1) or fftshift(-,2). Here, 1 denotes
the L x L matrix whose entries are all equal to one. If this symmetry of the observable data is
not given, we can complete Q¢ and the observable far field data Fg]Qc according to (3.79), i.e., we

replace Pg and Fg]Qc by

fitshift(1 4 fitshift(Pg — 1,1) 4 fitshift(Pg — 1,1) T — fftshift(Pq — 1,1). * fftshift(Pg — 1,1) 7, 1)



118 CHAPTER 6. NUMERICAL TESTS FOR FAR FIELD OPERATOR COMPLETION

Algorithm 4 Far field operator splitting and completion by conjugate gradient method

Input: Noisy observed far field matrix Fg]Qc, projection Pq on non-observable set, wave number k,
a priori knowledge on locations ¢;, ca, R1 and Ry, maximum number of cg iterations lyax,
absolute noise level § > 0 and fudge parameter 7 > 1.

Output: Approximations ﬁq and Eq to F'; and B,.

1: Set N; = [ekRj/ﬂ for j =1,2.

2: Initialize R(O) [ ,P1F2|Qc’ P2F2|Qc, 'PLQFgmc, P2’1F2|Qc]’
3: DO = RO and

4: ( ) = [0,0,0,0,0].

5: for [ =0,1,2,- -, lhax dO

6:  Update oy = |[RD|2e/ (DD, MD®)yg

7 F(l+1) F( ) + alD(l),

8: R(l+1) = R() - OleD(l),

o 3 = [REDJhe/|RO i and

10: DD — R(l+ + 3DW.

11: if |[R™Y||gg < 76 then

12: Set lmax = 1.

13:  end if

14: end for o B

15: Set [Bq, 1‘71(]1 s Fq2’ Fq17q27 Fq2’q1] o F(lmax-f'l) and
16: Fq:F41+FQ2+FQ1,Q2+FQ2,Q1-

and

fitshift (fFtshift(F|qe, 1) + fitshift(F)|qe, 1) T — fftshift(F|qe, 1). * fitshift(F|qe, 1) T, 1),

respectively, where .x denotes the elementwise matrix product. The last summands remove the
doubly counted already symmetric parts of Pq and F2|Qc in above representations. In case of case
of noisy data, so 6y > 0, this procedure further implements noise filtering.

We evaluate the relative errors

L ”Fq — FqHHS Q ||Bq - BqHHS
B 7 e 2 o o
for the reconstructed far field operator IN*"q and for the reconstructed non-observable part Eq.

In the following, we briefly explain how we modify our algorithms from Subsections 4.1.4 and 4.1.5
for (additionally) solving the far field operator completion problem, and we present additional
methods for solving this problem. As before, we assume the scatterer D = D1 U D3 to consist
of two well-separated components, i.e., D; C Bg, (c;) for some c; € R? and R; > 0,75 =12,
with |e; — ea| > Ry + R2. Moreover, we set q; := xp,q for j = 1,2, and we assume D C Bg(c) for
some ¢ € R? and R > 0. For instance, we can always choose

Cy — C1

c =c1+ (’61—02|—|—R2—R1) and R = (|Cl—02|—|—R1+R2) .

N |

2‘61 —(32’

6.1.2. (SPLITTING AND) COMPLETION BY THE CONJUGATE GRADIENT METHOD

To solve the least squares problem (5.3b) of far field operator completion, we assume a priori
knowledge on the location Br(c) of the whole scatterer and on the non-observable set Q. According
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to (3.13) solving problem (5.3b) is equivalent to solve the block system

I Ppr]l[B 0
[PPQ I 1[F]:lPFg|QC] (6.2)

with P denoting the orthogonal projection onto V§,. We use N = [SkR]. With our notations from
Subsection 4.1.4 we solve the least squares problem (5.13) of the far field operator splitting and
completion by extending the linear block system (4.3) according to

I PaP1 PaP2 PaPi2  PaPaa B 0

PiPa I PiP2 PiPi2  PiP21 F, P1F?|qe

PoPo PPy I PoPi2 PaPan Fy = Pqu|Qc . (6.3)
P12Pa Pi12P1 PP 1 P1,2P2.1 Fis P12F°|qe

P21Pq P2iP1 PoiPa2 PoiPrp 1 Fy, P21 Fylac

Here, we mention that PQFS|QC = 0. This involves a priori knowledge on the locations Bg,(c;) of
the scatterer’s components, j = 1,2, and on the non-observable set €. Since the operators on the
left hand sides of (6.2) and (6.3) are again hermitian and under the assumptions of Theorems 5.7
and 5.14 positive definite (cf. Section 3.3), we can approximate the corresponding solutions by the
cg method. For the latter system we denote this operator by M. The resulting method in that case
is described in Algorithm 4.

6.1.3. (SPLITTING AND) COMPLETION BY FAST ITERATIVE SOFT THRESHOLDING

If additionally to the non-observable set €2 only knowledge on the position ¢ of the whole scatterer
(in case of far field operator completion) or knowledge on the positions ¢;, j = 1,2, of the scatterer’s
components (in case of far field operator splitting and completion) is available, one can solve
the ¢! x ¢! minimization problem (5.6) or (5.16), respectively. The related Tikhonov functionals are
given by

F o |Foloc — (I = Po)Flfas + pl TeF oo

and

(F1,F3,F15,F21) = |Floe — (I — Po)(F1+ Fa+ F1p+ Fa1)l[fis
+ 1(1TeFilloce + T Falloxe + | Ter e Fiallose + [ Teser Fanlloser)

with || - ||;1 <, given as in Subsection 4.1.3. As elaborated in Section 4.1.5, the unique minimizers
F,and (Fy,Fy,, Fg g, Fg,q) of these functionals can, for suitably chosen regularization parame-
ters u > 0, be approximated by FISTA. The related non-observable part can be approximated by

setting
B, :=-PoF, and By :=—Po(Fg +Fg+ Fyg 0, + Foq1)

respectively. Compared to Algorithm 2 we only have to modify the evaluations of the residuum,
which result in the algorithm that is described in Algorithm 5.

6.1.4. SPLITTING AND COMPLETION BY RPCP wiTH A FISTA TYPE METHOD

Suppose only a priori knowledge on the position ¢; of the second scatterer’s component and on
the non-observable set €2 is available, we modify our scheme from Subsection 4.1.6 to additionally
solve the far field operator completion problem. This leads for suitably chosen g > 0 to minimizing
the Tikhonov functional

(L.8) = IFlas — (I~ Pa)(L + 8 s + (L e + MTesS 1)
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Algorithm 5 Far field operator splitting and completion by FISTA

Input: Noisy observed far field matrix Fg|QC, projection Pq on non-observable set, wave num-
ber k, a priori knowledge on positions ¢; and ¢, maximum number of FISTA iterations lyax,
regularization parameter p > 0, initial guess F' = [F'1, Fy, F'y 2, F'5 1], tolerance € > 0.

Output: Approximation ﬁ‘q to F.

1: Set w = 1/5.

2 nitialize HY = [H", HY, HY) H)] = F,

3 FO = [F" FY F FY)] = F

4: R = Filo: — (I - Po)(HY + HY + HY) + HYY) and

5: t1 = 1.

6: forl =1,2,--- ,lax doO

7. Update FO = [F{) F{) P, FY) with FV = Mw,q,cl(H ) + wRD),

N F(z) = Moy (HY + wRD),

9: Fgl)2 = Mupes CQ(Hl 2 + WR(Z)) and

l

10: Fé,)l - w#702761< R(Z)>7
2

11: tl+1 = ﬂ7

12: g = gD gD gD BTV = FO 4 + =L (PO — FOD) and

13: R+ — Fglgc (I —Po)(H (z+1) + H(l+1) + H(z+1) + H(l—&—l))‘

14:  if |[RUV||gg < e then

15: Set lmax = L.

16:  end if

17: end Eor o B

18: Set [Foy, Fop, Foy gy Fop) = FUm%) and

19: F,=F, +F +Fq1,q2+Fq2,Q1

The resulting method is described in Algorithm 6. Compared to Algorithm 3 again only a modification
of the evaluations of the residuum is required.

6.1.5. (SPLITTING AND) COMPLETION BY COUPLED L' AND /! x ¢! MINIMIZATION WITH
A FISTA TYPE METHOD

Suppose we have no a priori knowledge on the non-observable set €2 but still on the center ¢ of a
ball that contains the whole scatterer. Then, one can tackle far field operator completion by solving
the coupled minimization problem (5.9). For suitably chosen p > 0 it is equivalent to minimize the
related Tikhonov functional

(F.B) = |Fjlo — (F + B)llfis + n(SITeF o cor + ABllz1)

cf. [49, Prop. 2.2]. We note that || - |[;1 is given as in Subsection 4.1.3. Due to (D.2) with J = 2
and Example D.2 (i)—(ii) the unique minimizer of this functional solves for 0 < w < 1/2 the fixed
point equation

F Mep o o(F +w(Fylo — F — B))

B| 7 | Suu(B+ w(Filo — F — B))

with M%,C’C given as in (4.5) and Sy, as in (D.3). It can be approximated by a modified
version of FISTA (cf. [34, Subsubsec. 1.4.2]). As before, we have to use the proximal operator
of wu/A|[Te( )|l g1 xer in direction F', but additionally the proximal operator of wu|| - ||z in direction
B. Far field operator splitting and completion for an unknown non-observable set €2, but a priori
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Algorithm 6 Far field operator splitting and completion by RPCP via FISTA type method

Input: Noisy observed far field matrix Fg]Qc, projection Pq on non-observable set, wave number k,
a priori knowledge on position ¢z, maximum number of proximal gradient iterations Iy, regular-
ization parameter p > 0, coupling parameter A > 0, initial guess F' = [F'| 9, F'5], tolerance ¢ > 0.

Output: Approximation ﬁ‘q to far field matrix F.

1: Set w = 1/3.
2 Initialize HY = [H), HY)] = F,
3. FO = LW sM] = F,
4 RY = Flloc — (I - Po)(H'Y + HY) and
5: t1 = 1.
6: for | =1,2,-++  lpax do
7. Update FO = [LO, §O) with LO = D, (HY + wRD) and
8: s — MAMz,CQ(Hg) +wRO),
N = VI
+1 +1
10: D — [H(L+ ),quJ“ )] = O ¢ ?l l(F(l) FU-D) and
11: R = Flo. — (I —Po)(HY + Hg“)).
12: if |RUY||gs < ¢ then
130 Set lpax = L.
14: end 1f
15:  Set [ @, qQ,F ,] = FUmax) and
16: Fy=Fg,+F,
17: end for

known positions ¢; of the scatterer’s components, j = 1,2, can be tackled in a similar way. This
leads to the Tikhonov functional

(F1,F9,F12,F3,,B ) — ||Flo — (F1+ Fy+ Fio+ Fay1 + B)|[ig

+ (Bl + 5 (176 Fillecer + 1T Fallae + 1T

x ot T ||7-C2 c1

x£1)> )

whose unique minimizer is, for suitably chosen p > 0 and all 0 < w < 1/5, characterized by the
fixed point equation

F Mep o, o, (F1+w(Folo = (F1 + Fa+ Fi2+ Fy1 + B)))
Fy Mfu 2(F2+M(Fg’9—(F1+F2+F1,2+F271+B)))
Fip | = MT#,C e(F12+w(Foq— (F1+ Fy+ F13+ Fy1 + B)))
Fa Mg, 201(F21+wF5\Q— (F1+ Fy+ Fi5+ Fa1 + B)))
B Som(B +w(Filg — (Fi+ Fy+ Fia+ Fay + B)))

This also follows from (D.2) with J =5 and Example D.2 (i)—(ii) The resulting method for far field
operator splitting and completion is described in Algorithm 7. In comparison to Algorithm 2, a
fifth matrix is added to the cell-structure, which models the non-observable part.

6.1.6. COMPLETION BY SINGULAR VALUE THRESHOLDING

Although we have no stability analysis for this problem formulation we further approximate the
solution of the far field operator completion problem for some noise level 6 > 0 by the solution of
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Algorithm 7 Far field operator splitting and completion by coupled L' and ¢! x ¢! minimization
via FISTA type method

Input: Noisy observed far field matrix Fg]Qc, wave number k, a priori knowledge on positions c¢;
and ¢z, maximum number of proximal gradient iterations lpax, regularization parameter p > 0,
coupling parameter A > 0, initial guess F' = [F'1, Fg, F'1 9, F'5 1, B], tolerance ¢ > 0.

Output: Approximations F and B to F; and B,.

1: Set w = 1/6.

2: Initialize HO = [HY, HY, HY) HY) HY)] = F,

3 FO = F", FY F(), F{), BO] = F

4 RY = Fllo. — (HY" + HY) + HY) + HY| + HY)) and

5: t1 = 1.

6: for=1,2, - ,lpax do

7. Update FO = [F{ FY), F{}, F}), BO] with F{) = M, .,(H" + wRD),

5 F = Map gy () + 0RO,

9: Fgl)z = ./\/l%mycl(H% —|—wR(l)) and
! !

10: Fg,)l = M%,chm (Hé,)l +WR(Z))7

11: B(l) = wAu(H(é) + WR(Z)>7

12: thy1 = W7

o HO - D B, ) - PO S )

14 ROHD = i — (HD 4 g +ngy42r1) g Dy ),

15 if ||[RUY||ps < e then

16: Set lpax = .

17:  end if

18: end for

19: Set [Fq17Fq2’ FC]LQQ? Fq27q17,§qj| — F(lmax) and
20: Fqo=Fqg+Fg+ Fq g+ Fgq + By

Algorithm 8 Far field operator completion by SVT

Input: Noisy observable far field matrix Fg|QC, projection Pq on non-observable set, maximum
number of SVT iterations liax, threshold parameter 7 > 0, step size § > 0 and tolerance € > 0.
Output: Approximation F'y to far field matrix F,.

1 Set & = |7/ F3loe|lus) |-

2: Initialize H®) = /{6F2|Qc.

3: forl=1,2, -, lpax do

4:  Update FO = Dy (HD),

5: HO = (I -Po)(H"™ + §(F|gc — F")) and
6: RY = Fllgc — (I - Po)FO.

7. if |RY|gg < e then

8: Set lpax = L.

9: end if

10:  Set F, = Fmax),

11: end for

the nuclear norm minimization problem

. . 5
minimize [ Fllaue  subject to || Fy|ae — (I —Pq)F|lus < 6 (6.4)
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with || - |lnue denoting the nuclear norm, i.e. the #! norm of singular values. Here, in contrast to the
previous formulations, a priori knowledge on the non-observable set {2, but not on the scatterer’s
geometry is taken into account. From Definition D.1 we know, that the proximity operator Dy, (F')
of 7|| * ||nuc given as in Example D.2 (iii) minimizes for all 7 > 0 the functional

1
F = 7| F|nuc + §||F3|Qc — (I = Po)Fllis,

see also [15, Thm. 2.1]. This motivates to perform the Singular Value Thresholding (SVT) algorithm
as it is proposed in [15, Alg. 1] for step sizes (Jx)r and described in Algorithm 8. In [15, Thm. 4.2] it
is shown that for 1 < inf §; < sup dx < 2 for all k£ the SVT iterates converge to the unique solution
of the problem

Irll;‘lél((lernXl%e || F||aue + %HFH%{S subject to ||Fg|gc — (I —Pq)F|us < ¢,
and that for a sufficiently large threshold parameter 7 > 0 this solution approximates a minimizer
of problem (6.4), see [15, Thm. 3.1]. The here stated version of the SVT algorithm is slightly
simplified in the sense that no adaptive step width control is implemented and a full singular
value decomposition is calculated in each step. In case of large matrices, it may be extended
by implementing the acceleration from [15, Alg. 1], which allows us to calculate the singular
value decomposition of smaller matrices in each step. Since the matrices of our problem class are
relatively small, we have not realized this in our implementation. In [15, p. 1973] it is proposed
to choose 7 = 5L as well as a constant step size 8y = 6 = 1.2L?/m for all k with m denoting the
number of non-zero entries of Pg. The latter choice turned out to be unsuitable for our purposes in
numerical experiments. Instead we set § = min{1.2L%/m,1.99}. Given the approximation Fq, the
related non-observable part can again be approximated by setting Eq = —PQFq.

6.2. NUMERICAL TESTS USING SYNTHETIC DATA

We choose the wave number k£ = 0.5 and fix a similar geometrical setup as in our numerical tests
on far field operator splitting in Section 4.2, i.e., we assume the scatterer D = D; U D3 to consist
of two well-separated components, a nut shaped scatterer D; and a kite shaped scatterer Dy as
depicted in Figure 6.1. Furthermore, let the associated contrast function q := —0.5xp, + xp, be
piecewise constant. We simulate the associated far field operator F'; as described in Example 2.5
and Subsection 4.1.1 using L = 100 equidistant distributed illumination and observation directions.
From Example 6.1 we know that the whole scatterer is contained in a ball of radius R = 14.25, so
the number of discretization points is large enough to resolve the F'; with sufficient accuracy, see
also Example 4.1.

On the one hand, we investigate the performance of our methods for varying size |2 and varying
structure of the non-observable set 2. On the other hand, we analyze how much the results improve
if, instead of solving only the completion problem (cf. Example 6.1), we split and complete at the
same time (cf. Example 6.2). In the last Example 6.3 we consider a different scatterer with missing
backscattering data within a certain angular range for different wave numbers. This should serve as
a benchmark for our tests with the experimental data in the following section. As was the case in
Chapter 4, the assumptions of our corresponding stability theorems are not satisfied in any of the
examples because the scatterers are too close to each other relative to their size. Nevertheless, our
methods provide useful reconstructions in most of the cases.

Example 6.1 (Completion for varying size || of Q). We study the accuracy of our numerical
reconstructions depending on the size || of the non-observable set Q2. To examine how the quality of
our reconstructions depends not only on the size of €2, but also on its geometric structure, we analyze
three different test scenarios. For our first test, we assume that the missing data segment ()
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FIGURE 6.1. Geometry of scatterer (solid) and a priori information on its location
and size (dashed). Left: For completion only in Example 6.1. Right: For splitting and

completion in Example 6.2.
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FIGURE 6.2. Real part of discretized far field operator F'; together with different missing
data segments. Left: Smallest (solid, 2.7% missing data) and largest (dashed, 23.7%
missing data) cross-shaped missing data segment Q = Q. Middle: Smallest (solid, 2.3%
missing data) and largest (dashed, 23.3% missing data) disconnected missing data
segment ) = 5. Right: Largest (75.1% missing data) randomly chosen missing data
segment {2 = Q3.

is supported on a union of two stripes of width «. This is shown in Figure 6.2 (left) in polar
coordinates for the smallest value o = 1/48 (solid) and largest value a = 1/4 (dashed) of «, and it
leads to missing data of between 2.7% and 23.7%. In our second test, we suppose that the missing
data segment () is supported on a union of two stripes of width « and length 7 and a square
with side length \/a(2m — «). This is shown in Figure 6.2 (middle) for the smallest value ov = 1/48
(solid) and largest value o = 1/4 (dashed) of «, and it leads to missing data of between 2.3%
and 23.3%. In our third test, we choose 23 randomly by computing between 2250 and 45000 equally
independent and uniformly distributed indices, that are assigned to €. This leads to missing data
of between 8.3% and 75.1%. The resulting observable far field operator for the latter is shown in
Figure 6.2 (right).

We use the cg method, FISTA, SVT and the version of FISTA for coupled L' and ¢ x ¢!
minimization from Subsections 5.1.1, 5.1.2, 6.1.6 and 6.1.5, respectively, for solving far field op-
erator completion. For the cg method we assume the dashed ball Br(c) in Figure 6.1 (left) and
the non-observable set €2 to be known a priori. The choice R = 14.25 leads to the subspace
dimension 2N + 1 = 2[ekR/2]| + 1 = 21, according to (4.1). For FISTA we use the regularization
parameter ;1 =5 x 107°, and we assume that the position ¢ of the scatterer, marked by a cross in
Figure 6.1 (left), as well as the non-observable set 2 is given. SVT only requires knowledge of the
non-observable set 2. We use the proposed parameter choices of 7 and & from Subsection 6.1.6.
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FIGURE 6.3. Relative errors of far field operator completion (left) and far field operator

completion and splitting (right) for varying size of the missing data segment.

Top: For cross-shaped missing data segment €2 = €2;. Middle: For disconnected missing

data segment Q = Q5. Bottom: For randomly chosen missing data segment Q = Q3.

For the modified version of FISTA, solving the coupled L! and ¢! x ¢! minimization problem
setting A = 8 and p = 8 x 10™* turns out to be appropriate, where only the position ¢ is supposed
to be given.

The results are shown in Figure 6.3 (left) on a logarithmic scale. As suggested by the associated
stability estimates (5.4), (5.7) and (5.10), all relative errors decay in [©2|. In all tests, the cg method
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and FISTA yield the best results, with FISTA providing the most accurate approximations for
a small number of missing entries. However, for larger values of ||, the performance of FISTA
deteriorates earlier than the one of the cg method. For the first test, the cg method generates
satisfying results up to about 14% missing data, FISTA up to about 10% missing data and the
fourth method only for the first data point, so about 3% missing data. SVT does not provide a
useful reconstruction for all considered sets €2;. In the second test, all reconstructions are worse
than in the first test, for comparable sizes of €2. Since 21 as well as {25 are supported on the two
stripes, this worsening is due to the additional square in the support of 5. It seems that not only
the size |Q] of Q plays a role, but also something like the radius of the largest ball that is completely
contained in 2. In the second test, the cg method and FISTA only yield satisfying results for the
smallest missing data segment of about 3% missing data. The other two methods do not provide
satisfying approximations. When deleting randomly chosen entries of the far field operator Fy in
the third test, even in the case of about 75% missing data the reconstructions of the cg method and
FISTA are surprisingly good. This further confirms our hypothesis that the geometric structure
of 2 in the previous mentioned form influences how good the reconstructions are. In that test, the
fourth method and SVT are successful for up to 20%, which particularly implies that SVT can only
compete with the other approaches in the third test, and even there, it provides the worst results.
A convergence order with respect to || is not identifiable for all curves. O

Example 6.2 (Splitting and completion for varying size |Q| of 2). We consider the same setting as
in the previous example, but instead of solving only the completion problem, we solve the splitting
and the completion problem simultaneously. Here, we use the cg method as described in Algorithm 4,
FISTA as described in Algorithm 5 and the FISTA type method solving RPCP as described in
Algorithm 6 as well as the FISTA version solving the coupled problem as described in Algorithm 7.
For the cg method we assume the dashed circles in Figure 6.1 (right) and the non-observable set € to
be known a priori, where, according to (4.1), the choices Ry = 3.5 and Ry = 5 lead to the subspace
dimensions 2N; + 1 = 2[ekR;/2] +1 =5 and 2Ny + 1 = 2[ekRy/2] + 1 = 7, respectively. For
FISTA we assume the positions ¢; and ¢y of both dashed circles and €2 to be given, and we choose the
regularization parameter p = 4 x 10~°. For the RPCP formulation we only assume the position ¢y
of the kite shaped scatterer and €2 to be known a priori, and we set A = 10~% and u = 107%/\.
Finally, for the fourth method we suppose the positions ¢; and ¢o of both scatterer’s components to
be given, and we set A = 8 and = 8 x 1072\,

The results are shown in Figure 6.3 (right). In the first two tests, we obtain significantly better
reconstructions by using the cg method compared to the previous example. This appears reasonable
recalling our stability estimate (5.14) since R+ Ry = 8.5 < 14.25 = R. For FISTA this improvement
is only observable in the second test, although the related stability estimate (5.17) also suggests
this in the first test. The third method provides reconstructions of approximately the same quality
as FISTA in the first test, and the fourth only convinces in the first data point, so for about 3%
missing data in that case. Concerning the second test, these two methods also only perform well
for about 3% missing data. When removing randomly chosen entries in the third test, the fourth
method yields good approximations for up to 30% missing entries, the third method for up to 40%
missing entries and the cg method and FISTA for all considered sets €13, as it was already the case
in the previous example. O

To link our tests with synthetic data to the tests with real data, in the next section we consider
a further example with missing backscattering data and a single scattering object of similar size
for the same wave numbers k. Since both SVT and the modified version of FISTA solving the
coupled L' and ¢! x ¢! minimization problem have proven to be clearly at a disadvantage compared
to the cg method and FISTA in Example 6.1, we only use the latter two methods for far field
operator completion in this example as well as in the tests in Section 6.3.

Example 6.3 (Completion with missing backscattering data). We consider a kite shaped scat-
terer D as shown in Figure 6.4 (left) with a contrast function given by ¢ = 2xp. The associated
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FIGURE 6.4. Left: Geometry of kite shaped scatterer (solid) and a priori information
on location ¢ = (0,0) " and size R = 0.03 (dashed). Right: Non-observable set ().
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FIGURE 6.5. Top: Real part of discretized far field operator F',, for kite shaped scatterer
and different values of k£ together with dashed marked non-observable set 2. Middle:
Absolute values of Fourier coefficients of Fy. Bottom: Absolute values of Fourier
coefficients of discretized observable far field operator Fy|qe. Left: k = 41.9. Middle
left: k = 83.8. Middle right: k£ = 125.8. Right: k = 167.7.

discretized far field operator F'; is simulated for the four wave numbers from Section 6.3 below,
so k € {41.9,83.8,125.8,167.7}. Furthermore, we suppose missing backscattering data within an
angular range of 120°, i.e., the non-observable set 2 is given by

Q= {(5:,0)ESlxslHargO—(argi’—i-W)\S%}, (6.5)

which is plotted in Figure 6.4 (right) and corresponds to about 33% missing data. Such type of
a non-observable set () is considered in Example 5.4. Here, we observed that no reduction of the
missing data is possible by taking reciprocity into account. The discretized far field operator F
together with the dashed marked non-observable set €2 is shown in Figure 6.5 (top). Since the
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FIGURE 6.6. Real part of reconstructed far field operator I?q for kite shaped scatterer
and different values of k. First row: cg method. Third row: FISTA. Absolute values
of Fourier coefficients (am,pn)m,n Of ﬁ’q. Second row: cg method. Fourth row: FISTA.
Left: k = 41.9. Middle left: k = 83.8. Middle right: k¥ = 125.8. Right: k = 167.7.

scatterer is located in the origin, the translation operator 7. can be omitted. Thus, we compute
the Fourier coefficients of F'; and those of the observable part Fy|loe = F, — PqoFy, which are
plotted in Figure 6.5 (middle, bottom) on a logarithmic scale. Here, we add dashed squares marking
the £ x (O-support of operators in Vy for N = [ekR/2] € {2,4,6,7} with R = 0.03. It can clearly
be seen in all plots that the essential support of the coefficients is concentrated in the marked square,
but in case of F|qc it also spreads on a diagonal stripe of a width corresponding to the diagonal of
the marked square. In this sense, the special shape of ) seems to correspond to a certain support
of noise in the associated Fourier coefficients. We use the cg method and FISTA for solving the
related far field operator completion problem. For the cg method we assume the dashed circle in
Figure 6.4 (left) to be known a priori, which leads to the subspace dimensions 2N +1 € {5,9,13,15}.
For FISTA, we choose in all tests the regularization parameter o = 10~%. The results are shown in
Figure 6.6. We evaluate the relative errors €, and 6?61 as introduced in (6.1). In case of the cg
method they are given by

el € {0.01,0.25,0.25,0.21}  and &%, € {0.02,0.87,0.88,0.69} ,
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FIGURE 6.7. Left: Sketch of geometrical setup with emitter positions marked in
red, receiver positions marked in blue and two scatterers marked in black (emitter
for illumination direction (—1,0)T highlighted together with associated observing
receivers and observable area in gray). Geometry of scatterers (solid) and a priori
information on their location ¢ € R? and size R > 0 (dashed). Middle: Rectangular
shaped scatterer with ¢ = (0m, —0.043m) " and R = 0.016m. Right: U-shaped scatterer
with ¢ = (0m,0m) " and R = 0.049m.

and in case of FISTA by
erel € {0.02,0.09,0.21,0.22} and %Y € {0.07,0.32,0.76,0.73} .

From these relative errors we conclude our methods to fail for all wave numbers k except for the
smallest one, and we observe the FISTA reconstructions to be a bit better for the other test cases.
Since we are interested to build a benchmark for our tests on real data in the next section, we
consider these extreme situations, in which we cannot expect our methods to work well. In fact, the
assumptions from both stability Theorems 5.7 and 5.8 are not fulfilled even for the smallest value
of k. We further calculate the relative errors by

F
0 = [PaFqllus {0.31,0.28,0.28,0.31}
1 Fqllus

of approximating F; by Fy|qc. Comparing 5?61 to erel, Wwe observe that applying our methods
consistently leads to an improvement over completing the non-observable entries by zero for all
values of k. By further comparing the plots in Figure 6.5 to those in Figure 6.6, we recognize
that the observable parts of all reconstructions visually match the given data F;|qc, while their
non-observable parts differ noticeably, except for k = 41.9. Visually, however, the impaintings also
look reasonable for higher frequencies. Applying FISTA further removes most of the diagonal stripe
outside the marked square. O

6.3. NUMERICAL TESTS USING EXPERIMENTAL DATA

Next we test our methods on experimental data, which is provided by the Institute Fresnel,
see [7]. The experimental setup is shown in Figure 6.7 (left). A cylindrical metallic scatterer
(approximately) sitting in the origin is irradiated by microwaves from a linearly polarized fixed
antenna acting as an emitter and positioned Ry = 0.72m away from the origin. The incident wave
propagates perpendicular to the axis of the cylinder and is polarized perpendicular to the axis of the
cylinder. This means that its magnetic field has no component along the propagation axis, which
makes this incident wave a Transverse Magnetic (TM) wave. Consequently, this three-dimensional
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FIGURE 6.8. Top: Real part of measured far field operator F'; for rectangular scatterer
and different values of k. Bottom: Absolute values of Fourier coefficients (am,n)m,n Of
7;Fg|gc. Left: k = 41.9m~'. Middle left: k£ = 83.8m~'. Middle right: k£ = 125.8m~"'.
Right: k = 167.7m~!.

scattering problem can be modeled by a two-dimensional Helmholtz equation as it is derived in
detail in [16, Sec. 5.1], see also [23, 82]. Here, a two-dimensional bistatic measurement system
is used, i.e., additionally to the transmitter a second rotatable antenna acts as a receiver and is
positioned Rr = 0.76m away from the origin. Changes of the illumination direction 8 are realized
by rotating the scatterer. We consider two metallic scatterers, a rectangular shaped scatterer (see
Example 6.4) and a U shaped scatterer (see Example 6.5) as shown in Figure 6.7 (middle, right)
together with the assumed a priori knowledge on their locations, respectively. In three dimensions
this corresponds to two cylindrical scatterers with a rectangular shaped and a U-shaped cross section,
respectively. We mention, that all lengths are given in decimeter. Since both the receiver and the
emitter are far away from the origin compared to the size of the scatterer, cf. Figure 6.7 (left),
we assume far field data, which can be obtained by multiplying the scattered field data with
Rpe BR[Oy, see (2.4). Moreover, we assume the incident wave to be a plane wave given by

ul(x;0) = Ape*®? x € R?.

This model of the incident wave is not clear from the data and has for example been discussed in [23,
Sec. 5.1]. The constant Ay > 0 models the amplitude of the incident field measured in front of the
emitter. Consequently, we observe that we have to divide the measured far field data by A to
obtain far field data fitting in the framework, as it is introduced in Section 2.2, i.e., for the incident
wave u'(x;0) = 9 2 ¢ R2. Since we do not know the values of A, from the data, we ignore this
scaling in our numerical tests. As it can be seen in Figure 6.7 (left), measurements of the far field
pattern for L~ = 72 equally distributed observation and Lg = 36 equally distributed illumination
directions are given, i.e.,

~ . . 2
Z; = (cos 0;,sin6;) " with 6, :== (I — 1)L—7T forl=1,..., L3
T
and

P
0, == (cos¢y,sing)|  with ¢ = (5—1)Ll fori=1,...,Lg.
]
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Since L # Lg, this leads to a non-square discretized far field operator

2w ~ L~XL
Fq = 7L (ugo(a:m;On))lgmgL? eC=""?,
o 1<n<Lg

Due to physical limitations, the two antennas cannot be positioned closer to another than in an angle
of 60°. This results in missing backscattering data within an angular range of 120° as it is considered
in Example 6.3. The associated non-observable set  given as in (6.5) is shown in Figure 6.4 (right).
For both scatterers, we consider measurements for four different frequencies f, so for four different
wave numbers k, which can be related to each other by k = 27 f /¢, where ¢ = 299792458m /s denotes
the speed of light in vacuum. In both cases we obtain

f € {2GHz,4GHz, 6GHz, 8GHz} , so  ke{41.9m™ ! 83.8m™! 125.8m~! 167.7m1}.

These are exactly the wave numbers from Example 6.3. The size of the scatterer from Example 6.3
is similar to the size of the rectangle and the size of the U shaped scatterer. Consequently, up to
unknown model errors and unknown noise, the situation in Example 6.3 is comparable to that of
Example 6.4 and 6.5 below. We again emphasize that we cannot expect our methods to work well
in these extreme situations. Nevertheless, also with regard to the next section, where we couple our
methods with a shape identification method, we want to test if we can achieve improvements.

Example 6.4 (Completion for rectangular scatterer). First, we consider the rectangular scatterer
from Figure 6.7 (middle). The measured far field operator Fg\gc for the different values of k is shown
in Figure 6.8 (top). We further compute the Fourier coefficients of 7'CF3\ qe for ¢ = (0m, —0.043m) .
These are plotted in Figure 6.8 (bottom) together with a dashed square corresponding to the support
of the Fourier coefficients of operators in V§ with N = [ekR/2] € {1,2,3,4} with R = 0.016m. It
can clearly be seen in all plots that the essential support of the coefficients is concentrated in the
marked square, but it also spreads on a diagonal stripe of a width corresponding to the diagonal of
the marked square, which is due to the shape of €2, see Example 6.3. We use the cg method and
FISTA for completing the far field operators, which yield approximations F‘q. Here, we assume
the dashed a priori knowledge from Figure 6.7 (middle) to be given. This leads to the subspace
dimensions 2N + 1 € {3,5,7,9} in the cg method. For FISTA we use the regularization parameters
p € {1074,107%,1073,2 x 1073}. The results are shown in Figure 6.9. While the observable parts of
the FISTA reconstructions (see Figure 6.9 (third row)) visually coincide with the given data Fg|Qc
(see Figure 6.8 (top)), the associated parts differ for the cg reconstructions (see Figure 6.9 (first row)).
The support of the Fourier coefficients of the FISTA reconstructions (see Figure 6.9 (fourth row)),
which should theoretically be essentially contained in [N, N2, still spreads along the diagonal
stripe, but is more concentrated after the completion with FISTA, compared to Figure 6.8 (bottom).
Especially for the two larger values of k the impainting ng‘q of the non-observable part integrate
well into the images as a whole for both methods. %

Example 6.5 (Completion for U-shaped scatterer). As a second example, we consider the U-shaped
scatterer from Figure 6.7 (right). The measured far field operator Fg|Qc for different values of
k is plotted in Figure 6.10 (top) together with the associated Fourier coefficients (amn)mn in
Figure 6.10 (bottom) and the £ x °-support of operators in Vy, where N = [ekR/2] € {3,6,9,12}
with R = 0.049m. We mention that the U-shaped scatterer is located in the origin, so the translation
operator T, can be omitted. As in the previous example, we observe the essential support of the
Fourier coefficients to spread on a diagonal stripe, centered in the marked square, caused by the
shape of 2. We obtain approximations Fq by solving the related far field operator completion
problem with the cg method and FISTA. These are shown in Figure 6.11 (first row, third row). For
the cg method we assume the dashed circle from Figure 6.7 (right) to be known a priori, which
leads to the subspace dimensions 2N + 1 € {7,13,19,25}. For FISTA we assume ¢ = (0m,0m) "
and choose as regularization parameters u € {1074,107%,1073,2 x 1073}. In Figure 6.11 (second
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FIGURE 6.9. Real part of reconstructed far field operator F q for rectangular shaped
scatterer and different values of k. First row: c¢g method. Third row: FISTA. Absolute
values of Fourier coefficients (@, )m,n of 7;?' q- Second row: cg method. Fourth row:
FISTA. Left: k = 41.9m~!. Middle left: ¥ = 83.8m~!. Middle right: k = 125.8m~*.
Right: k = 167.7m .

row, fourth row) we further plot the Fourier coefficients of f'q. Compared to Example 6.4, the
essential supports of the Fourier coefficients of the FISTA reconstructions are more concentrated
in the marked square, as is expected theoretically. Furthermore, the observable part of the cg
reconstruction visually fits better to the actually observed far field data. Actually, we would have
assumed worse reconstructions compared to the previous example, since the U-shaped scatterer is
larger than the rectangular scatterer, while choosing the same non-observable set €2 and the same
wave numbers k. This leads us to assume that there is better signal to noise ratio on the data of the
U-shaped scatterer than on those of the rectangular scatterer. In all cases, the reconstructions ’PQF‘q
of the non-observable part integrate well into the images as a whole, but they differ for the two
methods.

O

6.4. COMBINING OUR METHODS WITH THE FACTORIZATION METHOD

In this section, we investigate whether our reconstructions are a suitable input for solving another
well known inverse problem related to (2.1), the shape identification problem. Here, given the far
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field operator F, or a noisy version Fj of Fy, the aim is to recover the shape of the scatterer D. As
we already discussed in the beginning of Chapter 5 this problem is uniquely solvable, but ill-posed
and nonlinear. A common class of related solvers are sampling methods, see e.g. [31, Sec. 11.5]
or [30, Sec. 6] for an overview. For our numerical tests we choose the factorization method by
Kirsch, cf. [69, Chap. 4], [65, Sec. 4] and [66]. We briefly repeat the most important concepts of
this procedure. The basis is a factorization

Fy, = GT,G}
of the far field operator F, with
G, LA(D) — L2(5%) (G f)(&) = /f e Y gy @e 541,
T, (D) = I3(D), (T,1)w) = K - L)' w). weD,
G (ST = LAD), (o) = [, 9@ as@),  yeD.

where L, is given by (2.12) (cf. [66, Thm. 3.1]). Defining the test functions ®,(z) := eikTz g e gi-1,
for z € R? we have the following characterization of D, cf. [66, Thm. 3.2], namely

zeD ifandonlyif ®,eR(G,).

Since the far field operator Fy is normal, see Proposition 2.4 (c), the spectral theorem for compact
normal operators (see e.g. [27, Thm. 17.7]) yields

o0

Z wn L2(Sd— 1)¢n

for an orthonormal basis (1), of L?(S9~!) consisting of eigenfunctions of F, with corresponding
eigenvalues (\,),. Consequently, we have a second factorization

ST

* l *
Fy = (Fqu)4Rq(Fqu)
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of the far field operator Fy with

(Fy s« L2(S1) = LX(5™7Y), (Fy Fy)

NI

= Z \/ P‘n‘( " wn>L2(Sd—1)¢n )
n=1
_ _ = An
R, : L*(8471) — L3S, Ry =) m('a¢n>L2(sd—1)¢n-
n=1 """

Since one can show that R(G,) = ’R,((Fq*Fq)l/ 4) provided k? is not interior transmission eigenvalue,
see [65, Thm. 4.3], we obtain

= (P2, ¥n 2
zeD if and only if D, € R((F;Fq)i) if and only if Z (P2 1/}|;L2’(Sd 1)| <00,

n=1

see [65, Thm. 4.4]. The second equivalence holds due to the Picard criterion from Theorem A.2. This
can be reformulated in terms of a singular system (oy,; uy, vy )p for Fy, where oy, = [As|, un = Ap /| An|t0n
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and v, = v, for n € N. Thus, we have that

i (@2, Un>L2(Sd*1)‘2

On

zeD if and only if

< 00.

n=1

Therefore, discretizing an a priori known region of interest containing D, evaluating the singular
value decomposition of Fj and truncating and plotting the inverse of this series for each discretization
point z gives an approximation of D. In the plot, we obtain values close to zero outside of D and
values strictly greater than zero within D.

In the following we compare the reconstructions of the scatterer’s shape obtained by the factoriza-
tion method. As input we use either the cg or the FISTA reconstructions 1~7‘q of F'y or the measurable
far field operator Fg|QC extended by zeros. Here, we consider d = 2 and use the reconstructions from
Example 6.3 for synthetic data and the ones from Examples 6.4 and 6.5 for experimental data. This
procedure also makes sense for a nonsquare F'y, as it is the case for the experimental data. Since
in that case we have that Lg < L, we compute a thin singular value decomposition F, = USV™*
of F, with U € (CLEXLB, S = diag(o1,...,0L,) € CLeXLe and V = (vy,...,vy,) € CFexle cf. eg.
[47, Subsec. 2.4.3]. Here we distinguish the thin from the usual singular value decomposition by the
fact that zero columns of U and zero diagonal entries of S are not stored. The criterion from above
then can be implemented by plotting for each discretization point z the value

-1
Lg 1

Z;’(ﬁzW‘Q )

n=1""

where ¢, = (ei01% . ¢*926%)T ¢ CLo. The experimental data provided by the Institute Fresnel
has been used for testing sampling methods several times, and hereby, it is common to use the data
extended by zeros as an input, see e.g. [82, Sec. IV.A] for a discussion or [9]. In all three examples
below we have 33% missing backscattering data and the wave numbers k € {4.19,8.38,12.58,16.77},
and we choose the region of interest [—0.07,0.07]2.

Example 6.6 (Shape identification for kite shaped scatterer). We consider the kite shaped scatterer
from Example 6.3. As a first test, we apply the factorization method to the exact but incomplete
observable far field operator Fy|gc. The results are shown in Figure 6.12 (top) for the different
values of k. We further apply the factorization method to the cg and FISTA reconstructions Fq
from Figure 6.6 (second row, third row). The results are plotted for the different values of k£ in
Figure 6.12 (middle) for the cg method and in Figure 6.12 (bottom) for FISTA. Comparing the
first and the third row, we recognize a clear improvement of the kite’s shape for all values of k
when applying FISTA, and this improvement is more noticeable for small values of k. In case of
the cg method we observe a clear improvement for the two smaller values of &k, and the results
achieved here are even better than for FISTA. For the two larger values of k the reconstructed
scatterer’s shape shrinks to a ball centered in the a priori assumed location ¢ = (0,0) ", that is used
for constructing the subspace V5 in the cg method. Thus, in these situations the cg reconstructions
clearly do not provide a meaningful input for solving the shape identification problem. Numerical
tests show that this cannot be prevented by performing less cg iterations. Even after performing
one cg iteration, the factorization method still produces a ball afterwards for both values of k. ¢

Example 6.7 (Shape identification for rectangular shaped scatterer). As a first test on experimental
data, we turn to the rectangular shaped scatterer from Example 6.4, and we again first apply the
factorization method to the noisy observable far field operator Fg|QC from Figure 6.8 (top). The
results are shown in Figure 6.13 (top). Especially for the two larger values of k the reconstructions
of the rectangle already look surprisingly good, but we observe small circular artifacts with the
scatterer in their center. Next, we apply the factorization method to the cg reconstructions from
Figure 6.9 (middle) and to the FISTA reconstructions from Figure 6.9 (bottom), and we plot
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FIGURE 6.12. Reconstruction of kite by factorization method for different input and
different values of k. Top: By zero completed observable far field operator F' IQC as
input. Middle: cg reconstruction F as input. Bottom: FISTA reconstruction F as
input. Left: £ = 41.9. Middle left: k£ = 83.8. Middle right: £ = 125.8. Right: k = 167.7.

the results in Figure 6.13 (middle, bottom). In case of FISTA we observe improvements on the
rectangle’s shape compared to the top row of Figure 6.13, which are again the larger the smaller k
is. In case of the cg method we also observe improvements of the rectangle’s shape, but additionally,
the circular artifacts are strongly increased. Nevertheless, if enough a priori knowledge on the
scatterer’s location is available, which is already needed for performing the cg method and can be
obtained by applying the factorization method to the original data Fglgc, one can argue to just
zoom in to remove these artifacts. Since the wave fronts move closer to the scatterer for larger
values of k, this becomes more difficult for larger k. ¢

Example 6.8 (Shape identification for U-shaped scatterer). Finally we consider the U-shaped
scatterer from Example 6.5, the shape of which we first reconstruct by applying the factorization
method to the noisy observable far field operator Fg|Qc from Figure 6.10 (top), and we plot the
results in Figure 6.14 (top). The reconstructions obtained by applying the factorization method
on the cg reconstructions from Figure 6.11 (first row) and on the FISTA reconstructions from
Figure 6.11 (third row) are shown in Figure 6.14 (middle) and Figure 6.14 (bottom), respectively.
For the smaller two values of & we observe an improvement when applying both methods compared
to the data completed by zero. For the larger two values of k, all three reconstructions look relatively
good. In case of the cg method we again observe increased artifacts at the edge of the region of
interest as we already did in the example before. By applying FISTA, the artifacts outside the
scatterer seem to be reduced. O
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FI1GURE 6.13. Reconstruction of rectangle by factorization method for different input
and different values of k. Top: By zero completed observable far field operator Fg| Qe
as input. Middle: cg reconstruction F; as input. Bottom: FISTA reconstruction F
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APPENDIX A

HILBERT-SCHMIDT INTEGRAL OPERATORS

The results in this appendix can be found e.g. in [90].

We denote by L£(L?(S%!)) the space of linear bounded operators on the separable Hilbert
space L2(S971), i.e., the space of all linear operators G : L2(S91) — L2(S%~1) with finite operator
norm

1GqllL2(ga-1)

1G]l (A1)

= G . . =
NG 12 51y g2 sty o Tallgesiny

970
We further denote by KC(L?(S%1)) ¢ L£L(L?(S%1)) the space of compact linear bounded opera-
tors L2(S91) — L2(5471).
The following theorem can for example be found in [90, Thm. VI.17] or [67, Def. A.52, Thm. A.53].

Theorem A.1l. Let 01 > 09 > ... > 0 denote the ordered sequence of the positive singular values
of G € K(L*(S%™Y)). These are the nonnegative square roots of the eigenvalues of the nonnegative
self-adjoint operator G*G € K(L?(S%1)). Then, there exist complete orthonormal systems (un )y
in R(G) and (vy)n in N(G)* such that

Gv, = opUp and G*up, = opvp for alln € N.
The triple (op; Un, vp)n is called a singular system for G. There further holds that

Gg = Z OnUn (g, Un) [2(5d-1) for all g € L?(8471). (A.2)
neN

The following theorem gives a characterization of the range of a compact operator in terms of a
corresponding singular system, which we refer to as the Picard criterion.

Theorem A.2. [67, Thm. A.54] Let (0n;Un,vp)n denote a singular system for G € L?(S%1) and
suppose f € R(G) = N(G*)*. Then, the equation

Gg =f

is solvable, i.e., there holds f € R(G), if and only if

1
Z 72‘<fvvn>L2(Sd*1)’2 < 00,

neN In

and in this case .

9= ?(favn>L2(Sd*1)

neN ~ "

s a solution of above equation.
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From Theorem A.1 we conclude, that (o), are the eigenvalues of |G| := vVG*G, which is the
uniquely determined nonnegative operator |G| such that G*G = |G|? (see e.g. [90, Thm. VI.9]).
With the notation of Theorem A.1 it further holds for all g € L?(S%~1) that

|Glg = Z OnUn{gs Un) [2(5d-1) and G*Gg = Z Ugvn<g7vn>L2(Sd—l), (A.3)
neN neN

so, in particular, (v ), are the eigenfunctions of |G| and of G*G.

Definition A.3. [90, Thm. VI.18, Thm. VI.20] Let G € K(L?(S9!)) and (g), be an arbitrary
orthonormal basis in L2(S41).

(i) We define the trace of G by

trG = Z<gn,ng>L2(Sd—1). (A4)

neN
This definition is independent on the choice of (g ).

(ii) We call G trace class or nuclear if and only if tr|G| < oo and denote by N(L?(S% 1))
the space of all nuclear operators, which forms a Banach space together with the nuclear
norm ||G||puc := tr|G].

Let (¥n), be an extension of (v,), to an orthonormal basis of L?(S?!). By choosing g, = vy,
in (A.4) and inserting the singular value decompositions (A.2) and (A.3) of G and |G| we obtain

trG = Zan<vn,un>Lz(5d_1) and G|l = Zan = [(on)nlle - (A.5)

neN neN

One can show that (A.2) together with the definition of the operator norm (A.1) implies

|G| = supo, = o1 and therefore IGII < |G lnuc -
neN

Definition A.4. [90, Thm. VI.22] We call an operator G' € K(L?(S%™1)) Hilbert-Schmidt if and
only if tr G*G' < oo and denote the space of such operators by HS(L?(S9~1)), which forms a Hilbert
space together with the inner product (G, H)ns := tr(G*H) and the norm ||G|jus := (G, G)us.

The definition of the trace (A.4) and plugging the singular value decomposition of G*G (A.3)
into (A.4) while choosing ¢, = v, for the second identity yields

IGIEs = D IGonllTe(sany  and  [Gllfs = > on = ll(@n)allio- (A.6)
(§971)
neN neN
From || - |[gee <|| - ||z <|| - ||l;r, (A.5) and (A.6) we can conlude that
=<0 las < - e s (A7)

so N(L?(S9=1)) C HS(L?(S%1)).

Remark A.5 (Infinite dimensional matrices). Let G € HS(L?(S?1)) and (gn)n, (fn)n be two
arbitrary complete orthonormal systems in L?(S%1). We expand Gg, in terms of (g,), and obtain
with the first identity of (A.6)

HG||12{S = Z<G9mG9n>%2(sd71) = Z <G9nvfm>L2(Sd—1)<fmaG9n>L2(Sd—1)

neN m,neN

= Y WGn, fm)r2sa-1)* -

m,neN
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Accordingly, we can expand G in terms of ((-, gn)2(sa-1).fm)m,n Via

Gg = Z fm<G(Zgn(g79n>L2(sd—1))vfm>L2

d—1
meN neN (8 )

= > fmlGon, fm)12(s0-11(9, 9n) r2(se-1y, g € LS4

m,neN

The fact that G is Hilbert—Schmidt ensures the norm convergence of this expansion. By fixing
the choice of the two orthonormal systems the Hilbert—Schmidt operator G can be interpreted as
infinite dimensional matrix (am,n)mn = ((Ggn, fm) 12(gd-1))mn, Whose matrix entries are square
summable. In this sense the Hilbert—Schmidt norm is the infinite dimensional generalization of the
Frobenius norm for matrices.

Definition A.6. An operator G € £(L?(S%™1)) has finite rank if and only if the range of G is finite
dimensional, i.e., there exists some N € N and a family (g, )p=1,.. n in LQ(Sdfl) such that for every
g € L2(S% 1) we can write Gg = YN X\,gn for some A\, € C,n=1,..., N. If N is chosen minimal,
then rank G := N is called the rank of G. In particular, G is nuclear, so also Hilbert—Schmidt and
compact.

Corollary A.7. The finite rank operators are || - ||-dense in K(L?(S91)), as well as || - ||gs-dense
in HS(L2(S4™Y)) and || - ||nuc-dense in N'(L?(S971)).

Finally, the next theorem states that HS(L?(S9~!)) cannot only be identified with the space £2 x £
(cf. Remark A.5) but also with L?(S9~! x §971), so it has additional structure.

Theorem A.8. [90, Thm. VI.23] A operator G € K(L*(S%™Y)) is Hilbert-Schmidt if and only if
there is a function kg € L*(S9™! x S9=1) such that

Gy — /Sd,l ka(-,0)9(0) ds(0),  he LS.

In that context, G is referred to as a Hilbert—Schmidt integral operator with associated Hilbert—
Schmidt integral kernel kg. It holds

1Gllus = lkcllz2(ga-1xse-1y  and (G, H)ns = (KG, KH) 12(5d-1x 5d-1)

with Ky denoting the kernel of H € HS(L?(S971)).






APPENDIX B

SPHERICAL HARMONICS AND BESSEL FUNCTIONS

Approximations of functions on the unit sphere S?1 or for our purposes, since far field patterns
are L?(S971 x §971), on S9! x S9! naturally lead to expansions in terms of a certain orthonormal
system, namely spherical harmonics. Let

He .= {p:Rd—>(C s plx) = Z aawa,aae(C}

lal=n

define the space of homogeneous polynomials of degree n € N in d dimensions. Here, we use the
multi-index notation a = (az, ..., aq) € N&, |af := Z;l:l ag and % == z{' ... 25" for z € RY.
We now can define the space of spherical harmonics of degree n

Y4 =Y, (RY)|gs-1,  where  Y,(RY) := {pecH : Ap=0} (B.1)

denotes the space of harmonic homogeneous polynomials of degree n. By definition every spherical
harmonic Y;, € Y¢ can be related to a harmonic homogeneous polynomial H, € H¢ via

Hy(z) = |2|"Y, (). (B.2)

One can show that dim Y2 = dim Y,,(R?) = 2 and dim Y3 = dim Y,,(R?) = 2n +1 (see [1, p. 15-19]).
Furthermore, there holds

LS =yl and YILYL n#Em. (B.3)
n=0

In the following we introduce a concrete example of an orthonormal basis for Y¢ in case of d = 2,3
and deduce suitable solutions of the Helmholtz equation.

B.1. THE CASE d = 2 AND BESSEL FUNCTIONS

The results of this section can be found in [31, Sec. 3.5]. We set p*(x) := (z1 + iz2)" and conclude
from the binomial theorem that p* € H2 and further from direct calculation that p* € Y,,(R?). By
introducing polar coordinates & = r(cos ¢,sin )T, r > 0, ¢ € (—m, 7| there holds
pE(x) = 1" (cos p +isin )" = retn?

which implies due to (B.2) that e¥"¥ € Y2 and since dim Y2 = 2 that Y2 = span{e™¥, e~ "%} is
the space of trigonometric polynomials of order n.

We are now interested in solutions of the Helmholtz Au + k*u = 0, for which we make the
ansatz u(zx) := f(kr)et™?. By the chain rule and the Laplace operator in polar coordinates u solves
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the Helmholtz equation if and only if

1(0 0 1 0% 4 .

— = . - inp 2 +ine —

" <8r (Tar) + 7"8<P2> flkr)e + k= f(kr)e 0,
so if and only if

2
oting (’;’ £/ kr) + K2 f" (k) + <k2 - :;) f (kr)> = 0.

By multiplying by r? and setting t = kr this is equivalent to f satisying the Bessel differential
equation of order n

(1) + tf' () + (£ = n?) F(t) = 0. (B.4)

Two linearly independent solutions of (B.4) are given by the Bessel function J, and Neumann
function Y, of order n. For explicit series expansions of J, and Y,, see e.g. [87, (10.2.2), (10.8.1)].
Whereas J,, is analytic on R, Y,, is analytic on (0,00). Of course all linear combinations of .J,
and Y,, are solutions of (B.4) as well, the special linear combinations

HY = J,+iY, and H? = J,—iY,, (B.5)

which are called Hankel function of the first and second kind of order n, respectively. The func-
tion H(()l) is the fundamental solution of the differential equation considered in this work, see (2.2),
and consequently has special significance for our purposes. In the rest of this subsection we list the
basic properties of these four special functions, that are needed throughout this work.

For n € Z and a, z € C there holds the product formula (cf. [87, (10.22.5)])

/zJTQL(az) dz = %zQ (Jfl(az) — Jn_l(az)JnH(az)) . (B.6)
as well as the connection formula (cf. [87, (10.4.1)])
J_n(z) = (—1)"Jn(2). (B.7)

Formula (B.6) remains true for Bessel functions J, of order v € R, which are defined in the same
manner as solutions of (B.4) when replacing n € N by v € R. By [77, p. 199] we have the following
monotonically decreasing bound

Jn(t)] < bot™3, mEZ t>0, by~ 0.7857, (B.8)

which can be improved even further for special choices of ¢ and n. Let t > 2(M + 1) for some M € N
and |n| < M. Then, proceeding as in the proof of [55, Thm. 4.6] using [72, Thm. 2] gives

|Jn(t)] < bit™2  with by ~ 0.7595. (B.9)
We further have the following consequence of Neumann’s addition theorem, cf [87, (10.23.3)]

> Jiz) =1, zeC. (B.10)

nez
For given @ € S! and = € R? the Jacobi-Anger expansion (see [31][(3.112)]) reads
RO = Jo(klz]) +2 " i"Jn(k|z|) cos(ndd) (B.11)
n=1

with ¥ denoting the angle between £60 and Z. By using polar coordinates for +60 and & we
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rewrite ¥ = arg(+60)—arg £+2mmi for some m € Z and consequently since arg(—6) = arg 0+n+2wmi
for some m € Z
1

1, . : . . ~ _ . .
cos(m) = (e 4 c7) = 1 (1) ms0minasE | (1) rinarsOinars?)

Plugging this into (B.11) yields together with J_,,(k|z|) = (—=1)"J,(k|z|), n € Z,

e:l:ik:c-e _ Z(ii)neinargBJn(Mw’)e—inarg/x\ _ Z i:l:neinargGJn(k’wDe—inarg/m\_ (B.l?)
nez neZ
This provides an expansion of plane waves e*#(:)¢ in terms of spherical waves J, (k| - |)e~2r(")

for n € Z and it converges uniformly in & on compact subsets of R?.

B.2. THE CASE d = 3 AND SPHERICAL BESSEL FUNCTIONS

For a more detailed discussion of the results below we refer to [31, Sec. 2.3, 2.4]. We introduce
spherical coordinates & = r(sin 9 cos p, sin ¥ sin p, cos?)T, r > 0, ¥ € [0, 7], p € (—m,7]. By using
the relation (B.2) together with AH,, = 0 and the Laplace operator in spherical coordinates Y, is a
spherical harmonic of order n if and only if it solves

19 9 1
- Yo = —n(n+1)Y,. B.1
(sinﬁ@ﬁ (Smﬁafﬁ> " sin2198g02> n(n+1) (B.13)

One can show that {Y," : m = —n,...,n, n € No} with

ym = pPm e B.14
9, 0) ¢ R cos )e (B.14)

forms an orthonormal basis for the related solution space, i.e. for Y3 (cf. [31, Thm. 2.8]). Here, P™
denotes the mth associated Legendre function of order n, given by

m/2 d mPn(t)

P(t) = (L= RS,

n

m=0,...,n, te[-1,1],
and P, the Legendre polynomial of degree n, given by

1 n
Pu(t) - d

= — (2 =-1)" tel-1,1]. B.1
Q"n!dt"( )" € [-1,1] (B.15)

The following lemma is typically referred to as addition theorem.

Lemma B.1. Let n € N and {Y," : m = —n,...,n} be a system of orthonormal spherical
harmonics of order n. Then, for all &,w € S? it holds

n I
3 V@)Y (w) = ”4+ Pu(@ - w). (B.16)
—~ ™

Proof. See [1, Thm. 2.9] or [31, Thm. 2.9]. O

Remark B.2. Lemma B.1 in particular implies that Pg, which is defined by Png(w) =P (% - w), is
also a spherical harmonic of order n € N for fixed € S%2. Furthermore, it satisfies (cf. [1, (2.39),
(2.40)])

A7
2n+1

1P7 I L2(s2) = and  |[F]|pe(s2) = 1. (B.17)
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Theorem B.3. Every a € L?(S? x S?) can be expanded as a Fourier-Laplace series
oo oo
m=0n=0
Here, auy,y, is called (m,n)th spherical harmonics component of c, which satisfies

amn(@0) = EEIEED [ b @) [ R v)atev) dsto) dstw) . (B9

. . . . 3 3
and it is the orthogonal projection of o on Y;, x Y, .

Proof. Let {Y,* : m = —n,...,n} be an arbitrary system of orthonormal spherical harmonics of
order n, e.g. the one defined in (B.14). Since L?(S?) = @5, Y> we have

s (@) (@) Bt

m,n=0

(cf. [90, Sec. I1.4]), and we can expand any a € L?(S? x S2) according to (B.18) with

n(@0) = 33 R / Y (0)a(w, v) ds(v) ds(w)Y2(2)YP(6).

o=—mp=—n
By the monotone convergence theorem and (B.16) we can conclude representation (B.19). O

The following lemma adapts [56, Lemma C.1] and provides an orthogonality property of triple
products of the here needed spherical harmonic constructions.

Lemma B.4. Suppose that apmn, € Y3, x Y3, By, € Y3 X Yf, and s € Y2 x Y3 for some
m,n,o0,p,7,s €ENg. If m>o0+r orn>p+sorm<|o—r|orn<|p—s|, then it holds

/ / (@, 0)Bop(@, 0) 105 (7, 0) ds(0) ds(@) = 0.
52 J82
As before, we are interested in solutions of the Helmholtz Au + k?u = 0, for which we this time

make the ansatz u(x) := f(kr)Y,(Z). Using the chain rule, the Laplace operator in spherical polar
coordinates and (B.13) we can conclude that u solves the Helmholtz equation if and only if

1 (0 (5,0 1 0 0 1 9? o 9 ey
= <a ("55) + s (m755) * nm@> JUr @)+ B @) = 0.

so if and only if

Y™ (2) (2 éf’(kr) + K2 " (kr) + <k2 — TL(”;”) f(k:r)) =0.

We multiply by 72 and set t = kr to obtain the equivalent spherical Bessel differential equation of
order n

2F7(t) + 21 (1) + (£ = n(n +1)) f(£) = 0. (B.20)

Two linearly independent solutions of (B.20) are given by the spherical Bessel function j, and the
spherical Neumann function y, of order n. For explicit series expansions of j, and y, see e.g. [31,
(2.32), (2.33)]. Again, whereas j, is analytic on R, y, is analytic on (0,00). Their special linear
combinations

h,(ll) = Jn +iyn and h?) = In — iyn

n
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are the spherical Hankel functions of the first and second kind of order n.
Bessel functions and spherical Bessel function are related by the following formula. For n € Z

and z € C there holds
. T
Jn(2) =\ 5o Tus s (2)- (B.21)

By using this relation we can deduce from the bound (B.8) for n € Z and ¢ € R\ {0} that

. [ T 11 _5
l7n(t)] = %]JnJré(t)\ < \/gbofﬂ 273 < bolt| "6, bo = 0.9848. (B.22)
As in the two-dimensional case, this bound can be improved even further for special choices of ¢

and n. Let t > 2(M + %) for some M € N and 0 < n < M. Then, using relation (B.21) together
with the associated bound (B.9) gives

in ()] = «/%IJm%(t)l < \/Zblt—%—é < bst™!  with by ~ 0.9519. (B.23)

Here, (B.9) is applicable due to n + % <M+ % and t > 2((M + %) +1).
For given 8 € S? and = € R? the Jacobi-Anger expansion (see [31, (2.46)]) reads

ko _ i (20 + 1) jn (k|| Pa(£3 - 0) = i(j:i)”@n + 1)jn(klz|)Pu(z - 0) , (B.24)
n=0 n=0

which again is an expansion of plane waves e**(")¢ in terms of spherical waves j, (k| - [)P.((-) - 0)
for n € Z, and it converges uniformly in = on compact subsets of R3. Here, we used the symmetry

property P,(—&-0) = (—1)"P,(Z - 0), cf. [87, (18.6.1)].






APPENDIX C

TWO SUBGRADIENTS

In the following we restrict ourselves to the two-dimensional case.

For the results in this appendix we refer to [91, Chap. 5] and [92, Chap. 8], as a standard reference
for the theory of convex non-differentiable functions on RV, N € N, and to [5, Chap. 16], which
covers the generalization of these results when replacing RV by an arbitrary Hilbert space.

Definition C.1. We call an operator H € HS(L?(S')) subgradient of a norm || - ||y on HS(L?(S))
at H* € HS(L2(SY)) it

|H*+ G|y > |H*|lv+ (H,G)us  for all G € HS(L*(S")). (C.1)

The set of all subgradients of || - ||y at H* is called subdifferential of || - ||y at H* and denoted
by Ol[H*[|y-

The above definition has the following equivalent characterization. There holds H € 9|/ H*||y if
and only if

IH"[lv = (H",H)us ~ and  [H[}, <1, (C.2)

cf. [99]. Here, || - ||, denotes the dual norm of || - ||y, which is given by
H| = G, H)us . C.3
1 = max (G, Hyus (©3)

Example C.2. (i) Weset V = N(L?(S1)), i.e., we consider the nuclear norm. Let (0, Up, Un ) nen
be a singular system for some H* € N'(L%(S')). We define

W = {G € HS(L?*(S1)) ‘ G= Z (Un<',an>L2(Sl) +5n<‘,vn>L2(sl)> . Qn, B € L2(Sl)}.
neN

Then, all subgradients H € 0||H*||nue of the nuclear norm at H* are of the form
H = Zun<-,vn>L2(51)+W with PywW =0 and W] <1,

cf. [99, Ex. 2]. This can be seen by checking (C.2). Since PyyW = 0 the operators W and H*
are orthogonal and we obtain

(H*, H)ns = Z Un(“ﬂavm>L2(Sl)<umUm>L2(Sl) = Z on = [[H"|nuc -

m,neN neN

Furthermore, for g € L?(S'), V := span{v, } and V* denoting the orthogonal complement
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of V with respect to (-, -)r2(g1) we can write

Hg = H(Pvg+Pyrg) = > un(Pvg,vn)r2(s1) + W(Pyrg)
neN
and obtain with Parseval’s identity and ||[IW]| < 1 that

IHgl 72051y = I D un(Pyvg,vn)raesn)llizcsny + W (PyLg)llizcsn
neN

< |1PvgllZecsr) + IPyeglliizsy = lglZ2es) s
so ||[H|| < 1. Since the operator norm is the dual norm of || - ||y this yields the result.

(ii) We consider V = HS(L?(S')) n ¢! x ¢*. Let (amn)mn denote the Fourier coefficients
of H* € HS(L?(SY)) N ¢' x ¢'. Furthermore, we set

W = {G € HS(L?*(S1)) |suppp 0 G C suppgoy o H}

with £0x £0-support suppgo o ( - ) given as in Notation 2.7. Then, all subgradients H € 9|/ H* || yp
of the /1 x /! norm at H* are of the form

H = Z Umn e <'7en>L2(Sl) + F with 'PWF =0 and ”FHZOCXZOO < 1.

m
m,neZ |am,n|

(CA4)
As before, we prove this by checking (C.2). We calculate
e
(H*H)us = > amai—"(€m, €m)r2(s1)(€n; €1)12(51)
m,n,m,nex |am’ﬁ|
a
= Z am,n’ mm’ = Z ’am,n’ - "H*Hflxél .
m,neZ m,n m,ne”
Since || - ||goe x¢oo is the dual norm of || - ||;1 1 due to the disjoint supports of the two summands
in (C.4) we further have
| |l = max{” (Z2) e, Hpugwxem} <1,
) m,n
Lemma C.3 (Calculation of subgradients). (a) Given two norms || - ||y and || - ||w the subgradient

of their sum at some H* € HS(L?(S1)) is given by
O(lH lv + [H*lw) = OlH" ||y + OIIH [lw := {G+ H|G € d|H ||y, H € I H"[lw}.
(b) Given a norm || - ||y and X > 0 the subgradient of \|| - ||y at some H* € HS(L?(S1)) is given by

OAH |ly) = ANH |ly := {AH [H € 9|H"[|lv} .



APPENDIX D

SOME PROXIMITY OPERATORS AND RELATED SPLITTING
METHODS

Most of our problem formulations in Chapters 4 and 6 and thus resulting methods are of the same
structure.
In this appendix we consequently consider the general convex but non-differentiable minimization
problem
minimize

(Fy,...Fj)e(ChxL)7 ;

J
j=

1
H(E) + S IR(E, . F)ls (D.1)
1

where J,L € N, and </ : CL*L' — R are proper, lower semi-continuous and convex functions,
whose specific choices are discussed later in Example D.2. We either further have for the residual
function R that

R(F,...,F;) = F) - F;

in case of far field operator splitting or that

J=1

in case of far field operator completion. Here, Fg or Fg|gc is the given noisy observable far field
operator, respectively. The definition below can be e.g. found in [33, Subsec. 2.3].

Definition D.1. The Moreau envelope of a proper, lower semi-continuous and convex func-
tion .7 : CE*L — R at index w > 0 is the continuous and convex function

. 1 2
P i (%(G) oo IF - GHHS) .

This infimum is achieved at a unique point called prox,,,, F' with prozimity operator of we/ given
by

1
prox,,,, : CI*L — cbxE F — argmingccrxe (wszf(G) + §HF - GH%{S> .

From [33, Prop. 3.1] and [34, Prop. 8] we know that the unique solution of above minimization
problem (D.1) is for all 0 < w < 1/J characterized by the fixed point equation

F1 Prox,, (Fl—wR(Fl,...,FJ))

: = |: . (D.2)
F, prox,, ., (Fj—wR(F1,...,F))
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We mention that this choice of w ensures ||WK*K| < wJ < 1 for

J
K:(CHE et (Fy,...,F;) — > F;
j=1
in case of far field operator splitting or
J
Kby, et (Fy,...,Fy) — (I-Pq)> F,
j=1

in case of far field operator completion, see also [54, pp. 716f]. In our numerical tests we always
choose w = 1/(J + 1). The following example provides those proximity operators that are relevant
in this work, which are all deduced from the ¢! x ¢ norm since they all enforce the related solution
to be sparse in some sense.

Example D.2. (i) Let &/ := pu|| - |1« for some p > 0 and || - ||g1 401 given as in Subsection 4.1.3.
Then, prox, = fL_l 08y, 0 Fr, with nonlinear thresholding function Sy, : CEXL — CEXE given
by

([ fmnl — 1) elargfmnif | frnnl > 11
0 else,

F = (fm,n)lgm,nSL S CLXL;

(D.3)

(SopuF)mn = {

see e.g. [33, Exas. 2.16, 2.20].

(ii) Let & := p||[U(-)|pxp for some p > 0 and some unitary matrix U € CE*L. Then,
prox,, = U*(F; ' 0 Sy 0 Fr)(U(+)),
see e.g. [33, Lem. 2.8, Exas. 2.16, 2.20].

(ili) Let @ := p|| - |lnuc for some p > 0. Then, prox,, = Dy, where the singular value thresholding
function Dy, is given by

Dy, : CH*L 5 cl*E - Dy, F :=US,,(S)V* (D.4)

with F = USV™ denoting a singular value decomposition of F, see e.g. [15, pp. 1959f].
Here, Dy, is independent of the choice of (U, S, V') and thus well-defined.

Given a start iterate F©) = (Fgo), e FE]())) € CP*L the fixed point equation (D.2) suggests to
approximate the solution of (D.2) by the associated fixed point iteration

ngﬂ) Prox,, (ng) - wR(ng), e ng)))
: = |: , (D.5)
FSkH) ProX,, ., (F(Jk) — wR(ng), . ,FS’“))

which is known in literature prozimal forward-backward splitting algorithm. In each iteration it
is performed a gradient step forwards and a proximal step backwards. The choices for .27; as in
Example D.2 lead to versions of the iterative thresholding algorithm, see e.g. [34]. We refer to [34,
Prop. 2.1] and to [33, Thm. 3.4] for related convergence results.
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NOTATION

BASIC NOTATION

N> kR

oy’

FUNCTION SPACES

¢m(D)
Ce" (D)
Lr(D)

LP(D,C?)
Lp(sdfl)’ Lp(sdfl X Sdfl)

natural numbers, Ng = N U {0}

integer numbers

d—dimensional real Euclidean space
d—dimensional complex Euclidean space

point & = (z1,...,24)" in R?

Euclidean norm of @

dot product of x,y € R?

scatterer, open set in R? with Lipschitz boundary
disjointly supported scatterer’s components

point &' = (z1,...,24_1)" in R!
open ball in R%~! of radius R centered at ¢/ € R4~!

unit sphere in R¢

direction z/|x| € S of x, observation direction
illumination direction of incident plane wave u*
non-observable set in S9! x §4-1

subset of S?~1 x S9! on which observable far field
data can be extended according reciprocity

multi-index in N¢ of order |a| = a1 + ...+ ay
multi-index notation for power, x® = z{" ... 25*

volume of D C R?, surface area of Q C S971x §-1
real-valued and positive wave number

speed of light in vacuum, ¢ = 299792458m /s
frequency

N = N(kR) is somewhat larger than kR
Kronecker delta

m times continuously differentiable functions on
D CR?
C™ functions with compact support on D C R?

Lebesgue space on D C R4
vector-valued Lebesgue space on D C R?
Lebesgue space on unit sphere

9,10
103
104

143
143

130
130

16
21, 76

N



160 FUNCTIONS

HY(D) Sobolev space of weakly differentiable functions 7
on D C R4

H (R9) Sobolev space of H! functions on compact subsets 8
of R¢

" homogeneous polynomials of degree n in R? 143

Y, (R9) harmonic homogeneous polynomials of degree n 143
in R¢

Y4 spherical harmonics of degree n in R, 143
Y;il - L2( Sd—l)

SPACES OF SEQUENCES

P x P || - |lerxer P x P space of Fourier coefficients (a, ,,) € CZ*Z 15

P P(W), || - ler xer(w) P x (P sequences with £° x fO-support in W C Z2 16

(0P x P (L2(S? x S®), || - |lerxer #P x (P space of spherical harmonic components 22
(am,n) c (L2(52 % S2))NOXN0

(8 x B)(LA(52 x S%)), || - ller, xer weighted (¢P x P)(L*(S? x S?%)) space 22

(8 x BY(LA(S? x SEN)(W), || - llerxerqwy (€5, x €5)(L?(S* x 5?)) sequences with £ x (°- 22
support in W C N2

SPACES OF OPERATORS

L(LA(S=1), || - | linear bounded operators L?(S971) — L2(5971) 139

K(L2(S91)) compact operators in £(L2(S91)) 139

N(L2(SH) - e nuclear operators in £(L2(S471)) 140

HS(L2(SY), || - ||lus Hilbert-Schmidt operators in £(L?(S91)) 140

VN, V& subspace of sparse far field operators, Vy = VS 16, 23, 29

W, W§ subspace of low rank far field operators, Wy = W% 16, 23, 29

Vu,N, VX/’[?N generalized subspace of sparse far field operators, 40

L B Vyu,n = VJ(\Z’?N, Vv = V&

Vv, Vi, Vu,n, VZE\’/’I,CN sparse far field operators satisfying reciprocity 76

Va non-observable far field operators ass. to 2 103

HS(L2(S4 1)) N LP(S4 1t x S4=1) || - ||» operators in HS(L?(S71)) with LP integral kernel 15, 22

HS(L2(SY) NP x P || - |[ovscer operators in HS(L?(S!)) with Fourier coefficients 15
in /P x (P

HS(L2(S?)) NP x P, || - |lerxev operators in HS(L?(S?)) with spherical harmonic 22
components in /P x (P

FUNCTIONS

Dy fundamental solution of the Helmholtz equation at 9
wave number k

Ge, q by ¢ shifted and unshifted contrast function 9, 28

n? index of refraction 9

u? incident plane wave 9

uy scattered wave that results from scattering of u’ 9
on q

Ug total wave, u, = ul + ug 9

u>® far field pattern 10



OPERATORS 161
uy®, uZ;.(ll,),__,q“ scattered wave components associated to scattering 13
processes of order [
uif’”), ugfl’g,),,q” far field components associated to scattering pro- 13, 38
cesses of order [
u;"’"gp), Oj’(<p) Born far field of order p 13
JIn Bessel function of order n 144
Y, Neumann function of order n 144
H,(LI), H,(f) Hankel function of first and second kind and of 144
order n
(en)n trigonometric monomials of order n, ONB 15
of L?(S1)
(em,n)mn ONB of L2(S' x §Y), €y n(T,0) = €, (T)e_n(0) 15
P, Legendre polynomial of order n 145
P associated Legendre function of order n 145
pr spherical harmonic of order n, P* = P, (Z - (-)) 145
Jn spherical Bessel function of order n 146
Un spherical Neumann function of order n 146
h%l), hg) spherical Hankel function of first and second kind 146
and order n
Y )mom mth spherical harmonics of order n, ONB 145
of L?(S? x S?)
Ay Qmns Gy g, (m,n)th Fourier coefficient of ug°, u?’(l), ugd, . 16, 31
Qs a,(ylb)m, Oy (m,n)th spherical harmonic component of ug°, 23, 32
ugo’(l), Ugey o
Fr discrete L-point two-dimensional Fourier transform 86
Om,N, ON truncation or cut-off function on CL*L 86
Sy nonlinear thresholding function on CF*% 152
Mbe thresholding function in modulated Fourier bases 89
on CLXL
Dy singular value thresholding function on C*** 152
XD characteristical function of D C R¢
OPERATORS
rank G rank of G € L(L?(5471)) 141
trG trace of G € K(L?(S971)) 140
R(G) range of G € L(L?(S%71))
N(G) null space of G € L(L?(S%1))
supp u support of function 7
suppro G L%-support of G € HS(L?(S41)) 16, 22
suppgoy o G 09 x (O-support of G € HS(L?(S91)) 16, 22
Fy, Fy, far field operator 10, 37
Fq(l)7 Fq(ﬁ,m,qjl far field operator component associated to scatter-
ing processes of order [
Fq(gp ), Fq(JSp ) Born far field operator of order p
B, non-observable part of F 103
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F,lae restricted or observable far field operator 103

Sq scattering operator 11

Lq, Ly 1 operator modeling Lippmann—Schwinger equation 13, 38

T, translation operator on L?(S9~1) 29

Te translation operator on HS(L?(S471)) or CEXL 29, 86

To.c generalized translation operator on HS(L?(S%~1)) 40, 86
or (CL><L

Py orthogonal projection on V C HS(L?(S9~1))

1% orthogonal complement of V in HS(L?(S971))

G approximation to G € HS(L?(S971))

G° approximation to G € HS(L?(S471)) in a subspace,
reference solution for ! x ¢! minimization

G° approximation to G' € HS(L?(S?~1)) given noisy
data

G discretization of G € HS(L?(S41))

/|G|y subdifferential of norm || - ||y at G € HS(L?(S!)) 149

prox &/ proximity operator of o : CLXL — R 151

CONSTANTS

Cy prefactor in far field expansion, Cy = e™/*/1/87, 10
03 = 1/(471‘)

bo prefactor in upper bound for ||, (| - )||z2(Byx(0)) 19
bo =~ 0.7928

b1 prefactor in upper bound for ||j,(| - |)||2L2(BkR(O))’ 27
b1 ~ 4.791

ba prefactor in upper bound for |j,(t)| = O(t=%/), 147
by = 0.9848

b3 prefactor in upper bound for |j,(t)] = O(t™1), 147

bs ~ 0.9519
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