KIT | KIT-Bibliothek | Impressum | Datenschutz

Multiobjective Optimization of Electrical Machines Using Probabilistic Surrogate Modeling with Limited Data

Chen, Nuo ORCID iD icon 1; Digel, Christian 1; Wang, Yiwei; Doppelbauer, Martin 2
1 Elektrotechnisches Institut (ETI), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

In the stage of designing electrical machines, repeated calculations are commonly performed using finite element analysis (FEA), implying a high computational burden. To this end, artificial intelligence-based surrogate models (SMs) are being increasingly applied to significantly shorten the optimization time and obtain high estimation accuracy. However, the generation of datasets for model training still requires FEA, resulting in a massive amount of simulation time for large data. In this article, we propose a new optimization workflow tailored for a limited number of samples utilizing a probabilistic SM called the Gaussian process regression model, which can provide not only mean predictions but also additional prediction uncertainty information. The incorporation of uncertainty enables a better selection of key data from previous optimization solutions. With the help of key data, the SMs are retrained iteratively to achieve better prediction ability. In the end, the total optimization time and the errors between prediction and FEA verification are reduced substantially.


Originalveröffentlichung
DOI: 10.1109/IEMDC60492.2025.11061172
Zugehörige Institution(en) am KIT Elektrotechnisches Institut (ETI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 04.07.2025
Sprache Englisch
Identifikator ISBN: 979-83-503-7659-3
KITopen-ID: 1000183025
Erschienen in IEEE International Electric Machines & Drives Conference (IEMDC), 18th - 21st May 2025, Texas, Houston
Veranstaltung International Electric Machines & Drives Conference (IEMDC 2025), Houston, TX, USA, 18.05.2025 – 21.05.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 415–420
Schlagwörter electrical machine, probabilistic surrogate modeling, artificial intelligence, multiobjective optimization
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page