KIT | KIT-Bibliothek | Impressum | Datenschutz

Exploring Federated Learning for Thermal Urban Feature Segmentation - A Comparison of Centralized and Decentralized Approaches

Duda, Leonhard ORCID iD icon 1; Alibabaei, Khadijeh ORCID iD icon 1; Vollmer, Elena ORCID iD icon 2; Klug, Leon 2; Kozlov, Valentin ORCID iD icon 1; Berberi, Lisana ORCID iD icon 1; Benz, Mishal 1; Volk, Rebekka ORCID iD icon 2; Gutiérrez Hermosillo Muriedas, Juan Pedro ORCID iD icon 1; Götz, Markus ORCID iD icon 1; Sáinz-Pardo Díaz, Judith; López García, Álvaro; Schultmann, Frank ORCID iD icon 2; Streit, Achim ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)
2 Institut für Industriebetriebslehre und Industrielle Produktion (IIP), Karlsruher Institut für Technologie (KIT)

Abstract:

Federated Learning (FL) is an approach for training a shared Machine Learning (ML) model with distributed training data and multiple participants. FL allows bypassing limitations of the traditional Centralized Machine Learning (CL) if data cannot be shared or stored centrally due to privacy or technical restrictions – the participants train the model locally with their training data and do not need to share it among the other participants. This paper investigates the practical implementation and effectiveness of FL in a real-world scenario, specifically focusing on unmanned aerial vehicle (UAV)-based thermal images for common thermal feature detection in urban environments. The distributed nature of the data arises naturally and makes it suitable for FL applications, as images captured in two German cities are available. This application presents unique challenges due to non-identical distribution and feature characteristics of data captured at both locations. The study makes several key contributions by evaluating FL algorithms in real deployment scenarios rather than simulation. We compare several FL approaches with a centralized learning baseline across key performance metrics such as model accuracy, training time, communication overhead, and energy usage. ... mehr


Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Scientific Computing Center (SCC)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISBN: 978-3-031-96999-7
ISSN: 0302-9743
KITopen-ID: 1000183056
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Computational Science and Its Applications – ICCSA 2025 : 25th International Conference, Istanbul, Turkey, June 30 – July 3, 2025, Proceedings, Part I. Ed.: O. Gervasi
Veranstaltung 25th Computational Science and Its Applications : International Conference (ICCSA 2025), Istanbul, Türkei, 30.06.2025 – 03.07.2025
Verlag Springer Nature Switzerland
Seiten 285–302
Serie Lecture Notes in Computer Science ; 15648
Projektinformation AI4EOSC (EU, EU 9. RP, 101058593)
Vorab online veröffentlicht am 29.06.2025
Schlagwörter Federated Learning, Distributed Learning, Real-world Implementation, Segmentation, Energy Consumption, Thermal Anomaly Detection
Nachgewiesen in OpenAlex
Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 11 – Nachhaltige Städte und Gemeinden
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page